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Abstract

Eleusine Gaertn. (Poaceae, subfamily Chloridoideae), is a small taxon of closely related
and distinct diploids and tetraploids endemic to Africa that have been scrutinized from vegetative,
floral, cytological, and molecular evidence with a sustained interest in their phylogeny and
adaptations, partly due to the economic and ecological impacts of a super crop (E. coracana) and
a weed species (E. indica) in the genus. Studies to elucidate the genotypic and phenotypic
relationships in E. coracana have always involved Single Nucleotide Polymorphisms (SNPs),
although recent studies show that SNPs do not capture large genomic variations that equally
contribute to phenotypic differences. In this thesis, | used environmental data to characterize the
eco-geographical distribution of the different Eleusine species in Africa and investigated structural
variations in E. coracana. Using Maximum Extent modeling software (Maxent), | characterized
possible environmental predictors for the presence of Eleusine species in Africa based on
collection records on Global Biodiversity Information Facility (GBIF) and 33 bioclimatic and soil
data. Furthermore, | analyzed publicly available, paired-end, whole-genome E. coracana
sequences from the National Center for Biotechnology Information (NCBI) Sequence Read
Archive (SRA) repository for structural variants and their genomic distribution with custom bash
and R scripts created with freely available bioinformatics tools. Maxent modeling revealed a high
degree of variation in the probability of Eleusine species on the African continent and indicated
possible suitable environments in new locations. There is a need to corroborate these
environmental distribution findings with known locality records (e.g., herbarium records) and field
verifications. Whole genome sequence (WGS) analysis revealed a high occurrence of Structural
Variants (SV) in Eleusine coracana with 455 inversions, 18,990 duplications, and 103,338

deletions variants detected. This high incidence of deletion and duplication events are consistent



with SV analyses in other plants, especially polyploids. In addition, substantiating identified
genomic variations in E. coracana in combined multiple approaches involving other high-
performance SV callers would be helpful for more robust prediction and reduce error calls.
Hopefully, identified variants lay the groundwork for future analyses identifying structural
genomic variations. These approaches in this research together present the first data uncovering
environmental preferences and genomic variation influences in Eleusine and can help our

understanding of the genus.
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Chapter 1: General Introduction

Grasses (Poaceae), with over 11,500 known species (Duvall et al., 2007; Shchapova, 2012;
Christenhuzs and Byng, 2016), are the fifth most species-rich group of flowering plants. It includes
crop, pasture, and weed species adapted to all key landmasses from warm and cold (Kellogg, 2001;
Stromberg, 2011). Within the grass lineage, the PACMAD clade (subfamilies Panicoideae,
Avristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, Danthonioideae) consists of closely
related species with paramount and ecological and economic importance that have evolved the
efficient carbon-fixing, C4 photosynthesis several times and are well adapted to open vegetation

(Cotton et al., 2015; Soreng et al., 2015).

Among the PACMAD grasses, the subtribe Eleusininae Dumort. (Poaceae: Chloridoideae:
Cynodonteae) is a morphologically diverse group of about 231 species and 27 genera Eleusininae
(Peterson et al., 2015; Soreng et al., 2017; Muchut et al., 2017) occurring primarily at low latitudes
in Africa, Asia, Australia, and the Americas (Peterson et al., 2010; Peterson et al., 2015).
Generally, they are morphologically characterized as having diverse paniculate inflorescences

(Muchut et al., 2017) and mostly exhibit C4 leaf anatomy (Ellis, 1984).

Eleusine species are herbaceous plants with flattened culms (or stems) erect, prostrate, or
angled and flattened at the internode. They have a digitate or sub-digitate inflorescence with spikes
arranged into a terminal whorl. Each spike has many laterally compressed spikelets, usually
disarticulated at maturity, with the fruit (grain) being unusual, among grasses, ornamented, and
enclosed by a thin pericarp (Phillips 1972). The genus, Eleusine Gaertn. (Poaceae, subfamily
Chloridoideae), is a small taxon of closely related and distinct tufted annuals or perennials that

sometimes have rhizomes or stolons (Phillips, 1972; Peterson et al., 2021).



Species in the genus include diploids and tetraploids based on a haploid chromosome
number of n =8, 9, and 10. Cytological studies suggested showed n = 9 as the basic chromosome
number in Eleusine with n = 8 arising from aneuploidy and n = 10 arising from a gain in
chromosome number (Hiremath and Chennaveeraiah, 1982). E. coracana is an allotetraploid (2n
= 4x = 36, genome formula AABB) that is morphologically similar to both E. indica (2n = 2x =18,
AA) and E. africana (2n = 4x = 36, AABB). The other tetraploid in the genus is E. kigeziensis (2n
=4x = 38, AADD). E. floccifolia (2n = 2x = 18, BB), E. intermedia (2n = 2x = 18, AB), E. jaegeri
(2n =2x =20, DD), E. multiflora (2n = 2x = 16, CC) and E. tristachya are diploids. E. semisterilis,
known only from type specimen, is cytologically unknown and probably extinct (Phillips, 1972;

Phillips, 1995).

Over decades, the number of Eleusine species and their relationships have been scrutinized
from vegetative, floral cytological, and molecular evidence. However, the genus is incontestably
monophyletic (Kennedy 1957, Philip 1972, De Wet et al. 1984, Ganeshaiah & Umarshaanker
1980, Gasser and Vegetti 1997, Bisht and Mukai 2000, Bisht and Mukai 2002, Neves et al. 2005,
Liu et al. 2011). Current recognition of the species in the genus is essentially shown by Philip
(1972). He grouped E. africana and E. indica as subspecies while extensively describing the
vegetative and floral morphology and the life cycle of 9 predominant members found in Africa.
This arrangement has been followed by rearranging relationships in the taxon, especially in
identifying E. africana, E. coracana, and E. indica as distinct species. Recently, E. poiflora,

formerly closely related to the Coelachyrum genus, was added to the group (Peterson et al., 2021).

Pieces of evidence from cytological, biochemical, and molecular sources reveal that E.
indica is maternally related to the AA genomes in E. coracana and E. africana (Hilu, 1995; Werth

et al. 1994; Liu et al., 2011; Peterson et al., 2015; Soreng et al., 2017; Peterson et al., 2021).



Morphological and genetic proximities between E. coracana and E. africana also suggest gene
flow occurs between them in nature, and probably E. coracana originated from E. africana through
selection (Chennaveeraiah and Hiremath 1974; Hilu and deWet 1976). From ribosomal DNA
similarities, Bisht and Mukai (2000, 2001) suggested that E. floccifolia is the paternal progenitor
for E. africana and E. coracana. However, this claim has been refuted from nuclear Internal
Transcribed Spacers (ITS) and plasmid trnT-trnF (region between Threonine and Phenylalanine
of chloroplast tRNA gene) sequences (Neves et al., 2005). The sister relationship between E.
indica and E. tristachya and between E. floccifolia and E. jaegeri are widely accepted from
biochemical and genetic evidence (Liu et al. 2011; Hiremath and Chennaveeraiah 1982; Hiremath
and Salimath 1991; Hilu and Johnson 1992; Peterson et al., 2015; Peterson et al., 2021). Recent
plastid phylogeny groups the three tetraploid species and with the E. indica—E. tristachya clade
under a common ancestor. (Liu et al. 2014). The close relationship of Eleusine species and
Coelachyrum poiflorum in molecular studies (Liu et al., 2011; Liu et al. 2014; Peterson et al.,
2015; Soreng et al., 2017) influenced its transition as a member of the group. The evolutionary
relationship in the genus is still largely unresolved as paternal progenitor(s) remains unknown (Liu

etal., 2011; Liu et al., 2014; Zhang et al., 2019).

East Africa is the center of Eleusine diversity, and 9 of the 11 species are found in Africa.
Eight species are endemic to Africa (Phillips, 1972; Liu et al., 2011; Peterson et al., 2021). One
species, E. tristachya, is native to the New World. Generally, Eleusine species records are confined
to East Africa, occupying a narrow range at high altitudes (Phillips, 1972; Liu et al., 2011). E.
indica (L.) Gaertn. is documented as a pantropical and introduced weed from all continents except

Australia and Antarctica (Phillips, 1995; Liu and Peterson, 2010). E. coracana is widely known



for cultivation in sub-Saharan Africa and Asia. The newly added E. poiflora extends from

southwest Asia into Somalia and Djibouti.

Research Objective and Experimental Context

There is sustained interest in understanding the study of Eleusine species which has reached
economic and ecological impacts. Variations in temperature and availability of water (majorly
from anthropogenic led climate change), with decreasing soil fertility and rising pest and disease
occurrence, have led to a stress-induced loss in plant yield (Dhankher and Foyer 2018; Chaudhry
and Sidhu, 2021). Identification and adoption of climate-resilient crops (crops with enhanced
tolerance to stress) are recognized as a coping mechanism for threats to future food security. E.
coracana (called finger millet), a historic orphan cereal with modern interest cultivated for grain
and fodder, is highly nutritious, adaptable to diverse environments, and drought and disease
tolerant. Furthermore, E. indica is a widespread weed, notorious for being hard to control due to
its high reproductive capacity, herbicide resistance, and wide tolerance to various environments
(Holm et al., 1977; Chen et al., 2015). Understanding the complex genetics and traits of Eleusine

species has enormous benefits for agriculture and other industries.

Therefore, my research objectives are to:

1. characterize the geographical distribution of the different Eleusine species in Africa and,;

2. investigate genomic structural variations in E. coracana.



Chapter 2: Geospatial Characterization and Distribution Mapping of Eleusine Species in
Africa

Introduction
Savanna, characterized by the abundance of grasses with widely spaced trees that do not

form a canopy, makes up about 50% of the African continent's land surface (Belsky, 1994; Scholes
and Archer, 1997). Africa savanna has a rich floristic and physiognomic diversity, and the ca

grasses are a significant component of their structure (Pasturel et al., 2016; Still et al., 2003).

One exciting group among the Cs grasses exhibiting significant morphological and
ecological diversity in Africa is the Eleusine Gaertn. (Poaceae, subfamily Chloridoideae) genus.
It is a taxon of eleven annuals and perennial that includes an essential historical crop (E. coracana),
a ubiquitous weed (E. indica), and other wild-growing individuals (E, africana, E. floccifolia, E.

intermedia, E. jaegeri, E. kigeziensis, E. multiflora, and E. tristachya).

Eleusine is mainly African (at least eight species; Phillips, 1972), and one species, E.
tristachya, is endemic to the New World. Generally, all species reportedly occupy a range of
habitats from low to high altitudes in Africa (Phillips, 1972; Liu et al., 2011). E. indica (L.) Gaertn.
is documented as a pantropical and introduced weed in all continents except Australia and
Antarctica (Holm et al., 1977; Phillips, 1995; Liu and Peterson, 2010). E. coracana (finger millet)
is widely known for cultivation in sub-Saharan Africa and Asia. The newly added E. poiflora

extends from southwest Asia into Somalia and Djibouti.

There is a sustained interest in understanding the biology of Eleusine species with reaching
economic and ecological impacts. The present and increasing variations in temperature and
available water (majorly from anthropogenic led climate change), with decreasing soil fertility and
rising pest and disease occurrence, have caused stress-induced losses in plant yield (Dhankher and

Foyer 2018; Chaudhry and Sidhu, 2021). Finger millet has been identified as a climate-resilient



crop (crops with enhanced tolerance to stress), thus, a coping mechanism for threats to future food

security.

Plant species distribution is mainly associated with water availability, especially at
latitudes closer to the equator, where the sun's radiant energy is abundant (Hawkins et al., 2003).
Africa spans the equator stretching from the northern temperate to southern temperate zones, and
most of the continent is in the tropics. Thus, Africa lands are among the most vulnerable
ecosystems to climate change and increasing human pressure (Sala et al. 2000, Parr et al. 2014).
Studies on broad environmental correlates of grassland in Africa (Pasturel et al., 2016;
Bocksberger et al., 2016). However, knowledge about specific habitat requirements and the
distribution of plant species is lacking. At present, environmental distribution analysis is presently

unavailable for Eleusine species.

Species Distribution Models (SDMs) correlate environmental conditions (predictor
variables) with locations where an organism has been observed (Guisan & Thuiller 2005). SDM
uses identified suitable environment layers to predict potential habitats where the species can
occur. Maps of potential habitat suitability aid in the species environmental management by
identifying potential restoration and protection sites and can lead to the discovery of new
populations (Hernandez et al. 2006). There are various methods for modeling species distribution.
One standard method is the use of presence-only data, which relies only on location records for

where the species has never been recorded (Pearce & Boyce 2006).

Digital herbarium records are available for Eleusine species collections in Africa on the
Global Biodiversity Information Facility (GBIF). These are broadly presence-only data that are

useful in modeling distribution. Understanding the factors that determine the present geographic



distribution of Eleusine species helps identify and predict potential suitable environmental

conditions.

In this study, | characterized the eco-geographical patterning of the different Eleusine
species in Africa. | utilized available climatic, soil, vegetation, and digital elevation model (DEM)
map to gain insights and make substantial predictions about the probability of presence, potential
species habitat, and environmental correlates for each species in the genus within Africa.
Understanding the distribution, ecology, and population dynamics of Eleusine species in Africa

could provide insights into the history and relationships in the genus.

Materials and Methods
This study is a broad characterization of environmental predictors for Eleusine species in

Africa based on collection records on GBIF (the Global Biodiversity Information Facility).
Bioclimatic and soil data were used to find out possible indicators for the presence of Eleusine
species in Africa. Eight Eleusine species are recognized as native to Africa, and one species, E.
tristachya, is endemic to the new world (Phillips 1972). All species have been documented in
Africa, and their habitats range from the dry highlands of East Africa to low-lying coastal areas.
Figure 2.1 shows a preview of the location of Eleusine species collections, created with ArcGIS ®

pro software by Esri.
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Figure 2.1: Distribution of nine Eleusine species across the African continent. A total of 2,961
locations were extracted for Africa collections from the Global Biodiversity Information Facility
records (GBIF; https://doi.org/10.15468/d1.e83gx8 accessed November 24, 2020).

Species extents and Predictor Layers
Africa covers about 12 million sq mi from latitude 37.354722 to latitude -31.854167 and

longitude -17.520277 to 51.464444. However, the recorded range on Eleusine species in Africa

differs among species, with 3 (E. coracana, E. africana, and E. indica) occupying broad ranges



across sub-Saharan Africa and other species confined to east and southern Africa. E. tristachya is

reported in South Africa and Algeria.

In modeling distribution for Eleusine species in Africa, shapefile for Africa, containing
South Sudan and Abyei, was downloaded from openAFRICA

(https://africaopendata.org/pt BR/dataset/africa-shapefiles/resource/04ed7565-614d-473e-88h9-

2e9208c5cece). This was used to define the map extent for each species in ArcGIS pro using two
approaches. First, a full Africa map was used for all species to represent all possible environments
in Africa accurately. Using the full extent implies that each species could have dispersed anywhere

across the continent. It also means that the whole continent has been considered for sampling.

In the second approach, the modeling extent for each species was narrowed to include only
countries where they were reported in GBIF records, reducing artifacts of prediction statistics
when modeling with Maxent as advised by Phillips, S. J. (2017). Narrowing the modeling extents
also enabled distribution projection to areas where species have not been reported. In this approach,
selected countries for a species broadly represent environments where the species have been found.
It also implied that the species had dispersed anywhere across the extent. Mapping extent for each
species was extracted with the Dissolve tool after selecting the countries from the Attribute Table

of the Africa map with SQL commands (Appendix 1)

Each map extent was projected to the Africa Albers Equal Area Conic (AAEAC) projection
using the Project Raster tool. AAEAC is a regional scale projection for Africa, with each cell
having an equal area. The projection’s x-y measurement is in meters, the same units as the z-axis

for the elevation layer and its derivatives.


https://africaopendata.org/pt_BR/dataset/africa-shapefiles/resource/04ed7565-614d-473e-88b9-2e9208c5cece
https://africaopendata.org/pt_BR/dataset/africa-shapefiles/resource/04ed7565-614d-473e-88b9-2e9208c5cece

Available general habitat suitability indicators—reported as eco-physiologically
meaningful environmental variables affecting the distribution of plants, such as climatic (rainfall
and temperature), soil (type and characteristics) (Mod et al., 2016)—were used to model Eleusine

species distribution in Africa.

To characterize each collection point, | used a set of 33 environmental variables that
include climatic and edaphic factors. Nineteen bioclimatic variable maps and accompanying
digital elevation model (DEM) were downloaded from WorldClim Version2 (Fick and Hijmans,
2017). These are 30 seconds spatial resolution biologically meaningful variables maps derived
from historical monthly temperature and rainfall values for 1970 to 2000. WorldClim biological
variables include annual trends, such as mean annual temperature, annual precipitation, and
seasonal variables, such as annual range in temperature and precipitation. They also include
extreme or limiting environmental factors, such as the temperature of the coldest and warmest
months and precipitation of the wet and dry quarters and are often used for modeling species
distribution (Fick and Hijmans, 2017). In addition to bioclimatic variables, ten soil property maps
for Africa were downloaded from the iSDAsoil dataset (Hengl et al. 2021) soil property for
collection points. The iISDAsoil datasets are publicly available Soil Information System raster
maps for Africa. At 30-m (1 arc second) spatial resolution, iISDAsoil data offers a higher resolution
scale resolution than the smaller scale bioclimatic data from WorldClim v2. However,
environment mapping extent definitions in ArcGIS purposely excludes a temporal mismatch and
conforms the higher resolution data to the spatial characteristics of the higher resolution by
summarizing adjoining areas. Accordingly, these analyses involve a static distribution of species

occurrence and thus, can be relaxed (Pacifici et al., 2019).
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Furthermore, the Soil Atlas of Africa was downloaded with permission from the Joint

Research Centre-European Soil Data Centre (ESDAC) to characterize soil type for the study area.

According to the soil metadata, the map presents the soil map of Africa and contains the dominant

WRB Reference Soil Group and associated qualifiers. The shapefile map comes with a

comprehensive pdf document that details the different soil types (abbreviated as SU_WRBL1 in the

attribute table). Table 2.1 shows a summary of downloaded environmental variable maps.

Table 2.1: Summary of downloaded environmental layer maps. iISDAsoil data 30-m (1 second)
resolution scale was conformed to bioclimatic variables resolution in ArcGIS to prevent temporal
mismatch by summarizing adjoining areas.

Symbol Environmental Layer Resolution  Source

BIO1 Annual Mean Temperature 30 seconds  WorldClim version 2.1
B102 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 30 seconds  WorldClim version 2.1
B103 Isothermality (BIO2/BIO7) (x100) 30 seconds  WorldClim version 2.1
BI04 Temperature Seasonality (standard deviation x100) 30 seconds  WorldClim version 2.1
BIO5 Max Temperature of Warmest Month 30 seconds  WorldClim version 2.1
B106 Min Temperature of Coldest Month 30 seconds  WorldClim version 2.1
BIO7 Temperature Annual Range (BIO5-BIO6) 30 seconds  WorldClim version 2.1
BIO8 Mean Temperature of Wettest Quarter 30 seconds  WorldClim version 2.1
B109 Mean Temperature of Driest Quarter 30 seconds  WorldClim version 2.1
BIO10  Mean Temperature of Warmest Quarter 30 seconds  WorldClim version 2.1
BIO11  Mean Temperature of Coldest Quarter 30 seconds  WorldClim version 2.1
BIO12  Annual Precipitation 30 seconds  WorldClim version 2.1
BIO13  Precipitation of Wettest Month 30 seconds  WorldClim version 2.1
BIO14  Precipitation of Driest Month 30 seconds  WorldClim version 2.1
BIO15  Precipitation Seasonality (Coefficient of Variation) 30 seconds  WorldClim version 2.1
BI1O16  Precipitation of Wettest Quarter 30 seconds  WorldClim version 2.1
BIO17  Precipitation of Driest Quarter 30 seconds  WorldClim version 2.1
BIO18  Precipitation of Warmest Quarter 30 seconds  WorldClim version 2.1
BI1019  Precipitation of Coldest Quarter 30 seconds  WorldClim version 2.1
NA Digital elevation model (DEM) 30 seconds  WorldClim version 2.1
NA Soil pH for Africa at 0—-20cm depth intervals 30m iSDAsoil dataset

NA Soil pH for Africa at 20-50cm depth intervals 30m iSDAsoil dataset

NA Soil organic carbon for Africa at 0-20cm depth intervals 30m iISDAsoil dataset

NA Soil organic carbon for Africa at 20-50cm depth intervals 30m iSDAsoil dataset

NA Soil total carbon for Africa at 0—20cm depth intervals 30m iSDASsoil dataset

NA Soil total carbon for Africa at 20-50cm depth intervals 30m iSDAsoil dataset

NA Soil total organic Nitrogen for Africa at 0-20cm depth intervals 30 m iISDAsoil dataset

NA Soil total organic Nitrogen for Africa at 20-50cm depth intervals 30 m iSDASsoil dataset

NA Soil effective C_ation Exchange Capacity (eCEC) for Africa at 30m iSDAsoil dataset

0-20cm depth intervals
NA Soil effective Cation Exchange Capacity (eCEC) for Africa at 30m iSDAsoil dataset

20-50cm depth intervals
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Spatial data layers were created from downloaded environmental variables in ArcGIS pro.
First, the DEM layer was clipped with the Extract-By-Mask tool using Africa polygon shapefile
as the modeling extent with the following settings—output projection, Africa Albers Equal Area
Conic (AAEAC), extent, Africa polygon shapefile. All other options were left at default. The
clipped elevation layer, composed of 27,666 columns and 25,702 rows, and a cell size of 311, was
used as the modeling extent for other bioclimatic and soil characteristics maps. In doing this, the
output projection, extent, snap raster, and cell size options were all set to the DEM output. This
step guaranteed that all final layers had the same cell size, spatial reference, and extent (humber of

rows and columns) and minimized runtime errors in the Maxent program.

Slope and aspect layers were extracted from the DEM layer to determine if they affect the
distribution of Eleusine species. The attribute table of the soil type map was improved with
information about each soil type from the accompanying document using the Join tool. The
shapefile was then converted to raster with the Polygon to Raster tool using soil types as the
classification criteria (Table 2.2). All environment layers were saved and exported to ASCII (.asc)

files and used as covariates for distribution modeling.
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Table 2.2: Broad soil categorization used in Soil Atlas of Africa downloaded from the Joint
Research Centre-European Soil Data Centre (ESDAC)
Assigned

Value Soil type

1 Cells with
no data

0 Water/

1 Calcisols

2 Durisols

3 Kastanozems

4 Fluvisols

5 Cambisols

6 Regosols

7 Vertisols

8 Leptosols

9 Solontez

10 Luvisols

11 Nitisols

12 Solonchaks

13 Gypsisols

14 Planosols

15 Arenosols

16 Phaeozems

17 Andosols

18 Plinthosols

19 Acrisols

20 Gleysols

21 Lixisols

22 Histosols

23 Ferralsols

24 Alisols

25 Stagnosols

26 Chernozems

27 Umbrisols

28 Podzols

29 Technosols
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Species Presence Data
An up-to-date herbarium data on Eleusine collections worldwide was downloaded from

GBIF (November 24, 2020, https://doi.org/10.15468/dl.e83gx8). The 57,241 global Eleusine

records were parsed with a custom R script. A summary is presented in Table 2.3.

Africa collection records were filtered from the total records. After removing samples
present in living collections and not representative of native climates, 5,892 records, for which no
GPS coordinates were provided, were extracted, and their coordinates were determined with
GEOIlocate software (Rios and Bart 2010) (online) using the accompanying description of the
collection location. The first coordinates were chosen for records with multiple suggestions in
GEOIlocate. Three hundred and one different coordinates were added through GEOIlocate. The
large dataset ensures analyzable representation for each species. All coordinates were checked for
general accuracy, with duplicates and default placements removed. Each final record represented
a unique herbarium collection and, if best-collecting practices were followed, should constitute a
population of 20 individuals or more. For this analysis, each collection was treated as presence-
only data and representative of flowering plant populations at a specific point in time. Individual
Eleusine species record was extracted to an independent table and exported as a CSV file for

processing in ArcGIS pro.

In ArcGIS, decimal degrees geocoordinates were converted to spatial data in geographic
coordinate system (GCS) projection by converting CSV files to XY data points. They were then
projected to the same projection (AAEAC) as the predictor layers in ArcGIS. The Add-XY-
Coordinate tool was used to generate the equivalent XY coordinates for the new projection. The
final table was exported as CSV files and used as point data for Eleusine species occurrence after

deleting unneeded columns in MS-Excel 365.
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Table 2.3: Summary of Eleusine herbarium records downloaded from GBIF (accessed November
24, 2020) and parsed in R to remove collection records which are impossible to locate as well as
duplicate geocoordinates

Total Number of Specimen Downloaded from GBIF 57,241

Total record from Africa 15,933

Total number of recorded African species 9

Number of Presence Records Per Species

E. africana 370
E. coracana 1321
E. floccifolia 24
E. indica 1086
E. multiflora 19
E. jaegeri 88
E. kigeziensis 13
E. multiflora 28
E. tristachya 12

Distribution Modeling and Statistical Analysis
The distribution models for 9 Eleusine species were individually analyzed, with full Africa

extent and narrowed extent, in Maximum Entropy Species Distribution Modelling (Maxent)
version 3.4.4 (Nick et al., 2011) using custom settings (Fig. 2.2). Maxent, written in java, utilizes
maximum entropy in modeling species distributions from the presence and environmental data
(Phillips et al. 2006). Maxent software was run in Windows 10 ® environment on an 8" gen Intel
Core i7 CPU with 16Gb RAM. The default java headspace was raised to 6144Mb in system
settings to ensure adequate allocation of computational resources for running Maxent. The memory
option was also increased in the BAT file provided with Maxent download and the modified BAT

file used to start the program.

CSV files of presences were added in the samples window and the ASCII (.asc)
environmental layers in the environmental layers window. All ASC files were in the same folder

and thus automatically added to Maxent by choosing one. The following boxes were checked—
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Create Response Curves, Make Pictures of Predictions, and Do jackknife. Output format was set
to as Logistic, and output file type, ASC. The desired Output Directory folder for the Maxent
output was specified. The full Africa extent layers folder was selected for models with narrow
extent to make projections from the modeling. Other feature-types option in the bottom left of the

homepage was left at default.

In the Settings window, the Random Seed box was checked, and a value of 25 was entered
in the random test percentage box. The Max number of background points was set to 10,000, and
cross-validation was checked to simulate enough random sampling for species with a small
presence dataset. The default options were accepted in the Advanced tab but saved plot data was
ticked to explore the output. The experimental tab was left as is, but the “write background
predictions” box was checked to output variables used to calculate sensitivity and specificity, and

therefore the TSS (True Skill Statistic) in the model.

Maxent creates transformations of the covariates, called features, extract a sample of
background locations, and contrast them against the presence locations. The logistic format of the
output, introduced in version 3 to make it easier to interpret Maxent output, is better calibrated and

works the same way as the raw output previously used.
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Figure 2.2: Maxent settings used for modeling distribution of Eleusine species in Africa showing
custom options selected in the: main interface (A), basic setting interface (B), advanced setting

D

interface (C), and experimental setting interface (D).

Potential Species Distribution in Africa Predictions

The potential distributions of Eleusine species were estimated by using the narrowed
Maxent model to make projections over bioclimatic, edaphic, and topographic layers of full Africa
extent. The projection layers were prepared in ArcGIS as described for full distribution extent

layers. For Maxent to recognize these layers appropriately, they were saved as ASC files using the
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same name as corresponding predictor layers. The folder containing all projection layers was

selected in the main interface of Maxent under the Projection Layer directory/file option.

Viewing Distribution Models
Binary maps showing areas suitable and not suitable for Eleusine species distribution were

prepared from ASC output files of the Maxent models using the logistic threshold maximum
training sensitivity plus specificity cutoff values in ArcMap 10.7.1. This required building
pyramids with defaults settings to allow for proper display and reasonable resolution of the ASC
files, defining projection for proper spatial reference, and computing histograms of probabilities

to render the logistic output.

Results
Maxent models indicated conditions typical of where species were found, and usually,

output distribution extends to areas where they have not been reported but are suitable for the
species. Maxent ran distribution modeling on all Eleusine species with the 33 environmental layers
provided successfully. However, due to spatial incorrectness, the program removed few presence
data from E. africana, E. coracana, and E. indica. The results generally show a high degree of

variation among the species in their probability of occurrence on the continent.

Model Predictions
Full Africa Extent Maxent Models
The generated habitat distributions in the model using full Africa extent are constrained to

only areas where the species have not been reported. Binary maps, presented in Figure 2.3, shows
areas suitable and not suitable for species distribution using the logistic threshold cutoff values

from maximum training sensitivity plus specificity (Table 2.4). E. africana and E. coracana
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occupy an extensive range in eastern and southern Africa, with some scattered locations in the
West. On the contrary, E. indica is more distributed in west Africa than in the east and south. E.
intermedia, E. floccifolia, E jaegeri, and E. kigeziensis are uniquely constrained to east Africa. E.
multiflora has a unique patch in the east and south of the continent. E. multiflora appears typically
distributed in south and north Africa distributions, especially closer to the coasts. Importantly, all
countries where a species have not been reported (as shown in Fig 2.3) typically show no

probabilities of occurrence.

Table 2.4: Logistic threshold cutoff values from maximum training sensitivity plus specificity
(maximum value = 1) for the full Africa extent Maxent models containing thirty-three
environmental variables.

Maximum training sensitivity

Species plus specificity P-value

E. africana 0.200 9.15e-41
E. coracana 0.219 0.00e+00
E. floccifolia  0.382 1.83e-12
E. indica 0.312 0.00e+00
E. intermedia  0.692 2.63e-05
E. jaegeri 0.111 4.05e-37
E. kigeziensis  0.221 3.87e-05
E. multiflora 0.037 1.01e-08
E. tristachya  0.182 1.25e-01
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Figure 2.3: Binary maps showing Eleusine species distribution (using the logistic threshold cutoff
values from maximum training sensitivity plus specificity) as predicted with full Africa extent in
Maxent models using thirty-three environmental variables. The dark color indicates areas with a
high probability of predictions (suitable). The light color indicates areas with a low probability of
predictions (not suitable) (A) E. africana, (B) E. coracana, (C) E. floccifolia, (D) E. indica, (E) E.
intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (I) E. tristachya.

Performance measures of full Africa extent models
The performances of the potential distributions of Eleusine species prediction models were

provided in Maxent by calculating the area under the curve (AUC) of the receiver operator

characteristic (ROC). Two types of plots were provided. The first plots show how testing
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(turquoise) and training (blue) omission and predicted area varies with the cumulative threshold.
The omission on test samples is mainly close to the predicted omission rate, showing the model
ran as expected in Maxent. However, the line graphs for species with fewer presence data (E.
floccifolia, E. intermedia, E. kigeziensis, and E. tristachya) were not as smooth as those with more
extensive data sizes (figure 2). A strong predictive performance of Maxent model can be seen for
species such as E. africana, E. coracana, E indica, and E jaegeri, with high number of presence
data points, but the predictive performance of the model was weak for species fewer data points

such as E. floccifolia, E. intermedia, E. kigeziensis, and E. tristachya (Fig. 2.4).
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Omission and Predicted Area for Eleusine_kigeziensis Omission and Predicted Area for Eleusine_multiflora Omission and Predicted Area for Eleusine_tristachya
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Figure 2.4: Plots show how omission (testing and training) and predicted area varies with the
cumulative threshold for the full Africa extent Maxent models containing thirty-three
environmental variables. (A) E. africana, (B) E. coracana, (C) E. floccifolia, (D) E. indica, (E) E.
intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (I) E. tristachya.

In the second plot, Receiver operating curves (ROC) for training and test data (Fig. 2.5)
are plots of sensitivity (the proportion of true positives) versus 1-specificity (proportion of false
negatives) over the whole range of threshold values between 0 and 1. The training plot (red line)
indicates the fit of the model to the training data, while the test plot (blue line) indicates the fit of
the model to the test data (predictive power) (Philips, 2017). The ROC values for the full Africa

extent Maxent models are greater than 0.8 for all species.
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Figure 2.5: Receiver operating curves (ROC) for training and test data plots (sensitivity—the
proportion of true positives versus 1-specificity—the proportion of false negatives over the whole
range of threshold values between 0 and 1) for the full Africa extent Maxent models containing
thirty -three environmental variables. (A) E. africana, (B) E. coracana, (C) E. floccifolia, (D) E.
indica, (E) E. intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (I) E. tristachya.

Narrowed Extent Maxent Distribution Models
Generated habitat distributions in the model using the narrowed extent are more

constrained than those using full Africa extent. Binary maps showing areas suitable and not
suitable for species distribution using the logistic threshold cutoff values from maximum training

sensitivity plus specificity (Table 2.5) are presented in Figure 2.6. The logistic threshold cutoff
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values from maximum training sensitivity plus specificity (Table 2.5) ranged from 0.177 in E.

jaegeri to 0.629 in E. tristachya.

Table 2.5: Logistic threshold cutoff values from maximum training sensitivity plus specificity
(maximum value = 1) for the narrow extent Maxent models containing thirty-three environmental
variables.

Maximum training

Species sensitivity plus specificity P-value

E. africana 0.281 1.21e-51
E. coracana 0.302 0.00e+00
E. floccifolia 0.434 1.00e+00
E. indica 0.391 0.00e+00
E. intermedia 0.567 9.94e-09
E. jaegeri 0.177 4.51e-28
E. kigeziensis 0.278 4.00e-04
E. multiflora 0.251 1.57e-03
E. tristachya 0.629 1.76e-01
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Figure 2.6: Binary maps showing Eleusine species distribution (using the logistic threshold cutoff
values from maximum training sensitivity plus specificity) as predicted by the narrow Africa extent
Maxent models containing thirty-three environmental variables. The dark color indicates areas
with a high probability of predictions (suitable). The light color indicates areas with a low
probability of predictions (not suitable) (A) E. africana, (B) E. coracana, (C) E. floccifolia, (D) E.
indica, (E) E. intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (I) E. tristachya.

Performance measures of narrow Africa extent models
Testing and training omission plots of the Maxent narrow extent models are presented in

Figure 2.7. The omission on test samples is mainly close to the predicted omission rate, showing

the model ran as expected in Maxent. The predictive performance plots are similar to
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corresponding Maxent full Africa extent models. The strength of the predictive performance of
Maxent model is stronger for species such as E. africana, E. coracana, E indica, and E jaegeri,
with high number of presence data points, and weaker for species with fewer data points such as

E. floccifolia, E. intermedia, E. kigeziensis, and E. tristachya.
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Figure 2.7: Plots show how omission (testing and training) and predicted area varies with the
cumulative threshold for the narrow Africa extent Maxent models containing thirty-three
environmental variables. (A) E. africana, (B) E. coracana, (C) E. floccifolia, (D) E. indica, (E) E.
intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (1) E. tristachya.
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Receiver operating curves (ROC) for training and test data of Maxent narrow extent models
are presented in Figure 2.8. The predictive power of the models is high as the ROC values are

greater than 0.8 for all species.
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Figure 2.8: Receiver operating curves (ROC) for training and test data plots (sensitivity—the
proportion of true positives versus 1-specificity—the proportion of false negatives over the whole
range of threshold values between 0 and 1) for the narrow extent Maxent models containing the
33 environmental variables (A) E. africana, (B) E. coracana, (C) E. floccifolia, (D) E. indica, (E)
E. intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (I) E. tristachya.
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Narrow Extent Predictions
| used the narrow extent Maxent model to investigate the potential distribution range of

Eleusine species in Africa. The model predictions shown in Figure 2.9 indicate that potential
Eleusine species occurrence extends to other parts of Africa where they have not been reported
mainly for species with small known ranges. These are the binary maps of the narrow extent
Maxent model projections for Eleusine species onto the thirty-three environmental variables for
Africa, using the logistic threshold cutoff values from maximum training sensitivity plus
specificity. Warmer colors show areas with better-predicted conditions. Eleusine africana and E.
floccifolia occurrence are predicted to extend to the northern parts of the continent. The probability

of occurrence is the least for E. multiflora.
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Figure 2.9: Binary maps showing projected Eleusine species distribution (using the logistic
threshold cutoff values from maximum training sensitivity plus specificity) as predicted by the
narrow Africa extent Maxent models containing the 33 environmental variables. The dark color
indicates areas with a high probability of predictions (suitable). The light color indicates areas with
a low probability of predictions (not suitable) (A) E. africana, (B) E. coracana, (C) E. floccifolia,
(D) E. indica, (E) E. intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (I) E.
tristachya.

Analysis of variable contributions
Table 2.6 shows the number of environmental variables with a relative contribution greater

than or equal to one percent. E. coracana and E. indica, have the highest number (20) of substantial
environmental factor in the full extent model. E. indica has the highest number of contributing
environmental factors in the narrow extent model. Distribution models for other species had
between ten to fourteen predictor variables, except E. multiflora with eight predictor variables in
the narrow extent model and E. tristachya with only for relevant variables in both models. The
relative contributions of the substantial (greater than 1%) environmental variables used in the full
and narrow extent Maxent models are presented side by side for each species in Figure 2.10. There
are many major overlaps in the contribution of the environmental variables used for predictions in

the two models. Different biologically relevant aspects of temperature and precipitation are the
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most consistent predictor variable in the two models for Eleusine species. However, elevation
featured as a high (> 10% relative contribution) contributing factor for E. coracana, E. floccifolia,
E. indica, E. intermedia, E. jaegeri, and E. multiflora in the full extent models. The observed high
contribution of elevation is only true for E. coracana, E. indica, E. jaegeri, and E. multiflora in
the narrow extent models. Soil type has a high contribution to the distribution modeling of E.
intermedia and E. tristachya in the full extent and the distribution modeling of E. floccifolia, E.
intermedia, E. kigeziensis, E. multiflora, and E. tristachya in the narrow extent model. The relative
contribution of slope was high (>10 %) for E. africana and E. intermedia only in the narrow extent

models.

Table 2.6: Number of substantial (with relative contribution greater than or equal to > 1%)
environmental variables for the full and the narrow extent Maxent models.

Number of substantial (> 1%) environmental variables

Species Full Extent Model Narrow Extent Model
E. africana 13 14

E. coracana 20 13

E. floccifolia 10 13

E. indica 20 17

E. intermedia 12 10

E. jaegeri 12 13

E. kigeziensis 17 13

E. multiflora 12 8

E. tristachya 4 4
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Figure 2.10: Tree plots of the relative contributions of major environmental variables relative
contribution greater than or equal to > 1%) to the full (i) and the narrow (ii) Maxent models. (A)
E. africana, (B) E. coracana, (C) E. floccifolia, (D) E. indica, (E) E. intermedia, (F) E. jaegeri,
(G) E. kigeziensis, (H) E. multiflora, and (I) E. tristachya.

Discussion
Model predictions
This assessment is the first environmental distribution modeling specific to Eleusine

species. Thus, it hopefully lays the foundation for more profound environmental and geographic
studies and potentially inform agricultural and conservation planning. The broad choice of
environmental predictor variables was to explicitly consider all variables relevant to species
distribution. This approach is a recommended first step to identifying and eliminating ineffective
variables and comprehensively selecting applicable environmental predictors based on high
contribution level and expert knowledge for SDM of target species (Lin and Chiu, 2020).
Environmental distributions were modeled with Maximum Entropy software. Maxent is a species
distribution modeling software suitable for presence-only data used in this analysis (Elith et al.,
2010). One advantage of using a maximum modeling algorithm over more straightforward
statistical tools, such as logistic regression, is that it reduces the impact of interactions that could
occur among these variables (Phillips et al., 2006). This approach has allowed new insights into

how climatic and soil variables may have influenced the distribution of Eleusine in Africa.
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Full Africa extent maxent models
Binary maps were generated for the full extent models in this study with the logistic

threshold cutoff values from maximum training sensitivity plus specificity. These values, which
vary for each species and model, are based on Maxent's probability of prediction of occurrences.
The maximum sum of sensitivity and specificity has been considered consistent in producing
results and one of the best threshold selection methods with presence-only data when random

points are used instead of genuine absences (Liu et al., 2005; Liu et al., 2016).

The binary maps for the full extent models reflect the limited distributions of Eleusine
species described by Philips (1972). Species with abundant records, such as the wild occurring E.
africana, E. indica, and the cultivated E. coracana, have somewhat unique distributions that do
not overlap. The probability of occurrence for E. africana covers a large extent in eastern and
southern Africa, with a continuous patch in the northern parts of West Africa. An unusual
prediction for E. africana is that the full Africa model also suggests north Africa as a highly
suitable environment. This northerly Africa occurrence of E. africana has never been reported. E.
indica, in contrast to E. africana, is highly probable in west Africa, with patches of occurrence
along the edges of east and southeast Africa and in Madagascar. Even though E. indica is widely
known as a tropical and subtropical weed (Phillips, 1972, 1995; Liu and Peterson, 2010); Maxent
model shows a low probability of occurrence in many places in tropical Africa. It is interesting
that although E. coracana is reported as widely cultivated from the west to the east in Africa
(Phillips, 1972; Liu et al., 2011), the observed distribution predictions in this study reflects a
mainly eastern Africa cultivation with an isolated occurrence in West Africa (Nigeria and
Senegal). This prediction is somewhat consistent with the description of E. coracana as evolved
and adapted to east Africa (Liu and Peterson, 2010; Phillips, 1972; Liu et al., 2011). The observed

pattern of occurrence could be due to cultivation and consumption preferences. Nevertheless, this
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result may also suggest that west Africa has a limited suitable environment for cultivating finger
millet and that the environment preferences of E. coracana may be different from other adaptable
millets like Digitaria—known to west Africa (National Research Council, 1996). The probabilities
of occurrence of the constrained E. intermedia, E. floccifolia, E jaegeri, and E. kigeziensis are high
around the locations where they have been reported in the east and southeast Africa. The
distribution patterns show a unique patch for each species and largely reflect the described
distributions by Phillips (1972). However, E. multiflora showed an extended environmental
preference beyond Eritrea, Ethiopia, Kenya, and Tanzania to neighboring Uganda in the east and
South Africa, Namibia, and Zimbabwe in the south. The eastern occurrence suggests that it could
be present or, at least, could thrive outside its presently known range. Similarly, the probability of
occurrence of E. tristachya (a south American endemic and only widely reported in South Africa)
is high in North Africa, and it indicates that the species could, possibly, thrive in north Africa,
particularly closer to the coasts.

Performance measures of full Africa extent models
The predictive performances of the potential distributions of Eleusine species modeled by

Maxent with the full Africa map show increasing improvements with an increasing number of
location records. The plots of omission (training and testing) against the cumulative threshold were
increasingly closer to the prediction versus cumulative threshold graphs (AUC graphs). Generally,
the receiver operating curves (ROC) show values greater than 0.8 for all species indicating a high
fit of the model to the data (predictive power) (Philips, 2017). Like the AUC plots, the ROC curves
improved with increasing sample size. Maxent has been cited as robust in modeling distribution
for species with small occurrence datasets (generally less than 100 locations) (Hernandez et al.

2006; Papes and Gaubert 2007; Phillips et al. 2006). However, as shown in the model performance

38



plots, Bean et al. (2012) reported that prediction accuracy is affected by small sample sizes.

Therefore, inferences should be made with caution when dealing with small sample sizes.

Narrow extent Maxent distribution models
The predicted species distribution pattern generated by Maxent with the narrow extents are

generally similar to corresponding distribution maps in the full Africa extent models. The species
distribution maps generated are only for the countries where presence records exist and exclude
countries where species have not been reported. Each species prediction shows a slimmer
geographical distribution pattern than the corresponding full extent model. The advantage of
limiting background is that it increases the likelihood of a more ecologically realistic distribution
because it reduces artifacts of prediction statistics when modeling with Maxent (Elith et al., 2010;
Phillips, S. J., 2017).

Performance measures of narrow Africa extent models
Although the narrow extent models are expected to be more realistic due to their more

limited background than the full extent models (Elith et al., 2010), their predictive performances
modeled by Maxent are mainly like the full extent models. They show increased improvements
with an increasing number of location records. The plots of omission (training and testing) against
the cumulative threshold were close to the plot of prediction versus cumulative threshold (AUC
graphs) in E. africana, E. coracana, and E. indica with many occurrence records. The receiver
operating curves (ROC) values were also greater than 0.8 for all species and indicated a high fit of
the model to the data (predictive power) (Philips, 2017).

Narrow extent predictions
One other advantage of limiting background used in the narrow extent model is that it was possible

to contrast reported areas with and unoccupied environments and make predictions of the likely

39



distribution of Eleusine in areas where they have never been reported. In this analysis, Maxent
projections were broadly consistent with the distribution models of the full extent models. For
example, the northerly occurrence predicted for E. africana in the full extent model was affirmed
by the narrow extent projections providing more support for the environmental suitability of the
region for E. africana. Additionally, E. coracana shows a low probability of occurrence or
suitability in west Africa, albeit with new areas that may support cultivation identified along the
coast. Projecting the narrow model extent of E. tristachya to a complete map of Africa shows a
much different contrast to the full Africa model. The high northerly probability predicted in the
full Africa model is mainly absent in the narrow model projections. It suggests that the high
probability shown in the full extent model could be due to artifacts from the more prominent
environmental background (Elith et al., 2010; Phillips, S. J., 2017). It is, however, interesting to
note the new suitable environments—in the east and southeast Africa—identified from the narrow
extent projections, especially for the highly constrained E. intermedia, E. floccifolia, E jaegeri,
and E. kigeziensis. ldentifying novel suitable environments particularly emphasizes the usefulness
of species modeling to the management and conservation concerns of endemic Eleusine species
(Elith et al., 2010; Phillips, S. J., 2017).

Analysis of variable contributions
The relative contributions of environmental variables are considerably similar in the full

and narrow extent modeling approaches. The observed variations in environmental predictor
contributions may result from artifacts from the more extensive background in the full extent
model. These similarities in the composition of contributing environmental factors could be due

to the robustness of Maxent modeling software in modeling species distribution prediction with
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presence-only data (Hernandez et al. 2006; Papes and Gaubert 2007; Elith et al., 2010; Phillips,

2017).

Biologically relevant aspects of temperature and precipitation are the most consistent
predictor variable in the two models for Eleusine species. This reflects the theory that plant species
distribution is mainly associated with water availability, especially at latitudes closer to the
equator, where the sun's radiant energy is abundant (Hawkins et al., 2003). The observed high
contribution is also consistent with reported correlation between climate and grass distribution
(Hartley, 1950). The occurrence of elevation as a high (> 10%) contributing factor for many of the
Eleusine species in Africa is in tandem with their known occurrence and cultivation at high
latitude. West Africa generally has a low altitude, and the high contribution of elevation to the
distribution modeling of E. coracana may help explain its limited cultivation in the region.

Conclusion and future recommendations
A larger sample size will be required to better comprehend Eleusine species’ distribution.

My analyses included all possible geocoordinates on GBIF for Eleusine in Africa, but the model
statistics were poor for species with low data points. It is fair to highlight that the precision of
geocoordinates used in this study was inconsistent. Some values were given precise to the three-
hundredths degree, and others seemed collected to one-ninth degree precision and then
approximated. Thus, field validation is an essentially critical next step in validating the results of

these models (Rebelo & Jones 2010).

Furthermore, field validation should include factors that were not available to this study
and which could be ecologically meaningful to the adaptation and distribution of Eleusine species.
These include biotic interactions, disturbance, and topography/land use data (Mod et al., 2016).

These concerns show the need to collaborate with known locality records (e.g., herbarium records)
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to carry field verifications. It is also essential to do carefully repeated sampling to determine that
the target species is genuinely present or absent from a locality in building strong distribution
models. Sufficient repeated field observations would help adopt a distribution model that accounts
for imperfect detections of large-scale analysis. This is invaluable for identifying new populations,
defining environmental characteristics, and is helpful for habitat restoration and conservation

efforts of wild Eleusine species.
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Chapter 3: Structural Variation Analysis of Eleusine coracana whole-genome sequences

Introduction
The uniqueness and similarities of plant species’ habitat, growth, and reproduction can be

traced to their genomes. Unlocking the information in the structure, organization, evolution, and
function of plant genomes will advance our understanding of plant biology and help crop
improvement. Genomics can help us find correlations between genomic variations and observed

traits (Edwards and Batley, 2004).

Next-generation DNA sequencing (NGS) technology with reduced cost has increased the
quality and diversity of publicly available plant genomic resources and since completing the
primary genomic sequence of Arabidopsis thaliana. The availability of high-quality data has
facilitated the development of tools for analyzing genomic data and the integration of information
from the field of omics. Genome analyses include identifying genes and gene products and
elucidating functional relationships between genotype and phenotype using whole-genome
sequencing and re-sequencing data (Edwards and Batley, 2004; Li et al., 2009). Single Nucleotide
Polymorphisms (SNPs) (or variants) studies have dominated NGS plant genetic variants
identification in genetic mapping and genome-wide association. However, recent studies show that
SNPs do not capture large genomic variations that equally contribute to phenotypic differences

(Saxena et al., 2014, Francia et al., 2015).

Genomic structural variants (SV) are large sequence differences in a genome relative to a
reference genome. SVs could be a loss (deletion) or gain (duplication) in copy number, a change
in orientation (inversion), or chromosomal location (translocation) of a sequence (Medvedev et al.
2009; Escaramis et al. 2015). These changes can lead to loss or variation in gene dosage. SV

analyses in humans show that structural variants account for more variations in base pairs than
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SNPs (Alkan et al., 2011; Baker 2012; Sudmant et al. 2015). SVs are large and possibly altering
gene structure, dosage, or location (Layer et al., 2014). Variation in a gene copy number has been
called copy-number variation (CNV) and missing regions in some individuals relative to others,

called copy-number variation (CNV) (Schiessl et al., 2018).

Several studies have also interrogated the association between structural variants and plant
phenotypes. They reveal that SVs overlap and enrich abiotic stress response genes, protein-coding
genes, and disease resistance genes in soybean, rice, potato, and Arabidopsis (Cook et al., 2012;
Fuentes et al., 2019; Kyriakidou et al., 2019; Zmienko et al., 2020). SVs have also been linked to
boron tolerance in barley (Sutton et al., 2007). Furthermore, Li et al. (2016) found variations of

PAVs informative for assessing patterns of genetic diversity in Glycine spp.

Plant genomes contain many repetitive regions, and many plants have multiple ploidy
(multiple copies of entire chromosomes) levels (diploid tetraploids, hexaploids, and others).
Ploidies are from spontaneous genome duplication (autopolyploidy) or hybridization of
chromosomes from different species (allopolyploidy). SVs can arise through these duplication

events, with the eventual differential loss of duplicated genes (lovene et al., 2013).

Bioinformatics tools for identifying structural variants from high throughput sequencing
short read data utilize one of the following approaches. The first method involves inferring from
discordantly mapped paired-reads whose distances are significantly different from the
predetermined average insert size in the paired-end mapping approach (or RP) (Sindi et al. 2009).
Second, using the position and distance between fragments of a read independently aligned to the
reference genome to determine structural variants in split-read mapping approach (or SR)
(Schroder et al. 2014). Read depth approach (or RD) uses the correlation between sequencing

depth coverage and the frequency of a genomic region (Abyzov et al., 2011; Duitama et al. 2014;
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Smith et al. 2015). Finally, the de novo assembly approach (or AS) reconstructs DNA fragments
(contigs) from short reads and compares them to a reference genome to infer SVs (Rizk et al. 2014;
Yang et al. 2015). No single method can detect the total genomic structural variations. However,
the highest resolution studies of SVs can be achieved using a de novo assembly-based approach;

this is computationally intensive for large individuals.

Due to the complexity of structural variants and their occurrence in repetitive regions,
discovering structural variation (SV) from whole-genome sequencing data is better with a
combination of approaches and prior knowledge. (Rausch et al. 2012; Layer et al. 2014;
Mohiyuddin et al. 2015). LUMPY is an SV discovery framework that utilizes signals from read-
pair, split-read, read-depth jointly. LUMPY vyields improved sensitivity and performed well in
calling SVs of diverse sizes, especially when a low coverage data signal is reduced owing (Layer

et al., 2014; Kosugi et al., 2019).

Finger millet (Eleusine coracana L. Gaertn.) is a historical, nutritional crop, particularly in
Asia and Africa. It is a self-fertilized allotetraploid (2n = 4x = 36) annual considered a hardy crop
due to its wide adaptability. It is a drought and disease-tolerant crop and has been reported to have
an extended shelf life (Parashuram et al., 2011). However, unlike wheat and other popular grains,
E. coracana has remained unpopular due to its coarse texture and intense seed coat color (Sood et
al., 2018). Recently, there has been an increased interest in adapting finger millet as an
economically viable, super future crop, with studies to elucidate the genetic architecture and

decipher the relationship between genotype and phenotype in finger millet.

Recently, there is an explosion in the number of high-quality whole-genome sequencing
(WGS) data and transcriptomics data for finger millet accessions on the National Center for

Biotechnology Information (NCBI). Furthermore, the recent availability of a draft genome

45



sequence (E. coracana genome v1.1 on Phytozomel3, https://phytozome-
next.jgi.doe.gov/info/Ecoracana_v1_1) makes it possible to analyze genomic variations in finger
millet. Presently, over a hundred whole-genome sequence data of E. coracana are publicly
available on NCBI. These are global collections from various finger millet accessions released by
various Bioprojects. Some of these WGS data were created for SNPs analysis and genome

building.

Here, | investigated genetic variations in the accessions by identifying structural variants
in 116 WGS from NCBI with LUMPY. | determined the distribution and functional genomic
impact of SV regions by analyzing genes overlapping with SVs. ldentifying and understanding the
distribution of SVs in E. coracana could assist researchers in the identification of novel resistance

genes and improve current breeding efforts.

Materials and Methods
Structural variants and their genomic distribution in E. coracana were analyzed by

downloading publicly available, paired-end, whole-genome sequences from the National Center
for Biotechnology Information (NCBI) Sequence Read Archive (SRA) repository. The accessions
were analyzed with custom bash and R scripts created based on freely available bioinformatics

tools (Fig. 3.1).
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Figure 3.1: Summary chart of bioinformatics pipeline for structural variants identification analysis
in Eleusine coracana

Step 1: Data Sourcing and Cleaning

Raw data archive files from NCBI

To identify E. coracana genomes for structural variant analysis, | searched for publicly
available paired-end whole-genome sequence on NCBI (accessed June 24, 2021) using the
scientific name of the species — °‘Eleusine coracana’ as the search term under the Taxonomy

section. The SRA sequence link from the results table showed 347 sequences filtered with the

47



following parameters: Source-DNA; Type-genome; Library-paired and Strategy-genome. After
manually removing plastid genomes from the search result, the SRA table was downloaded from
the SRARunSelector. This table contained 116 samples of Illumina reads from 5 NCBI BioProject
databases (http: //www.ncbi.nlm.nih.gov/bioproject) under the accession numbers PRINA383952,
PRJDB5606, PRINA338521, PRINA377606, and PRINA610152 (Table 3.1). The SRA Runtable

was used to download sequences to the Alabama Supercomputer for analysis.

Table 3.1: BioProject accession numbers and numbers of SRAs per each downloaded for analysis
from NCBI database

BioProject Number of SRA
SN Accession Number in BioProject Data Source
1  PRJDB5606 9 Beijing Genomics Institute, China
2 PRJINA338521 6 University of Agricultural Sciences, India
3  PRJINA377606 11 University of Zurich, Zurich
4 PRINA610152 88 Th_e University of Trans-DiscipIinary Health
Sciences and Technology, India
5 PRJINA383952 2 University of Agricultural Sciences, India

FASTQ files from Raw Reads
To obtain FASTQ files in identified SRA, | created a custom bash script. SRA files are

compressed files suitable for archiving sequences. In the script, the list of SRA files to download
was prepared by pulling them from the first column of the SraRunTable. After that, the SRA were
downloaded files from NCBI database using the prefetch command of sra2.10.9 toolkit

(https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software) with the --option-file option set
to the list of SRA list, and the --max-size option to 50G (due to the large size of some of the SRA
files). The SRA files were discarded after extracting the fastq files with the fasterg-dump

command in sra2.10.9. The total size of the SRA files was 4.4terabytes.
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Data Filtering and Quality Analysis
To obtain high quality data for my analysis, | performed quality assessment, trimming, and

QC result aggregation of downloaded sequences in a sequence of custom scripts. In the scripts,
downloaded sequences were first assessed for quality with FastQCv.0.11.9
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc), and thereafter trimmed accordingly
with Trimmomatic v.0.39 (Bolger et al., 2014), after which the reads were reevaluated for quality.
In trimming, Illumina adapter sequences (in a custom list of adapters) and the leading and trailing
sequences with a base quality of less than 20 were taken out. Reads with less than 40 bases and
reads with local drops in average base quality less than 22 measured within a six-base sliding
window were also removed. Quality assessment results were aggregated by BioProjects using
MultiQcv1.7 (Ewels et al., 2016). All 116 accessions had more than 10 million reads following

the quality-based filtering; therefore, none was excluded from further analysis.

Step 2: Read Mapping and Normalization Procedures

Read mapping and duplicate tagging

To realign reads in FASTQ files to the respective regions they likely originated from, |
downloaded the recently published E. coracana reference genome assembly v1.1 (Devos et al.,
2021) from Phytozome and mapped the trimmed reads the it using the Burrows-Wheeler Aligner
(BWA) in 3 steps. First, the reference genome was indexed using bwa index command and default
parameters. The trimmed forward and reverse reads were then mapped to the indexed genome with
the faster and more accurate bwa-mem algorithm v.07.12 (Li and Durbin, 2010) using default
parameters in the second step. In post-alignment, aligned outputs were sorted with
SAMToolsv.1.11 (Li et al., 2009). samblasterv.0.1.24 (Faust and Hall, 2014) was used to remove

duplicates (--excludeDups option) and to tag discordant and split reads (--addMateTags and -
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maxSplitCount options) to reduce variant analysis complexity and runtime. After this, the SAM

files were compressed to BAM files using samtools with default parameters.

Excluding high coverage regions

To improve the quality of SV calls and reduce false positives from high coverage regions,
| identified and excluded regions with very high coverage were using two custom python scripts
by Ryan Layer (https://github.com/arg5x/lumpy-sv) for LUMPY structural variant analysis. First,
the get_coverages.py (modified) script was used to find the min, max, mean, and standard
deviation coverages of the split reads and paired-end bam files and create coverage profiles for the
bam files. I chose to exclude regions that have more than five times the standard deviation coverage
from the output. The get_exclude_regions.py (modified) script was used to create the
exclude.bed files. get_coverages.py and get_exclude_regions.py were called bam files from a

custom bash script.

Step 3: Structural Variant Discovery Pipeline with LUMPy Express

To detect structural variants in the bwa-mem aligned 116 WGS samples, | called the
lumpyexpress module of LUMPyv.0.3.1 (Layer et al., 2014) on the samples independently in a
custom bash script. In calling 1umpyexpress, | used the defaults parameters for a single sample
with pre-extracted splitters and discordant. LUMPY is a probabilistic framework for structural
variant discovery based on read-depth, read-pair, and split-read density. High coverage regions
identified in the previous step were provided to the software with the -x option to reduce artifacts.
LUMPYy produced a VCF 4.2 specification file with a raw catalog of 4 structural variant events
(deletion—DEL, duplication—DUP, inversion—INV, and breakpoints—BND) filtered for

precision and type of event in downstream analysis.
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Step 4: Structural Variant Merging, Refinement and Filtering

To obtain high quality calls, | parsed the structural variant files with a custom script as
follows. First, precise variant calls (high confidence calls) were separated from imprecise calls for
each VCF file generated per sample. Next, bed files with chromosome, start position, stop position,
and the number of support (read depth and split reads) and length were created for each precise
variant calls separated by events into individual files. A union of all structural variants in all
samples was created per event by combining the individual event bed files of the samples. LUMPy
identified many overlapping structural variants. The variants were merged using BEDtools.2.26.0
(Quinlan and Hall, 2010) merge command and sorted by chromosome number and start position to

remove redundancy.

Distribution of SVs relative to gene models

The overlap of identified structural variants (by events and samples) with the intergenic
regions in E.coracana was carried out using the BEDtools intercept command. Structural variant
events were intersected with the genic regions in the Eleusine genome v1.1 annotation file (gff3)
(Devos et al., 2021). The gene names of intersected regions were pulled from the description text
file provided with the genome. Graphical representations of the distribution and genes of the

structural variant in the genome were prepared with IGVv.2.9.4 (Robinson et al., 2011).

Graphical charts of different analyses statistics

To visualize and to understand variation or show relationships between variables, graphical
representation of the structural variant results, the number of events discovered per sample, the
boxplot of the number of supports for the calls, and the number of genes overlapping each event

type were created in R v4.11 (R Core Team, 2021).
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Step 5: Annotation and Analysis of Structural Variation Genes

To understand the potential impact of identified structural variants on genes, the TOPGO
package (Alexa and Rahnenfuhrer, 2021) of R software was used for the functional analysis of
trait-related genes. The analysis pipeline, written in a custom R script, required the GO.db,
biomaRt, and Rgraphviz libraries. The GO enrichment analyses for Biological Process, Molecular
Function, and Cellular Component of deleted, duplicated, and inverted genes were carried out with
the GO:IDs using the annFUN.gene2G0 function. The gene annotation list of the GO:IDs were
created by retrieving them from Phytozome 13 (Goodstein et al., 2012) BioMarts (database). The
pipeline tested for significance between genes that overlap structural variants and the total genes
in the E. coracana genome v1.1 (Devos et al., 2021) using the weight01 algorithm with fisher
(default). The GO annotation analysis results were saved to file, and the hierarchical plots of
enriched GO terms were plotted. The geom_bar function of ggplot2 was used to generate the

histograms of the top enriched terms.

Results
Detection of structural variations using whole-genome re-sequencing data
One hundred and sixteen whole genome sequences (WGSs), downloaded from the National

Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) repository under
five BioProjects, were mapped to the newly published E. coracana reference genome v1.1 on
Phytozome 13 to detect structural variations. Available metadata indicated that sequences were
generated from total DNA extract of young leaves of 93 different Eleusine accessions (grown in

greenhouse conditions) with Illumina sequencer.
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Data Filtering and Quality Analysis

Table 3.2 provides a summary of sequence quality (by BioProjects) before and after

trimming. Briefly, about 5 to 45 % of reads were removed from the sequences. BioProject

PRJIJNAG610152 had the highest quality sequences, and only 5% of the reads were removed. None

of the downloaded WGS was excluded from the analysis after trimming.

Table 3.2: Bioprojects, number, number of reads and quality of reads of E. coracana sequences
downloaded from NCBI before and after trimming. Quality is grouped by Bioprojects with

MultiQC
Number Number of reads Read length  Number of Read length  Percentag
SN  Bioproject of SRA Data Source before trim (in before reads after trim  after e after
millions) trimming (in millions) trimming trimming
Beijing Genomics _
1 PRJDB5606 9 Institute, China 50 - 210 100/150 50-190 92-142 90
University of
2 ;{JNASSSE’ 6 Agricultural 12-97 60-150 7.78 60-150 ~55
Sciences, India
PRINA3776 University of _
3 06 11 Zurich. Zurich 10-190 81-300 3-163 84-225 63
The University of
Trans-
4 PRINABIOL g Disciplinary 25-70 100/125 18-63 97-123 ~95
52 Health Sciences
and Technology,
India
University of
5 EEJNA?’%E’ 2 Agricultural 2 250 2 225 90

Sciences, India

Number of structural variants detected

This SV analysis pipeline used LUMPY (Layer et al., 2014), a software that calls structural

variants based on three read signatures (read pair, read depth, and split read). LUMPy detected

between 0 and 32,176 in each accession (Fig. 3.2). Most of the events detected were breakpoint

events which were not further analyzed in this study due to their complexities. Inversion events

were the least reported structural variant type in E. coracana. Imprecise calls were also removed

from further analyses to improve the accuracy of the SVs. Many of the detected calls were found
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to be overlapping and thus merged into one. The number of events recognized in each accession
was reduced based on the quality control, merging overlapping events, and exclusion of complex
BND events (Fig. 3.3). The size distributions of these SVs and distribution of the number of

supports are shown in Figures 3.4 and 3.5, respectively.

54



Number of events (Breakpoints, Inversions, Deletions and Duplication)

found by LUMPy per SRA WGS

[ eno [ mv | oee || our

Z016a7SHS
LBIBATSHUS
DOBEPEGHAS
BGBEPEGUAS
OGBEPEGUNS
GBEPEGHYS
HGBEPEGHYS
GGBEPEGHYS
FGBEPEGHYS
[
ZGEEPESHAS
98 1z0FMHS
178120b4S
978120bHS
78120bHS
FZBLIPAAS
EZ8LZ0PAAS
EZEVEZLLMMS
ZZEVET LIS
1ZEPEZ L LHNS
0ZEVEZLLYMS
GLEVEZLLYMS
BLEPEZ LIS
LLEPEZ LIS
LEPEZ LIS
GLEEZ LIS
FLEPEZLLYNS
ELEEZLINMS
ZLEVEZLLYNS
LLEYEZ LLHNS
LEVEZL LS
GOEVEZLLYHS
BOEPEZ ) LAHS
L0EPEZ)IHHS
0EPEZ )L HHS
SOEVEZLLYNS
FOEVEZLLUNS
EOEPEZLLYHS
ZOEVEZL LS
LOEVEZ LLHMS
0EVEZ L LS
BZVEZLLHHS
H6ZVEZLLHHS
I6ZVEZLLHHS
96ZVEZLLHHS
SEZPEZLLYNS
PEZPEZ LIS
eazpezi s
iz s
©

VBZVEZ L LHMS
DBZVEZ L IHYS &3
BBZPECLLNNS o5
BBZVEZ LLHYNS
sBZPEZ HiHys 0
oazrez b idys ©
SHZVET)IHHS
vezvezidys S
EBZVEZ L IHYES ¢
ZOZVEZ LIHYS ()
IBZPEZ HLHYS =
0BZPEZ b LHYS e
GIZPEZLIEES ©
BIZVEZLIHYES &
LIZVEZLIHYES
a/zpeziidys £
G/ZPEZLIHYS =2
pezveziibds S
CIZPEZHIMNS m
ZIZIETLINYS of
VZVET L IHYS
0LZVET I IHYS
BOZVEZ L LHYS
BOZVEZ L LHYS
LOZVEZ L IHYS
0OZVEZ LLHYS
GOZVEZ LLMYS
VOZVEZ LLHYS
£OZVET | IHYS
ZOZVET | IHYS
V9ZVET | LHYS
09ZVEZ b LHYS
BSZVEZ L IUYS
B5ZPET L IHYS
LGZVET L IHYS
UGZVEZ LLHES
GGZVEZ LLHES
VOZVEZ L LHYS
E5ZYEZ L LHYS
Z5ZYEZ L IHYS
15ZVEZ L LHES
05ZPEZ L IHYS
BPZPEZ L IUYS
BPZVEZ L IUYS
LPTVET I IHYS
OPZVEZ L IHYS
SHZVEZ L IMYS
PHZVEZ L IHYS
EFZVEZ LLMYS
ZPZVEZ LIMYS
VPZVEZ LLHES
0PZVET | IHYS
BEZVET | IHYS
BEZVET | IHYS
LEZVEZ L IHYS
OEZPEZ L LHYS
Z0BSE0MNA
10BSE0MNA
DDRGE0HNA
6EA0E0MEA
868604HA
26RSE0MNA
BERSE0MNA
GERIE0MNA
PEASE0MYET
£68560MNA
Z68560MNA

300004

25000

20000

50004

0

50004

=
1=}
=
1=}
2

VS YB3 Ul puUno} sjuaAa Jo Jaquinu

t events found for each whole-genome sequence downloaded from NCBI database when

lan

Number of structural vari
compared to the E.coracana v1 genome.

Figure 3.2

55



Number of high confidence events (Breakpoints, Inversions, Deletions and Duplication)

found by LUMPy per SRA WGS after merging overlaps

[ mv oo [ oee ] oue

|BLBIRSHHS
09GEYESHYS
BSREVESHHUS
BSREVESHHS
LGGEYESHYS
OSREVESHYS
SSEEVESHYS
FEEEYESHYS
ESREVESHHS
ZEEEYESHYS
BZ8IZ0YHYS
LERLE0YHYS
9Z8120vHYS
GZeIZ0rHYS
FERLEOYHYS
EZ81Z0YHYS
EZEFEZLIMYS
ZCEFET L IHYS
VEEFET L IHYS
OZEFEZ L IMYS
BLEFEZLIMYS
BLEFEZLIMYS
LIEFEZLIMYS
GLEFEZLIMYS
GIEFEZLIMYS
FIEPET L IHYS
ELEFEZLIMYS
TIEFEZLIMYS
VIEFEZ LLHHS
OLEFEZLIMYS
BOEFEZ LIMYS
BOEFEZ L 1HHS
LOEFETLIMYS
O0EFET L IYYS
GOEFEZ L LHYS
FOEFEZ L IMYS
EOEFED L LHYS
ZOEFET L 1HYS
LOEFET L IHYS
O0EFEZ L LHHS
BRZFET L LHYS
BAEZFEZ L IHYS
LRZFET LIHYS
96ZFET L LHYS
GRZPET L IHYS
FRZFED L LHYS
EGZFET L 1HYS
ZRZPET L IHYS
VBZFEZ LLHYS
0GZFET L LHHS
BRZFET L 1HYS
BRZFET L 1HYS
LBZFET LIHYS

| database

©
@
&
=
@
&
o
i
@

o
8
8
g
3
8
&
o
&

NC

PRZPEZ | IMNS
EREPEZ L IMYS =
ZRZPEE LLHYS “
VBERE | IMES

DBZVEZLLMUS o
BLZPEZLIMYS ©
BLZFETHIMES i
LiEbEzLIMES Q
aizrez LS £
SATRETLINNS 2
IZVEZLLMNS g
£LZFET HIMNS D
zizpeziius O
LIZKEZ L LMYS
0AEPET bIMES
BOZKEZ | LMYS
BOZKEZ | LMYS
LOZPET L IMES
GOZPEZ | LMYS
GOZPEZ LLMYS
POZPET | IMES
COZPEZ | LMYS
ZOZKET b IMES
1OZPET | LMES
DOZPEZ b LMYS
BGTPET | IMNS
BGTPET b IMNS
IGEZREZ LLMYS
95ZPET | IMNS
SOTPET b IMNS
PEZPEZ | IMNS
EGTPET b IMNS
ZGTPET b IMNS
VGERET b LMES
05ZPET b IMES
BYZPET I IMNS
BYZPET LIMNS
LPTPET LIMES
AT LANRY IS
SPZPET L IMNS
PPIPET LIMNS
EPZPEZIIMYS
THIPET L IMES
VPTRET L IMES
OYEREZ LMYS
BETPET | IMNS
BETPET | IMNS
LEZPET LLMYS
GETPET | IMNS
206560440
L0BEE0MHA
006560440
66856040
BEBSE0NHA
26656040
9E85E0HT
SEB5E0MHA
¥E5E0HNT
£6B5E0MHT
Z685E0MH0

n

30000+

250001

20000

VS YoBa Ul punoj sjuaA

50007

3 10 Jaquinu

100004

5000

ing complete

Number of high confidence structural variant events found for each whole-genome sequence after mergi

Figure 3.3
overlaps.

56



t
|
|
4
4
4

JEIDEN S NI S Sy SNUNUUNUUNE SO SO OT SUF SUUUNE UL TS SO SO SO SO SUPINE SO SO SUE IR S ST

——— e e e e

[ EPUR SNRVUR SO SO S SO SO

[ S S SR SN SN S S S S SO SO S Sy - S 5

6e+07
e+07
e+07

< N
SOM Ul S)UBA3 uona|aqg aauapiuod ybiy Jo uonnguisip yibuasT

0e+00{*

U_181B9YSHYS
U_096EVEGHYS
U_BGBEVESHYS
U_BSBEVESHYS
U_/GBEVESHMS
U_9G6EYESHYS
U_GGBEVESHYS
U_pGBEVESHYS
U_ESEEVESHYS
U_ZGBEVESHYS
U_/Z8120PHNS
U_9281Z0PHYS
U_Gz81ZorHYS
U_pz8lzoryys
U_£281T0PUYS
U_EZEVETLLHES
U_ZzevezL L uNS
U_LZEVETLINNS
U_0ZEVETLLHYS
UTBLEVETL IS
U_BLEVETLLHES
U_/LEVETLIEES
UZ9LEVETLIHNMES
U_GLEVEZLIYNS
U_pLEVEZLLNNES

U ELEVETL IS
U_ZLEVETLLHES
UZLLEVETLLMES
U_OLEVEZLINNES
U_60EYETL LS
U~B0EVEZLLHYS
U_/0EVETL LS
U_90EVETLLHES
U_GOEVEZLL¥MS
U_pOEYEZLL¥YS
U_E0EVETLL NS
U—ZOEYEZL LS
UZLOEVETLLHES
U_00EVETLLHAS
U_66ZYETLLHNS
U_86ZYETLINNS
U_J62reTL LS
U~96TYETE LS
U_SBZYETL L HYS
U_p6ZYETL L ¥ES
U_E6ZYETLLNNS
U_zezvezLl¥bS A
u_LeTrezLL NS o
U 0BZYETHIHYS >
U_68TYETLIMES
u_sszrezLiyys &
U_/8zreTLIYNS ®
U_98ZhEZLINES B
U~G8zYezLLYS
U_pBTreTtLHNS o
U_EBTYETLLMES O
U_Z8ZreTLIYNS §
U_L8ZYETLINNS S
u_oserezLiyyS
UTBLThETLLYYES W
U_B/TYETLIMES @
U_LsereekLads §
u_9szvezLINNS 2
UZGLzyeTLivNEs &
U_plTreTildNs o
UELTVETLIMES 5
U z/zTreTl LS &
UZLLTEZLLYNS 8
U_02Z¥eTLINNES
U_69ZHETLL NS
U~89zZYeTLL¥NYS
U_/9ZvETh L HES
U_99zreTL L HdS
U_GOZYETLL¥MS
U_p9zveTL L ¥dS
U_eozrezl L udS

U 2ozrezlLyuyS
U_L9ZYETLLHES
U_09zveTL L ¥ES
U_BGZYETLIMNS
U_8GZYETLIYNS
U_JGzrezLLudS
U_9GTYETL LS
U_SSTYETL L HYS
U_pSTYETLL¥ES
U_ESZYeTL L NS

U 2GTHETLIYNYS
U_LSZYeTLLYNES
U_0STYETE LS
U_6iZreTL L HdS
U_BITYETLL¥ES
U_LbZyeTl L yS
U_obzrezL L uNS
UTGhThEZLL NS
U_pbTreTh L udS
U_EPTYETLLEES
U_ZPZveTL L ¥NS
U_LbZyezL L yNS
U_obzrezl L udS
U~6ETYETE LS
U_BETYETL L HAS
U_JETYETLLEES
U_9EZYETLL¥YS
U_Z0656084A
U_10656084A
U~0065608HA
U_66856044a
U_86856044A
U_/68560840
U_96856084A
U_66856084A
U_¥685604Ha
U_£6856044a

U~ Z6856084a

rea

57



J SIS SNSRI S

H 4w d

&

gy g0y Sy S Sy AR Q- UGS Sy PR S Sy

@

|

T

6e+07

SOM Ul S)uaAa uonedjdn

e+07

@ 99uspyUd YBIY Jo uoRNqLSIP UbUST

e+07
0e+00

U_L8LEOYGHYS
U_096EVEGHYS
U_BSBEVESHYS
U_BSBEVESHNS
U_/GBEVEGHNS
U_9GEEPEGHYS
U_GSEEPEGHYS
U_pSeErESHYS
U_ESBEVEGHNS
U_CGBEVEGHNS
U_/28120v¥HYS
y_9z8lzovyys
U_p28lZ0ryyS
Uy_€T8LTOvHES
UZETEVETLLMNS
y_zzeveel LyyS
U_LzevEel LHYS
y_ozevezt LS
UBLEVET) LTS
U_BLEVETLIMNS
ULLEYEZLIHNES
U_9LEVETLLHYES
USleveztidys
U_pLEVETLLHES
U AR
U_ZIEPETLLHYES
U_LLEVETLLHYES
y_oLEVETLLHYES
Y_60EYET) LS
U_BOEVET) L HES
U_L0EPET) LHYES
U_90EPET) LHYES
UGOEPETL L HYES
U_FOEVET) LS
U_E0EVETLLHES
R AN
ULOEYEZL LHYES
y_00EYET) LHYES
y_e6ereeh LHdS
- Cra ARSI
UZ/62vETL L YIS
U_96ZrET) LHES
yZsezreel LHES
U_peerech LedS
y_ebereet LedS
U_Z62rETL LHES
U_LeTreel LHES =
u_oszrezhlHys @
y_eBereet LudS £
u_ssereCl LHdS @
U_/8ZYETLINES ®
Uy_982reClIHES B
Uy_G8Treel LHYES
U_pBTreCt hadS
y_esereet LHdS
U z8Treel LyS
U_L82YETLLHYS 3
U 0szZrETLINYS §
y_Blerectidds 0
y_BlereehLddS @
WLizveeLiaes §
y9/zreelIHYS &
U_Glzveziiyds 8
UpLTreTt NS o
U_elerecIddS 5
Uziereellyds £
U_Lizvezlidds 3
y_olzreeh Lyys
y_69zreT) LHdS
y_89zreT) LHdS
T AR
y_99zvezl LHES
et ARV
U_p9zrezt LeyS
y_egereeh LudS
U_coeeeh LHdS
UZL9Zrezl LHES
y_ogzyezh LHES
e AR
y_BSTreT) LHdS
OTera AR
y9Gzrezl LHES
et AN
U_pSTreel LyYS
y_egereeh Lyds

Uy caereet LHdS
UZLGZYETLLHES
yZ0GZrET) LHES
T AR
y_8yereeh LedsS
U_Lbereet Leds
U_operezl LyES
UZGhTrezl LHES
Upberezl LyES
y_evereet hads

U chereet Leds
UZLbZrezl LyES
y_obzrezl LHES
U AR
y_geTreT)LHdS
U_LETreetLedS
y_9ezree) LHES
U4_1L06G60HYA
400656044
4_6689604YA
486856044
U_/685604¥Q
4_96856044A
456856044

U p689604¥Q
U4_£6856044Q
426856044 A

ence rea

58



e LAl

SOM Ul S)UBAS UOISI3AU] @duapluod ybiy jo uonnguisip yibus

i
C

_

0

: I

{ ]

—

_

_

|

=

1

o

.

8

f

-

_

e

© _
|

=

_

o

L

g Z Z g g g
: : 3

U 9GBEVEGHYS

U GGBEVEGHYS

U bGBEYEGHYS

U EGBEVEGHYS

U ZGBEVESHYS

U 28l zoruNs

U €281 Z0rHNS

U ecerezllyySs

U Zeereel I yyS

U LZerezLIyYS
U ozerezl hHYS

U BLEVEZLIYYS
U BLEVEZLIEYS
U LLEVETLIEYS
U 9LEYEZLIEYS
U GLEYEZLIYYS
U pLEYEZLIYYS
U ELEVECLIYYS
U ZLEVEZLIYYS
U LLEYEZLIEYS
U OLEVEZLIEYS
U BOEYEZLLHYS

U B0EYETLIHYS
U™ L0EVEZLIYYS
UT90evECE L EYS

U GOEVEZLLYYS

U pOEYEZLLEYS

U E0EVETLIEYS

U Z0EVEZLIYYS

U LoEYETLIEYS
U 00EYEZLLYYS
u"e6zrezl LYYS

U 86ZYEZLIYYS
(UIcra A NRSISES

U 96ZrECLLEYS

U GeZYEZLIYYS

U ragrANRSISE]

U E€6ZYEZLIYYS

U zezrezLigds a
U LBZYEZLIEYS @
uo6zYETL LuS Z
u ggerezl Llyds @
U /82rEZLIYYS ®
U"98ZrETH LS B
ygezrezLivys €
U zgzreziiyys §
U 18ZrETLINES §
U08ZvEZLIHS 3.
U_6LZYECL IS @
U 8LZYETLIMNS o
U Llzvezhidys §
UT9szreziiyys 2
U grzveziidYs §)
U vIZreTLiyyS o
N rag A NRSISIS) 8
U LL2rETLIYES B
U 0/2ZvezLIYYS

U 69ZYETLIYYS

U 89ZYEZLIYYS

U 29zvezLIEYS

U 99zrezl L HYS

U p9zZrezL LYYS

U e9zreeLIYYS
(Urdera s A NRNISIS]
T TANRSI ]

U 09ZYETLLEYS

U B5ZrezL LYYS

U 8GZYETLIEYS
U™ 2GZrezLIYYS

U 9GZreTL I HYS

U GGZYEZLIYYS

U pSZrezl LYYS

U E€GZYETLIEYS

U zszrezl lyys
(U Xera A NASISE]

U 05ZYeZLLYYS

U BrzreellyYs

U BPZYEZLIYYS
A rANRSISES
Vel 7a 2 TANRSISS)

U GhzrezlLYYS

U rrereeh lyYs

U EpZrezLIYYS

U zrereehhyys

U opZreEzZLIYYS
UCTora A NRSISES

U BEZYETLIHYS
U™ Le2vezLIYYS

U 9eZreel LYYS
U™268560840
U796856084Q

U v685608Y¥A

U €£68560830

U 268560440

Figure 3.4: Boxplot showing the size distribution of the length of structural variation events (Deletion (A), Duplication (B), and

Inversion(C)) found for each whole-genome sequence downloaded from the NCBI database.
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Figure 3.5: Boxplot showing the number of evidence (number of reads, number of split reads) supporting Deletion (A), Duplication (B),

and Inversion(C) events found for each whole-genome sequence downloaded from the NCBI database.
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Identification of Deletion, Duplication, and Insertion Events

Structural variation events (deletion, duplication, and inversion) present in all E. coracana

were identified by combining all high confidence variants discovered by LUMPY in all accessions,

followed by merging regions that overlapped to reduce redundancy. This procedure resulted in 93

inversions, 1,922 duplications, and 3,344 deletions. The distribution of these structural variants in

the newly drafted genome as viewed in Integrative Genomics Viewer (IGV) (Robinson et al. 2017)

is presented in Figure 3.6.

L ||_ woi L I_.| . |I“ I .I|.HI SR R | Y P TR |.|I.| .

Figure 3.6: Genomic Distribution of Structural Variants (deletion, duplication, and inversion) in
the Eleusine coracana Genome viewed in IGV.

The interplay between the Structural Variation and Genes

There are 48,883 identified genic regions in the recently published E. coracana genome

v1.1. Intersecting identified structural variants with genic regions showed that 41,238 and 40,747

genes overlapped deletion and duplication events, respectively. Inversion events have low genic

overlap in finger millet—324 genic regions (Fig. 3.7).
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total number of genes

ructural variant event type

Figure 3.7: Number of genes overlapping identified structural variants in Eleusine coracana
genome (inversion-324, deletion-41,238 and duplication-40,747, total number of genes in genome-
48,883).

Functional impact of SV-overlapped genes
The assessment of the functional impact of discovered structural variations in Gene

Ontology (GO) annotation indicated possible effects of variants on overlapped genes. A summary
of the functional impact is shown in Table 3.3, categorized into all three primary genes GO
categories—molecular function (MF), biological process (BP), and cellular component (CC). A
complete list of GO:1Ds affected is available in Supplementary Table. The deletion and duplication
affected biological processes included several metabolic, biosynthetic, and transport processes
(Fig. 3.8 and 3.9). Duplication events also affect biotic stress response and phosphorylation
processes. Molecular functions affected by deletion and duplication events include ATP binding,
protein tyrosine kinase, and transporter activity. The impact of inversion events was low for
biological processes and molecular functions (Fig 3.10). All three events showed little influence

on cellular components (Fig. 3.8, 3.9 and 3.10).
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0.05) GO:Process functional annotation of genes

Table 3.3: Summary of significant (p<

overlapping identified structural variations in Eleusine coracana under Biological Process (BP),
Molecular Function (MF), and Cellular Component (CC)

Number of Significant

Genes

Number of Significant

Processes

18

GO:Process SV Type

19013
8495
22

Deletion

BP

Duplication 15

BP

Inversion

11

BP

10102
8573
32

17

Deletion

MF

Duplication 20

MF

Inversion

17
3

MF

3442
36

Deletion

CcC

Duplication 1

CcC

Inversion

2

CcC
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Figure 3.8: GO functional annotation of significant (p<0.05) genes overlapping identified deletion
variation events in Eleusine coracana under Biological Process (BP), Molecular Function (MF),

and Cellular Component (CC).
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Figure 3.9: GO functional annotation of s

duplication variation events in Eleusine coracana under Biological Process (BP), Molecular

Function (MF), and Cellular Component (CC).
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Figure 3.10: GO functional annotation of significant (p<0.05) genes overlapping identified
duplication variation events in Eleusine coracana under Biological Process (BP), Molecular

Function (MF), and Cellular Component (CC).
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Discussion

Detection of structural variations in E. coracana using whole-genome re-sequencing data
This analysis is the first analysis of structural variants in E. coracana, and it utilized 116

"short reads” whole genome sequences (WGS) generated by high-throughput sequencing from the
National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). To date,
our knowledge of genomic variations in E. coracana has primarily been about Single Nucleotide
Polymorphisms (SNPs). However, it has become evident that SNPs do not capture long genetic
variations, which may affect the dosage and presence of genes leading to phenotypic diversity
within a species (Alkan et al., 2011; Baker 2012; Sudmant et al. 2015; Layer et al., 2014; Cook et
al., 2012; Fuentes et al., 2019; Kyriakidou et al., 2019; Zmienko et al., 2020). Genomic structural
variants are crucial to consider when uncovering the genetic basis of observable plant traits (Cook
etal., 2012; Fuentes et al., 2019; Kyriakidou et al., 2019; Zmienko et al., 2020). In a series of bash
and R scripts, | performed SV analysis of E. coracana by removing low-quality reads from
downloaded WGS and mapping them to the newly published draft E. coracana genome on
Phytozome 13. My analysis utilized LUMPY, a probabilistic framework for calling SVs based on
read-pair, read-depth, and split read signals. LUMPY has been identified as a high-performing SV-
caller (Layer et al., 2014; Kosugi et al., 2019). WGS analyzed in this study were generated from
young leaves of ninety-three finger millet accessions. There are over 10,000 documented
accessions of E. coracana, so the number of accessions represented in this study is small (Sood et
al., 2019). Results show SVs are important in E. coracan, and it would be interesting to incorporate

more accessions in future analysis.
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Data Filtering and Quality Analysis
Downloaded WGS retained at least 55 % of their reads or more than 5 million reads after

trimming lower quality reads and adapter sequences; therefore, all WGS were represented in
mapping and SV detection. However, | could not extract any information about SVs in 5 WGS
which had about 55% reads remaining after trimming. Although the reason for no detection was
not verified, it is likely due to low quality and reduced number of reads, as reported in their copy
number variation (CNV) analysis of Arabidopsis thaliana (Zmienko et al., 2020).

Number of structural variants detected.
On average, LUMPy made about ten thousand raw structural variants calls in this analysis.

The raw SVs detected do not include coverage regions greater than five standard deviations in
each WGS, removed to reduce false positives SV calls as recommended (Li, 2014; Layer et al.,
2014). However, it is possible that excluding high coverage areas reduced the sensitivity of SV
calls. Filtering raw calls and merging overlapping events in each WGS cut the number of identified
variants to five thousand on average. The filtering process also excluded translocation events
(identified as BND by LUMPY) due to their complexity and the inability to differentiate the events
contained within them in this analysis. Difficulty in differentiating BNDs was also reported as a
challenge in the SV analysis of rice ((Fuentes et al., 2021). The number of high confidence SVs
retained is close to the reported eight thousand SV in the papaya genome (Liao et al., 2021) but
incomparable to the approximately 1.5 million SV events found in the rice genome (Fuentes et al.,
2019).

Identification of Deletion, Duplication, and Insertion Events
Structural variants events were merged across WGS, followed by the combination of

overlapping regions. The merger resulted in ninety-three inversions, 1,922 duplications, and 3,344

deletions variants. The reported number of structural variants per event is in finger millet is
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consistent with the number of SV reported for papaya (Liao et al., 2021). Furthermore, the high
incidence of deletion and duplication events is consistent with theoretical predictions that
polyploidy increases the likelihood of occurrence of genomic structural variants, and that the path
to diploidization involves the loss, retention, or maintenance of duplicate genes due to increased
sequence similarity (Adams and Wendel, 2005; Schiessl et al., 2018). The higher number of
deletions indicates that deletions were very common in the finger millet genome. Theory suggests
that hybridization leading to activation of genes and promoting unequal crossing over are causally
responsible for high deletion variants in allopolyploid genomes like E. coracana (Otto, 2007). The
detected low inversion events are consistent with other plant studies, and the low records have
been explained as a likely result of purging these events from essential genes due to their
deleterious effects (Zmienko et al., 2019; Hamala et al., 2021; Liao et al., 2021; Fuentes et al.,
2021). The distribution of the events in IGV viewer shows that each chromosome has a reasonably
equal amount of SV for each event, suggesting that each chromosome may have been subjected to
a similar selection process (Liao et al., 2021). However, the distribution of SVs along the genome
has an uneven coverage, suggesting that functional constraints may have interacted with the
abundance of SVs and impacted their distribution (Otto, 2007; Zmienko et al., 2020).

The interplay between the Structural Variation and Genes
The intersection of identified structural variants with the genic region in the E. coracana

draft genome shows three-hundred and twenty-four genes overlap inversion events, 40,747 gene
coding regions overlap duplication events and 41,238 gene coding regions deletion events across
the finger millet chromosomes. The overlap with gene coding regions further strengthens the
hypothesis that SVs pose structural and functional constraints on genes and affects their dosages.

Structural variant simulation studies predict that SVs tend to accumulate deleterious variants and
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thus may constrain adaptation (Berdan et al., 2021). Most of these SVs may be signatures of

selection and adaptation in E. coracana accessions.

Functional impact of SV-overlapped genes
The GO annotations of gene overlapping SVs reveal that metabolic biosynthetic and

transport processes are top biological processes affected by deletion and duplication. A high
overlap is observed in the significant gene categories under biological function and molecular
component categories of deletion and duplication events. This functional gene overlap between
deletion and duplication events may suggest that duplication events could have lessened the effects
of deletion variants. In addition, key processes critical to biotic stress responses, which might play
important roles in environmental adaptability, were also highlighted in duplication events in E.
coracana. Further investigation and analysis of genes present in significant categories would
provide an opportunity to understand domestication, diversification, and adaptation in E. coracana

and provide resources for developing molecular markers (Schiessl et al., 2018).

Conclusion and future recommendations
There is increasing attention to the role of structural variants in plant species diversification

and adaptation. The number of plant species for which SV regions have been identified at the
genome-wide scale has proliferated within the last decade (Cook et al., 2012; Fuentes et al., 2019;
Kyriakidou et al., 2019; Zmienko et al., 2020). This study, hopefully, lays the groundwork for
identifying structural genomic variations that can help our understanding and improvement of E.
coracana. It is crucial to analyze the WGS used in this study in combined multiple approaches
with other high-performance SV callers like PINDEL and DELLY and compare the results.
Combined multiple approaches are fundamental to producing a more robust prediction and

reducing error calls from LUMPYy.
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Furthermore, an integrative study that would involve detailed characterization and
validation of identified structural variants and their impact on gene dosages would help identify
and develop desired agronomic traits. A recent extensive genome-wide genotyping of 423 finger
millet landraces, using the same genome assembly used in this study, identified 8,778 SNPs.
Identified SNPs were used to analyze patterns of divergence and population structure (Bancic et
al., preprint 2021). There are at least 10,000 recorded accessions of E. coracana, and only three
accessions in this study were used in the SNP study. Generally, SVs show a similar population
structure with SNPs, albeit with weaker signals. Although not covered in this study, it will be
interesting to investigate the similarities between the distribution genomic variation and population
divergence in SNPs and SVs analyses of E. coracana. Structural Variants and transposable
elements (TEs) reportedly have similar high sequence genomic distribution, and it has been
suggested that SVs are products of TE activity. Therefore, it would also be noteworthy to

incorporate how genomic distribution of SVs correlates with TEs in the E. coracana genome.
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Chapter 4: General Conclusion

In this thesis, | predicted bioclimatic and edaphic factors that affect the distribution of
Eleusine species in Africa using the full Africa map extent and extent narrowed to countries in the
collection record. Maxent worked quite similarly to a large degree in the two extents; however,
the narrow extent had the advantage of identifying likely suitable environments. Further
understanding of the distribution pattern and factor is hinged on collaborating with known locality
records for field verifications. It is essential to carefully repeat sampling in determining realistic
environmental factors and in building strong distribution models. Good, repeated field
observations would help adopt a distribution model that accounts for imperfect detections of large-

scale analysis.

Secondly, I investigated structural variations in the allotetraploid, E. coracana. The results
show a high incidence of structural variants in the E. coracana genome, overlapping essential
genes in critical biological processes such as metabolic and biotic stress adaptations. The result
suggests they play an essential role in evolution, growth, and development. It is necessary to
corroborate the findings with other high-quality SV callers. Furthermore, | recommend
investigating identified variants in future genomic variations analyses targeting crop improvement

in E. coracana.

Overall, the research approaches used in this thesis underscore the usefulness of public data
for plant research, and they demonstrate the possibility of analyzing extensive data using
computational biology tools. The approaches together present the first data uncovering
environmental preferences and genomic variation influences in Eleusine and can help our

understanding of the genus.
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Appendix 1. code used for selecting mapping extent for each species in ArcGIS

## code for Eleusine africana

ADMO NAME = 'Angola' Or ADMO NAME = 'Botswana' Or ADMO NAME = 'Burkina Faso' Or ADMO NAME =
'Burundi' Or ADMO NAME = 'Cameroon' Or ADMO NAME = 'Chad' Or ADMO NAME = 'Eswatini' Or ADMO_NAME
= 'Ethiopia' Or ADMO NAME = 'Gambia' Or ADMO NAME = 'Kenya' Or ADMO NAME = 'Lesotho' Or ADMO NAME
= 'Madagascar' Or ADMO_NAME = 'Malawi' Or ADMO NAME = 'Mali' Or ADMO_NAME = 'Mozambique' Or
ADMO NAME = 'Namibia' Or ADMO NAME = 'Nigeria' Or ADMO NAME = 'Rwanda' Or ADMO NAME = 'Senegal'
Or ADMO_NAME = 'Seychelles' Or ADMO NAME = 'South Africa' Or ADMO NAME = 'Tanzania, United Republic
of' Or ADMO NAME = 'Uganda' Or ADMO NAME = 'Zambia' Or ADMO NAME = 'Zimbabwe'

## code for Eleusine coracana

ADMO_NAME = 'Angola' Or ADMO_NAME = 'Burkina Faso' Or ADMO_NAME = 'Burundi' Or ADMO_NAME =
'Cameroon' Or ADMO NAME = 'ComOros' Or ADMO NAME = 'Ethiopia' Or ADMO NAME = 'Guinea-Bissau' Or
ADMO NAME = 'Kenya' Or ADMO NAME = 'Madagascar' Or ADMO NAME = 'Malawi' Or ADMO NAME = 'Mozambique'
Or ADMO NAME = 'Nigeria' Or ADMO_NAME = 'Rwanda' Or ADMO NAME = 'South Africa' Or ADMO_NAME =
'South Sudan' Or ADMO NAME = 'Tanzania, United Republic of' Or ADMO NAME = 'Uganda' Or ADMO NAME
= 'Zambia' Or ADMO NAME = 'Zimbabwe'

## code for Eleusine floccifolia
ADMO NAME = 'Eritrea' Or ADMO NAME = 'Ethiopia' Or ADMO NAME = 'Somalia'

## code for Eleusine indica

ADMO_NAME = 'Angola' Or ADMO NAME = 'Benin' Or ADMO NAME = 'Botswana' Or ADMO NAME = 'Burkina
Faso' Or ADMO NAME = 'Burundi' Or ADMO NAME = 'Cape Verde' Or ADMO NAME = 'Cameroon' Or ADMO NAME
= 'Central African Republic' Or ADMO NAME = 'Congo' Or ADMO NAME = 'Céte d''Ivoire' Or ADMO NAME
= 'EquatOrial Guinea' Or ADMO NAME = 'Eritrea' Or ADMO_ NAME = 'Eswatini' Or ADMO NAME = 'Ethiopia’
Or ADMO NAME = 'Gabon' Or ADMO NAME = 'Ghana' Or ADMO NAME = 'Guinea' Or ADMO NAME = 'Guinea-
Bissau' Or ADMO NAME = 'Kenya' Or ADMO NAME = 'Liberia' Or ADMO NAME = 'Madagascar' Or ADMO NAME
= 'Malawi' Or ADMO NAME = 'Mali' Or ADMO NAME = 'Mauritania' Or ADMO NAME = 'Mauritius' Or
ADMO_NAME = 'Mayotte' Or ADMO_NAME = 'MOrocco' Or ADMO NAME = 'Mozambique' Or ADMO_NAME =
'Namibia' Or ADMO NAME = 'Nigeria' Or ADMO NAME = 'Rwanda' Or ADMO NAME = 'Senegal' Or ADMO NAME
= 'Seychelles' Or ADMO NAME = 'Sierra Leone' Or ADMO_NAME = 'South Africa' Or ADMO NAME = 'South
Sudan' Or ADMO NAME = 'Tanzania, United Republic of' Or ADMO NAME = 'Togo' Or ADMO NAME =
'Tunisia' Or ADMO NAME = 'Uganda' Or ADMO NAME = 'Zambia' Or ADMO NAME = 'Zimbabwe'

## code for Eleusine intermedia
ADMO_NAME = 'Ethiopia' Or ADMO NAME = 'Kenya' Or ADMO NAME = 'Somalia'

## code for Eleusine jaegeri
ADMO NAME = 'Kenya' Or ADMO NAME = 'Tanzania, United Republic of' Or ADMO NAME = 'Uganda'

## code for Eleusine kigeziensis
ADMO NAME = 'Burundi’ Or ADMO_NAME = 'Ethiopia' Or ADMO NAME = 'Rwanda' Or ADMO_ NAME = 'Uganda'

## code for Eleusine multiflora
ADMO NAME = 'Ethiopia' Or ADMO NAME = 'Kenya' Or ADMO NAME = 'Lesotho' Or ADMO NAME = 'South
Africa' Or ADMO NAME = 'Tanzania, United Republic of'

## code for Eleusine tristachya
ADMO_NAME = 'Algeria' Or ADMO NAME = 'South Africa'
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