This Is Auburn

Show simple item record

Vietoris–Rips Complexes of Torus Grids


Metadata FieldValueLanguage
dc.contributor.advisorFeng, Ziqin
dc.contributor.authorSterling, John
dc.date.accessioned2025-04-20T16:14:31Z
dc.date.available2025-04-20T16:14:31Z
dc.date.issued2025-04-20
dc.identifier.urihttps://etd.auburn.edu//handle/10415/9659
dc.description.abstractIn this work, we study the homotopy types and homology of Vietoris–Rips complexes of torus grid graphs. Let T_{n,n} be a torus grid graph consisting of n × n points on T2 equipped with the l1 metric. We first compute the homology of VR(T_{n,n}; k) for 1 ≤ n ≤ 28 and 1 ≤ k ≤ 13. Subsequently, we provide a complete classification of the maximal simplices in VR(T_{3k,3k}; k) for k ≥ 2, VR(T_{3k−1,3k−1}; k) for k ≥ 3, and VR(T_{n,n}; k) when k ≥ 2 and n ≥ 3k. Using these classifications, we establish the homotopy equivalences: VR(T_{3k,3k}; k) ≃ V_{6k^2−1} S2 for k ≥ 2, VR(T_{3k−1,3k−1}; k) ≃ V_{6k−3} S2 ∨ V_{6k−2} S3 for k ≥ 3, and VR(T_{n,n}; k) ≃ T^2 when k ≥ 2 and n ≥ 3k.en_US
dc.subjectMathematics and Statisticsen_US
dc.titleVietoris–Rips Complexes of Torus Gridsen_US
dc.typeMaster's Thesisen_US
dc.embargo.statusNOT_EMBARGOEDen_US
dc.embargo.enddate2025-04-20en_US
dc.contributor.committeeHuang, Huajun
dc.contributor.committeeZhang, Yuming
dc.contributor.committeeFeng, Ziqin
dc.creator.orcid0009-0002-5197-0595en_US

Files in this item

Show simple item record