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Abstract 

Eleusine Gaertn. (Poaceae, subfamily Chloridoideae), is a small taxon of closely related 

and distinct diploids and tetraploids endemic to Africa that have been scrutinized from vegetative, 

floral, cytological, and molecular evidence with a sustained interest in their phylogeny and 

adaptations, partly due to the economic and ecological impacts of a super crop (E. coracana) and 

a weed species (E. indica) in the genus. Studies to elucidate the genotypic and phenotypic 

relationships in E. coracana have always involved Single Nucleotide Polymorphisms (SNPs), 

although recent studies show that SNPs do not capture large genomic variations that equally 

contribute to phenotypic differences. In this thesis, I used environmental data to characterize the 

eco-geographical distribution of the different Eleusine species in Africa and investigated structural 

variations in E. coracana. Using Maximum Extent modeling software (Maxent), I characterized 

possible environmental predictors for the presence of Eleusine species in Africa based on 

collection records on Global Biodiversity Information Facility (GBIF) and 33 bioclimatic and soil 

data. Furthermore, I analyzed publicly available, paired-end, whole-genome E. coracana 

sequences from the National Center for Biotechnology Information (NCBI) Sequence Read 

Archive (SRA) repository for structural variants and their genomic distribution with custom bash 

and R scripts created with freely available bioinformatics tools. Maxent modeling revealed a high 

degree of variation in the probability of Eleusine species on the African continent and indicated 

possible suitable environments in new locations. There is a need to corroborate these 

environmental distribution findings with known locality records (e.g., herbarium records) and field 

verifications. Whole genome sequence (WGS) analysis revealed a high occurrence of Structural 

Variants (SV) in Eleusine coracana with 455 inversions, 18,990 duplications, and 103,338 

deletions variants detected. This high incidence of deletion and duplication events are consistent 
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with SV analyses in other plants, especially polyploids. In addition, substantiating identified 

genomic variations in E. coracana in combined multiple approaches involving other high-

performance SV callers would be helpful for more robust prediction and reduce error calls. 

Hopefully, identified variants lay the groundwork for future analyses identifying structural 

genomic variations. These approaches in this research together present the first data uncovering 

environmental preferences and genomic variation influences in Eleusine and can help our 

understanding of the genus. 
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Chapter 1: General Introduction 

Grasses (Poaceae), with over 11,500 known species (Duvall et al., 2007; Shchapova, 2012; 

Christenhuzs and Byng, 2016), are the fifth most species-rich group of flowering plants. It includes 

crop, pasture, and weed species adapted to all key landmasses from warm and cold (Kellogg, 2001; 

Strömberg, 2011). Within the grass lineage, the PACMAD clade (subfamilies Panicoideae, 

Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, Danthonioideae) consists of closely 

related species with paramount and ecological and economic importance that have evolved the 

efficient carbon-fixing, C4 photosynthesis several times and are well adapted to open vegetation 

(Cotton et al., 2015; Soreng et al., 2015).  

Among the PACMAD grasses, the subtribe Eleusininae Dumort. (Poaceae: Chloridoideae: 

Cynodonteae) is a morphologically diverse group of about 231 species and 27 genera Eleusininae 

(Peterson et al., 2015; Soreng et al., 2017; Muchut et al., 2017) occurring primarily at low latitudes 

in Africa, Asia, Australia, and the Americas (Peterson et al., 2010; Peterson et al., 2015). 

Generally, they are morphologically characterized as having diverse paniculate inflorescences 

(Muchut et al., 2017) and mostly exhibit C4 leaf anatomy (Ellis, 1984).  

Eleusine species are herbaceous plants with flattened culms (or stems) erect, prostrate, or 

angled and flattened at the internode. They have a digitate or sub-digitate inflorescence with spikes 

arranged into a terminal whorl. Each spike has many laterally compressed spikelets, usually 

disarticulated at maturity, with the fruit (grain) being unusual, among grasses, ornamented, and 

enclosed by a thin pericarp (Phillips 1972). The genus, Eleusine Gaertn. (Poaceae, subfamily 

Chloridoideae), is a small taxon of closely related and distinct tufted annuals or perennials that 

sometimes have rhizomes or stolons (Phillips, 1972; Peterson et al., 2021).  
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Species in the genus include diploids and tetraploids based on a haploid chromosome 

number of n = 8, 9, and 10. Cytological studies suggested showed n = 9 as the basic chromosome 

number in Eleusine with n = 8 arising from aneuploidy and n = 10 arising from a gain in 

chromosome number (Hiremath and Chennaveeraiah, 1982). E. coracana is an allotetraploid (2n 

= 4x = 36, genome formula AABB) that is morphologically similar to both E. indica (2n = 2x =18, 

AA) and E. africana (2n = 4x = 36, AABB). The other tetraploid in the genus is E. kigeziensis (2n 

= 4x = 38, AADD). E. floccifolia (2n = 2x = 18, BB), E. intermedia (2n = 2x = 18, AB), E. jaegeri 

(2n = 2x = 20, DD), E. multiflora (2n = 2x = 16, CC) and E. tristachya are diploids. E. semisterilis, 

known only from type specimen, is cytologically unknown and probably extinct (Phillips, 1972; 

Phillips, 1995). 

Over decades, the number of Eleusine species and their relationships have been scrutinized 

from vegetative, floral cytological, and molecular evidence. However, the genus is incontestably 

monophyletic (Kennedy 1957, Philip 1972, De Wet et al. 1984, Ganeshaiah & Umarshaanker 

1980, Gasser and Vegetti 1997, Bisht and Mukai 2000, Bisht and Mukai 2002, Neves et al. 2005, 

Liu et al. 2011). Current recognition of the species in the genus is essentially shown by Philip 

(1972). He grouped E. africana and E. indica as subspecies while extensively describing the 

vegetative and floral morphology and the life cycle of 9 predominant members found in Africa. 

This arrangement has been followed by rearranging relationships in the taxon, especially in 

identifying E. africana, E. coracana, and E. indica as distinct species. Recently, E. poiflora, 

formerly closely related to the Coelachyrum genus, was added to the group (Peterson et al., 2021). 

Pieces of evidence from cytological, biochemical, and molecular sources reveal that E. 

indica is maternally related to the AA genomes in E. coracana and E. africana (Hilu, 1995; Werth 

et al. 1994; Liu et al., 2011; Peterson et al., 2015; Soreng et al., 2017; Peterson et al., 2021). 
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Morphological and genetic proximities between E. coracana and E. africana also suggest gene 

flow occurs between them in nature, and probably E. coracana originated from E. africana through 

selection (Chennaveeraiah and Hiremath 1974; Hilu and deWet 1976). From ribosomal DNA 

similarities, Bisht and Mukai (2000, 2001) suggested that E. floccifolia is the paternal progenitor 

for E. africana and E. coracana. However, this claim has been refuted from nuclear Internal 

Transcribed Spacers (ITS) and plasmid trnT–trnF (region between Threonine and Phenylalanine 

of chloroplast tRNA gene) sequences (Neves et al., 2005). The sister relationship between E. 

indica and E. tristachya and between E. floccifolia and E. jaegeri are widely accepted from 

biochemical and genetic evidence (Liu et al. 2011; Hiremath and Chennaveeraiah 1982; Hiremath 

and Salimath 1991; Hilu and Johnson 1992; Peterson et al., 2015; Peterson et al., 2021). Recent 

plastid phylogeny groups the three tetraploid species and with the E. indica–E. tristachya clade 

under a common ancestor. (Liu et al. 2014). The close relationship of Eleusine species and 

Coelachyrum poiflorum in molecular studies (Liu et al., 2011; Liu et al. 2014; Peterson et al., 

2015; Soreng et al., 2017) influenced its transition as a member of the group. The evolutionary 

relationship in the genus is still largely unresolved as paternal progenitor(s) remains unknown (Liu 

et al., 2011; Liu et al., 2014; Zhang et al., 2019). 

East Africa is the center of Eleusine diversity, and 9 of the 11 species are found in Africa. 

Eight species are endemic to Africa (Phillips, 1972; Liu et al., 2011; Peterson et al., 2021). One 

species, E. tristachya, is native to the New World. Generally, Eleusine species records are confined 

to East Africa, occupying a narrow range at high altitudes (Phillips, 1972; Liu et al., 2011). E. 

indica (L.) Gaertn. is documented as a pantropical and introduced weed from all continents except 

Australia and Antarctica (Phillips, 1995; Liu and Peterson, 2010). E. coracana is widely known 
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for cultivation in sub-Saharan Africa and Asia. The newly added E. poiflora extends from 

southwest Asia into Somalia and Djibouti.   

Research Objective and Experimental Context 

There is sustained interest in understanding the study of Eleusine species which has reached 

economic and ecological impacts. Variations in temperature and availability of water (majorly 

from anthropogenic led climate change), with decreasing soil fertility and rising pest and disease 

occurrence, have led to a stress-induced loss in plant yield (Dhankher and Foyer 2018; Chaudhry 

and Sidhu, 2021). Identification and adoption of climate-resilient crops (crops with enhanced 

tolerance to stress) are recognized as a coping mechanism for threats to future food security. E. 

coracana (called finger millet), a historic orphan cereal with modern interest cultivated for grain 

and fodder, is highly nutritious, adaptable to diverse environments, and drought and disease 

tolerant. Furthermore, E. indica is a widespread weed, notorious for being hard to control due to 

its high reproductive capacity, herbicide resistance, and wide tolerance to various environments 

(Holm et al., 1977; Chen et al., 2015). Understanding the complex genetics and traits of Eleusine 

species has enormous benefits for agriculture and other industries. 

Therefore, my research objectives are to: 

1. characterize the geographical distribution of the different Eleusine species in Africa and; 

2. investigate genomic structural variations in E. coracana.  

.  
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Chapter 2: Geospatial Characterization and Distribution Mapping of Eleusine Species in 

Africa 

Introduction 

Savanna, characterized by the abundance of grasses with widely spaced trees that do not 

form a canopy, makes up about 50% of the African continent's land surface (Belsky, 1994; Scholes 

and Archer, 1997). Africa savanna has a rich floristic and physiognomic diversity, and the C4 

grasses are a significant component of their structure (Pasturel et al., 2016; Still et al., 2003).  

One exciting group among the C4 grasses exhibiting significant morphological and 

ecological diversity in Africa is the Eleusine Gaertn. (Poaceae, subfamily Chloridoideae) genus. 

It is a taxon of eleven annuals and perennial that includes an essential historical crop (E. coracana), 

a ubiquitous weed (E. indica), and other wild-growing individuals (E, africana, E. floccifolia, E. 

intermedia, E. jaegeri, E. kigeziensis, E. multiflora, and E. tristachya).  

Eleusine is mainly African (at least eight species; Phillips, 1972), and one species, E. 

tristachya, is endemic to the New World. Generally, all species reportedly occupy a range of 

habitats from low to high altitudes in Africa (Phillips, 1972; Liu et al., 2011). E. indica (L.) Gaertn. 

is documented as a pantropical and introduced weed in all continents except Australia and 

Antarctica (Holm et al., 1977; Phillips, 1995; Liu and Peterson, 2010). E. coracana (finger millet) 

is widely known for cultivation in sub-Saharan Africa and Asia. The newly added E. poiflora 

extends from southwest Asia into Somalia and Djibouti. 

There is a sustained interest in understanding the biology of Eleusine species with reaching 

economic and ecological impacts. The present and increasing variations in temperature and 

available water (majorly from anthropogenic led climate change), with decreasing soil fertility and 

rising pest and disease occurrence, have caused stress-induced losses in plant yield (Dhankher and 

Foyer 2018; Chaudhry and Sidhu, 2021). Finger millet has been identified as a climate-resilient 
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crop (crops with enhanced tolerance to stress), thus, a coping mechanism for threats to future food 

security. 

Plant species distribution is mainly associated with water availability, especially at 

latitudes closer to the equator, where the sun's radiant energy is abundant (Hawkins et al., 2003). 

Africa spans the equator stretching from the northern temperate to southern temperate zones, and 

most of the continent is in the tropics. Thus, Africa lands are among the most vulnerable 

ecosystems to climate change and increasing human pressure (Sala et al. 2000, Parr et al. 2014). 

Studies on broad environmental correlates of grassland in Africa (Pasturel et al., 2016; 

Bocksberger et al., 2016).  However, knowledge about specific habitat requirements and the 

distribution of plant species is lacking. At present, environmental distribution analysis is presently 

unavailable for Eleusine species. 

Species Distribution Models (SDMs) correlate environmental conditions (predictor 

variables) with locations where an organism has been observed (Guisan & Thuiller 2005). SDM 

uses identified suitable environment layers to predict potential habitats where the species can 

occur. Maps of potential habitat suitability aid in the species environmental management by 

identifying potential restoration and protection sites and can lead to the discovery of new 

populations (Hernandez et al. 2006). There are various methods for modeling species distribution. 

One standard method is the use of presence-only data, which relies only on location records for 

where the species has never been recorded (Pearce & Boyce 2006). 

Digital herbarium records are available for Eleusine species collections in Africa on the 

Global Biodiversity Information Facility (GBIF). These are broadly presence-only data that are 

useful in modeling distribution. Understanding the factors that determine the present geographic 
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distribution of Eleusine species helps identify and predict potential suitable environmental 

conditions. 

In this study, I characterized the eco-geographical patterning of the different Eleusine 

species in Africa. I utilized available climatic, soil, vegetation, and digital elevation model (DEM) 

map to gain insights and make substantial predictions about the probability of presence, potential 

species habitat, and environmental correlates for each species in the genus within Africa. 

Understanding the distribution, ecology, and population dynamics of Eleusine species in Africa 

could provide insights into the history and relationships in the genus. 

 

Materials and Methods 

This study is a broad characterization of environmental predictors for Eleusine species in 

Africa based on collection records on GBIF (the Global Biodiversity Information Facility). 

Bioclimatic and soil data were used to find out possible indicators for the presence of Eleusine 

species in Africa. Eight Eleusine species are recognized as native to Africa, and one species, E. 

tristachya, is endemic to the new world (Phillips 1972). All species have been documented in 

Africa, and their habitats range from the dry highlands of East Africa to low-lying coastal areas. 

Figure 2.1 shows a preview of the location of Eleusine species collections, created with ArcGIS ® 

pro software by Esri.  
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Figure 2.1: Distribution of nine Eleusine species across the African continent. A total of 2,961 

locations were extracted for Africa collections from the Global Biodiversity Information Facility 

records (GBIF; https://doi.org/10.15468/dl.e83gx8 accessed November 24, 2020).  

 

Species extents and Predictor Layers 

Africa covers about 12 million sq mi from latitude 37.354722 to latitude -31.854167 and 

longitude -17.520277 to 51.464444. However, the recorded range on Eleusine species in Africa 

differs among species, with 3 (E. coracana, E. africana, and E. indica) occupying broad ranges 
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across sub-Saharan Africa and other species confined to east and southern Africa. E. tristachya is 

reported in South Africa and Algeria.  

In modeling distribution for Eleusine species in Africa, shapefile for Africa, containing 

South Sudan and Abyei, was downloaded from openAFRICA 

(https://africaopendata.org/pt_BR/dataset/africa-shapefiles/resource/04ed7565-614d-473e-88b9-

2e9208c5cece). This was used to define the map extent for each species in ArcGIS pro using two 

approaches. First, a full Africa map was used for all species to represent all possible environments 

in Africa accurately. Using the full extent implies that each species could have dispersed anywhere 

across the continent. It also means that the whole continent has been considered for sampling.  

In the second approach, the modeling extent for each species was narrowed to include only 

countries where they were reported in GBIF records, reducing artifacts of prediction statistics 

when modeling with Maxent as advised by Phillips, S. J. (2017). Narrowing the modeling extents 

also enabled distribution projection to areas where species have not been reported. In this approach, 

selected countries for a species broadly represent environments where the species have been found. 

It also implied that the species had dispersed anywhere across the extent. Mapping extent for each 

species was extracted with the Dissolve tool after selecting the countries from the Attribute Table 

of the Africa map with SQL commands (Appendix 1) 

Each map extent was projected to the Africa Albers Equal Area Conic (AAEAC) projection 

using the Project Raster tool. AAEAC is a regional scale projection for Africa, with each cell 

having an equal area. The projection's x-y measurement is in meters, the same units as the z-axis 

for the elevation layer and its derivatives.  

https://africaopendata.org/pt_BR/dataset/africa-shapefiles/resource/04ed7565-614d-473e-88b9-2e9208c5cece
https://africaopendata.org/pt_BR/dataset/africa-shapefiles/resource/04ed7565-614d-473e-88b9-2e9208c5cece
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Available general habitat suitability indicators—reported as eco-physiologically 

meaningful environmental variables affecting the distribution of plants, such as climatic (rainfall 

and temperature), soil (type and characteristics) (Mod et al., 2016)—were used to model Eleusine 

species distribution in Africa. 

To characterize each collection point, I used a set of 33 environmental variables that 

include climatic and edaphic factors. Nineteen bioclimatic variable maps and accompanying 

digital elevation model (DEM) were downloaded from WorldClim Version2 (Fick and Hijmans, 

2017). These are 30 seconds spatial resolution biologically meaningful variables maps derived 

from historical monthly temperature and rainfall values for 1970 to 2000. WorldClim biological 

variables include annual trends, such as mean annual temperature, annual precipitation, and 

seasonal variables, such as annual range in temperature and precipitation. They also include 

extreme or limiting environmental factors, such as the temperature of the coldest and warmest 

months and precipitation of the wet and dry quarters and are often used for modeling species 

distribution (Fick and Hijmans, 2017). In addition to bioclimatic variables, ten soil property maps 

for Africa were downloaded from the iSDAsoil dataset (Hengl et al. 2021) soil property for 

collection points. The iSDAsoil datasets are publicly available Soil Information System raster 

maps for Africa. At 30-m (1 arc second) spatial resolution, iSDAsoil data offers a higher resolution 

scale resolution than the smaller scale bioclimatic data from WorldClim v2. However, 

environment mapping extent definitions in ArcGIS purposely excludes a temporal mismatch and 

conforms the higher resolution data to the spatial characteristics of the higher resolution by 

summarizing adjoining areas. Accordingly, these analyses involve a static distribution of species 

occurrence and thus, can be relaxed (Pacifici et al., 2019). 
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Furthermore, the Soil Atlas of Africa was downloaded with permission from the Joint 

Research Centre-European Soil Data Centre (ESDAC) to characterize soil type for the study area. 

According to the soil metadata, the map presents the soil map of Africa and contains the dominant 

WRB Reference Soil Group and associated qualifiers. The shapefile map comes with a 

comprehensive pdf document that details the different soil types (abbreviated as SU_WRB1 in the 

attribute table). Table 2.1 shows a summary of downloaded environmental variable maps. 

Table 2.1: Summary of downloaded environmental layer maps. iSDAsoil data 30-m (1 second) 

resolution scale was conformed to bioclimatic variables resolution in ArcGIS to prevent temporal 

mismatch by summarizing adjoining areas. 

Symbol Environmental Layer Resolution Source 

BIO1 Annual Mean Temperature 30 seconds WorldClim version 2.1 

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) 30 seconds WorldClim version 2.1 

BIO3 Isothermality (BIO2/BIO7) (×100) 30 seconds WorldClim version 2.1 

BIO4 Temperature Seasonality (standard deviation ×100) 30 seconds WorldClim version 2.1 

BIO5 Max Temperature of Warmest Month 30 seconds WorldClim version 2.1 

BIO6 Min Temperature of Coldest Month 30 seconds WorldClim version 2.1 

BIO7 Temperature Annual Range (BIO5-BIO6) 30 seconds WorldClim version 2.1 

BIO8 Mean Temperature of Wettest Quarter 30 seconds WorldClim version 2.1 

BIO9 Mean Temperature of Driest Quarter 30 seconds WorldClim version 2.1 

BIO10 Mean Temperature of Warmest Quarter 30 seconds WorldClim version 2.1 

BIO11 Mean Temperature of Coldest Quarter 30 seconds WorldClim version 2.1 

BIO12 Annual Precipitation 30 seconds WorldClim version 2.1 

BIO13 Precipitation of Wettest Month 30 seconds WorldClim version 2.1 

BIO14 Precipitation of Driest Month 30 seconds WorldClim version 2.1 

BIO15 Precipitation Seasonality (Coefficient of Variation) 30 seconds WorldClim version 2.1 

BIO16 Precipitation of Wettest Quarter 30 seconds WorldClim version 2.1 

BIO17 Precipitation of Driest Quarter 30 seconds WorldClim version 2.1 

BIO18 Precipitation of Warmest Quarter 30 seconds WorldClim version 2.1 

BIO19 Precipitation of Coldest Quarter 30 seconds WorldClim version 2.1 

NA Digital elevation model (DEM) 30 seconds WorldClim version 2.1 

NA Soil pH for Africa at 0–20cm depth intervals 30 m iSDAsoil dataset 

NA Soil pH for Africa at 20-50cm depth intervals 30 m iSDAsoil dataset 

NA Soil organic carbon for Africa at 0–20cm depth intervals 30 m iSDAsoil dataset 

NA Soil organic carbon for Africa at 20-50cm depth intervals 30 m iSDAsoil dataset 

NA Soil total carbon for Africa at 0–20cm depth intervals 30 m iSDAsoil dataset 

NA Soil total carbon for Africa at 20-50cm depth intervals 30 m iSDAsoil dataset 

NA Soil total organic Nitrogen for Africa at 0–20cm depth intervals 30 m iSDAsoil dataset 

NA Soil total organic Nitrogen for Africa at 20-50cm depth intervals 30 m iSDAsoil dataset 

NA 
Soil effective Cation Exchange Capacity (eCEC) for Africa at 

0–20cm depth intervals 
30 m iSDAsoil dataset 

NA 
Soil effective Cation Exchange Capacity (eCEC) for Africa at 

20-50cm depth intervals 
30 m iSDAsoil dataset 
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Spatial data layers were created from downloaded environmental variables in ArcGIS pro. 

First, the DEM layer was clipped with the Extract-By-Mask tool using Africa polygon shapefile 

as the modeling extent with the following settings—output projection, Africa Albers Equal Area 

Conic (AAEAC), extent, Africa polygon shapefile. All other options were left at default. The 

clipped elevation layer, composed of 27,666 columns and 25,702 rows, and a cell size of 311, was 

used as the modeling extent for other bioclimatic and soil characteristics maps. In doing this, the 

output projection, extent, snap raster, and cell size options were all set to the DEM output. This 

step guaranteed that all final layers had the same cell size, spatial reference, and extent (number of 

rows and columns) and minimized runtime errors in the Maxent program.  

Slope and aspect layers were extracted from the DEM layer to determine if they affect the 

distribution of Eleusine species. The attribute table of the soil type map was improved with 

information about each soil type from the accompanying document using the Join tool. The 

shapefile was then converted to raster with the Polygon to Raster tool using soil types as the 

classification criteria (Table 2.2). All environment layers were saved and exported to ASCII (.asc) 

files and used as covariates for distribution modeling.   
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Table 2.2: Broad soil categorization used in Soil Atlas of Africa downloaded from the Joint 

Research Centre-European Soil Data Centre (ESDAC) 

Assigned 

Value 
Soil type 

-1 
Cells with 

no data 

0 Water/ 

1 Calcisols 

2 Durisols 

3 Kastanozems 

4 Fluvisols 

5 Cambisols 

6 Regosols 

7 Vertisols 

8 Leptosols 

9 Solontez 

10 Luvisols 

11 Nitisols 

12 Solonchaks 

13 Gypsisols 

14 Planosols 

15 Arenosols 

16 Phaeozems 

17 Andosols 

18 Plinthosols 

19 Acrisols 

20 Gleysols 

21 Lixisols 

22 Histosols 

23 Ferralsols 

24 Alisols 

25 Stagnosols 

26 Chernozems 

27 Umbrisols 

28 Podzols 

29 Technosols 
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Species Presence Data 

An up-to-date herbarium data on Eleusine collections worldwide was downloaded from 

GBIF (November 24, 2020, https://doi.org/10.15468/dl.e83gx8). The 57,241 global Eleusine 

records were parsed with a custom R script. A summary is presented in Table 2.3.  

Africa collection records were filtered from the total records. After removing samples 

present in living collections and not representative of native climates, 5,892 records, for which no 

GPS coordinates were provided, were extracted, and their coordinates were determined with 

GEOlocate software (Rios and Bart 2010) (online) using the accompanying description of the 

collection location. The first coordinates were chosen for records with multiple suggestions in 

GEOlocate. Three hundred and one different coordinates were added through GEOlocate. The 

large dataset ensures analyzable representation for each species. All coordinates were checked for 

general accuracy, with duplicates and default placements removed.  Each final record represented 

a unique herbarium collection and, if best-collecting practices were followed, should constitute a 

population of 20 individuals or more. For this analysis, each collection was treated as presence-

only data and representative of flowering plant populations at a specific point in time. Individual 

Eleusine species record was extracted to an independent table and exported as a CSV file for 

processing in ArcGIS pro. 

In ArcGIS, decimal degrees geocoordinates were converted to spatial data in geographic 

coordinate system (GCS) projection by converting CSV files to XY data points. They were then 

projected to the same projection (AAEAC) as the predictor layers in ArcGIS. The Add-XY-

Coordinate tool was used to generate the equivalent XY coordinates for the new projection. The 

final table was exported as CSV files and used as point data for Eleusine species occurrence after 

deleting unneeded columns in MS-Excel 365. 
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Table 2.3: Summary of Eleusine herbarium records downloaded from GBIF (accessed November 

24, 2020) and parsed in R to remove collection records which are impossible to locate as well as 

duplicate geocoordinates  

Total Number of Specimen Downloaded from GBIF 57,241 

Total record from Africa 15,933 

Total number of recorded African species 9 

  
Number of Presence Records Per Species  
E. africana 370 

E. coracana 1321 

E. floccifolia 24 

E. indica 1086 

E. multiflora 19 

E. jaegeri 88 

E. kigeziensis 13 

E. multiflora 28 

E. tristachya 12 

 

Distribution Modeling and Statistical Analysis 

The distribution models for 9 Eleusine species were individually analyzed, with full Africa 

extent and narrowed extent, in Maximum Entropy Species Distribution Modelling (Maxent) 

version 3.4.4 (Nick et al., 2011) using custom settings (Fig. 2.2). Maxent, written in java, utilizes 

maximum entropy in modeling species distributions from the presence and environmental data 

(Phillips et al. 2006). Maxent software was run in Windows 10 ® environment on an 8th gen Intel 

Core i7 CPU with 16Gb RAM. The default java headspace was raised to 6144Mb in system 

settings to ensure adequate allocation of computational resources for running Maxent. The memory 

option was also increased in the BAT file provided with Maxent download and the modified BAT 

file used to start the program.  

CSV files of presences were added in the samples window and the ASCII (.asc) 

environmental layers in the environmental layers window. All ASC files were in the same folder 

and thus automatically added to Maxent by choosing one. The following boxes were checked—
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Create Response Curves, Make Pictures of Predictions, and Do jackknife. Output format was set 

to as Logistic, and output file type, ASC. The desired Output Directory folder for the Maxent 

output was specified. The full Africa extent layers folder was selected for models with narrow 

extent to make projections from the modeling. Other feature-types option in the bottom left of the 

homepage was left at default.  

In the Settings window, the Random Seed box was checked, and a value of 25 was entered 

in the random test percentage box. The Max number of background points was set to 10,000, and 

cross-validation was checked to simulate enough random sampling for species with a small 

presence dataset. The default options were accepted in the Advanced tab but saved plot data was 

ticked to explore the output. The experimental tab was left as is, but the “write background 

predictions” box was checked to output variables used to calculate sensitivity and specificity, and 

therefore the TSS (True Skill Statistic) in the model.  

Maxent creates transformations of the covariates, called features, extract a sample of 

background locations, and contrast them against the presence locations. The logistic format of the 

output, introduced in version 3 to make it easier to interpret Maxent output, is better calibrated and 

works the same way as the raw output previously used.  
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A       B 

    
C       D 

Figure 2.2: Maxent settings used for modeling distribution of Eleusine species in Africa showing 

custom options selected in the: main interface (A), basic setting interface (B), advanced setting 

interface (C), and experimental setting interface (D).  

 

Potential Species Distribution in Africa Predictions 

The potential distributions of Eleusine species were estimated by using the narrowed 

Maxent model to make projections over bioclimatic, edaphic, and topographic layers of full Africa 

extent. The projection layers were prepared in ArcGIS as described for full distribution extent 

layers. For Maxent to recognize these layers appropriately, they were saved as ASC files using the 
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same name as corresponding predictor layers.  The folder containing all projection layers was 

selected in the main interface of Maxent under the Projection Layer directory/file option. 

Viewing Distribution Models 

Binary maps showing areas suitable and not suitable for Eleusine species distribution were 

prepared from ASC output files of the Maxent models using the logistic threshold maximum 

training sensitivity plus specificity cutoff values in ArcMap 10.7.1. This required building 

pyramids with defaults settings to allow for proper display and reasonable resolution of the ASC 

files, defining projection for proper spatial reference, and computing histograms of probabilities 

to render the logistic output. 

 

 

Results 

Maxent models indicated conditions typical of where species were found, and usually, 

output distribution extends to areas where they have not been reported but are suitable for the 

species. Maxent ran distribution modeling on all Eleusine species with the 33 environmental layers 

provided successfully. However, due to spatial incorrectness, the program removed few presence 

data from E. africana, E. coracana, and E. indica. The results generally show a high degree of 

variation among the species in their probability of occurrence on the continent. 

Model Predictions 

Full Africa Extent Maxent Models 

The generated habitat distributions in the model using full Africa extent are constrained to 

only areas where the species have not been reported. Binary maps, presented in Figure 2.3, shows 

areas suitable and not suitable for species distribution using the logistic threshold cutoff values 

from maximum training sensitivity plus specificity (Table 2.4). E. africana and E. coracana 
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occupy an extensive range in eastern and southern Africa, with some scattered locations in the 

West. On the contrary, E. indica is more distributed in west Africa than in the east and south. E. 

intermedia, E. floccifolia, E jaegeri, and E. kigeziensis are uniquely constrained to east Africa. E. 

multiflora has a unique patch in the east and south of the continent. E. multiflora appears typically 

distributed in south and north Africa distributions, especially closer to the coasts. Importantly, all 

countries where a species have not been reported (as shown in Fig 2.3) typically show no 

probabilities of occurrence. 

Table 2.4: Logistic threshold cutoff values from maximum training sensitivity plus specificity 

(maximum value = 1) for the full Africa extent Maxent models containing thirty-three 

environmental variables. 

Species 
Maximum training sensitivity 

plus specificity 
P-value 

E. africana 0.200 9.15e-41 

E. coracana 0.219 0.00e+00 

E. floccifolia 0.382 1.83e-12 

E. indica 0.312 0.00e+00 

E. intermedia 0.692 2.63e-05 

E. jaegeri 0.111 4.05e-37 

E. kigeziensis 0.221 3.87e-05 

E. multiflora 0.037 1.01e-08 

E. tristachya 0.182 1.25e-01 
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Figure 2.3: Binary maps showing Eleusine species distribution (using the logistic threshold cutoff 

values from maximum training sensitivity plus specificity) as predicted with full Africa extent in 

Maxent models using thirty-three environmental variables. The dark color indicates areas with a 

high probability of predictions (suitable). The light color indicates areas with a low probability of 

predictions (not suitable) (A) E. africana, (B) E. coracana, (C) E. floccifolia, (D) E. indica, (E) E. 

intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (I) E. tristachya. 

 

 

Performance measures of full Africa extent models 

The performances of the potential distributions of Eleusine species prediction models were 

provided in Maxent by calculating the area under the curve (AUC) of the receiver operator 

characteristic (ROC). Two types of plots were provided. The first plots show how testing 
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(turquoise) and training (blue) omission and predicted area varies with the cumulative threshold. 

The omission on test samples is mainly close to the predicted omission rate, showing the model 

ran as expected in Maxent. However, the line graphs for species with fewer presence data (E. 

floccifolia, E. intermedia, E. kigeziensis, and E. tristachya) were not as smooth as those with more 

extensive data sizes (figure 2). A strong predictive performance of Maxent model can be seen for 

species such as E. africana, E. coracana, E indica, and E jaegeri, with high number of presence 

data points, but the predictive performance of the model was weak for species fewer data points 

such as E. floccifolia, E. intermedia, E. kigeziensis, and E. tristachya (Fig. 2.4). 

   

   

A B C 

D E F 

G H I 
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Figure 2.4: Plots show how omission (testing and training) and predicted area varies with the 

cumulative threshold for the full Africa extent Maxent models containing thirty-three 

environmental variables. (A) E. africana, (B) E. coracana, (C) E. floccifolia, (D) E. indica, (E) E. 

intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (I) E. tristachya. 

 

In the second plot, Receiver operating curves (ROC) for training and test data (Fig. 2.5) 

are plots of sensitivity (the proportion of true positives) versus 1-specificity (proportion of false 

negatives) over the whole range of threshold values between 0 and 1. The training plot (red line) 

indicates the fit of the model to the training data, while the test plot (blue line) indicates the fit of 

the model to the test data (predictive power) (Philips, 2017). The ROC values for the full Africa 

extent Maxent models are greater than 0.8 for all species. 
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Figure 2.5: Receiver operating curves (ROC) for training and test data plots (sensitivity—the 

proportion of true positives versus 1-specificity—the proportion of false negatives over the whole 

range of threshold values between 0 and 1) for the full Africa extent Maxent models containing 

thirty -three environmental variables. (A) E. africana, (B) E. coracana, (C) E. floccifolia, (D) E. 

indica, (E) E. intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (I) E. tristachya. 

Narrowed Extent Maxent Distribution Models 

Generated habitat distributions in the model using the narrowed extent are more 

constrained than those using full Africa extent. Binary maps showing areas suitable and not 

suitable for species distribution using the logistic threshold cutoff values from maximum training 

sensitivity plus specificity (Table 2.5) are presented in Figure 2.6. The logistic threshold cutoff 

A B C 

D E F 

G H I 
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values from maximum training sensitivity plus specificity (Table 2.5) ranged from 0.177 in E. 

jaegeri to 0.629 in E. tristachya. 

Table 2.5: Logistic threshold cutoff values from maximum training sensitivity plus specificity 

(maximum value = 1) for the narrow extent Maxent models containing thirty-three environmental 

variables. 

Species 
Maximum training 

sensitivity plus specificity 
P-value 

E. africana 0.281 1.21e-51 

E. coracana 0.302 0.00e+00 

E. floccifolia 0.434 1.00e+00 

E. indica 0.391 0.00e+00 

E. intermedia 0.567 9.94e-09 

E. jaegeri 0.177 4.51e-28 

E. kigeziensis 0.278 4.00e-04 

E. multiflora 0.251 1.57e-03 

E. tristachya 0.629 1.76e-01 
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Figure 2.6: Binary maps showing Eleusine species distribution (using the logistic threshold cutoff 

values from maximum training sensitivity plus specificity) as predicted by the narrow Africa extent 

Maxent models containing thirty-three environmental variables. The dark color indicates areas 

with a high probability of predictions (suitable). The light color indicates areas with a low 

probability of predictions (not suitable) (A) E. africana, (B) E. coracana, (C) E. floccifolia, (D) E. 

indica, (E) E. intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (I) E. tristachya. 

Performance measures of narrow Africa extent models 

Testing and training omission plots of the Maxent narrow extent models are presented in 

Figure 2.7. The omission on test samples is mainly close to the predicted omission rate, showing 

the model ran as expected in Maxent. The predictive performance plots are similar to 
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corresponding Maxent full Africa extent models. The strength of the predictive performance of 

Maxent model is stronger for species such as E. africana, E. coracana, E indica, and E jaegeri, 

with high number of presence data points, and weaker for species with fewer data points such as 

E. floccifolia, E. intermedia, E. kigeziensis, and E. tristachya. 

 
Figure 2.7: Plots show how omission (testing and training) and predicted area varies with the 

cumulative threshold for the narrow Africa extent Maxent models containing thirty-three 

environmental variables. (A) E. africana, (B) E. coracana, (C) E. floccifolia, (D) E. indica, (E) E. 

intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (I) E. tristachya. 

A B C 
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Receiver operating curves (ROC) for training and test data of Maxent narrow extent models 

are presented in Figure 2.8. The predictive power of the models is high as the ROC values are 

greater than 0.8 for all species. 

   

   

   

Figure 2.8: Receiver operating curves (ROC) for training and test data plots (sensitivity—the 

proportion of true positives versus 1-specificity—the proportion of false negatives over the whole 

range of threshold values between 0 and 1) for the narrow extent Maxent models containing the 

33 environmental variables (A) E. africana, (B) E. coracana, (C) E. floccifolia, (D) E. indica, (E) 

E. intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (I) E. tristachya. 
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Narrow Extent Predictions 

I used the narrow extent Maxent model to investigate the potential distribution range of 

Eleusine species in Africa. The model predictions shown in Figure 2.9 indicate that potential 

Eleusine species occurrence extends to other parts of Africa where they have not been reported 

mainly for species with small known ranges. These are the binary maps of the narrow extent 

Maxent model projections for Eleusine species onto the thirty-three environmental variables for 

Africa, using the logistic threshold cutoff values from maximum training sensitivity plus 

specificity. Warmer colors show areas with better-predicted conditions. Eleusine africana and E. 

floccifolia occurrence are predicted to extend to the northern parts of the continent. The probability 

of occurrence is the least for E. multiflora. 
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Figure 2.9: Binary maps showing projected Eleusine species distribution (using the logistic 

threshold cutoff values from maximum training sensitivity plus specificity) as predicted by the 

narrow Africa extent Maxent models containing the 33 environmental variables. The dark color 

indicates areas with a high probability of predictions (suitable). The light color indicates areas with 

a low probability of predictions (not suitable) (A) E. africana, (B) E. coracana, (C) E. floccifolia, 

(D) E. indica, (E) E. intermedia, (F) E. jaegeri, (G) E. kigeziensis, (H) E. multiflora, and (I) E. 

tristachya. 

 

Analysis of variable contributions 

Table 2.6 shows the number of environmental variables with a relative contribution greater 

than or equal to one percent. E. coracana and E. indica, have the highest number (20) of substantial 

environmental factor in the full extent model. E. indica has the highest number of contributing 

environmental factors in the narrow extent model. Distribution models for other species had 

between ten to fourteen predictor variables, except E. multiflora with eight predictor variables in 

the narrow extent model and E. tristachya with only for relevant variables in both models. The 

relative contributions of the substantial (greater than 1%) environmental variables used in the full 

and narrow extent Maxent models are presented side by side for each species in Figure 2.10. There 

are many major overlaps in the contribution of the environmental variables used for predictions in 

the two models. Different biologically relevant aspects of temperature and precipitation are the 
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most consistent predictor variable in the two models for Eleusine species. However, elevation 

featured as a high (> 10% relative contribution) contributing factor for E. coracana, E. floccifolia, 

E. indica, E. intermedia, E. jaegeri, and E. multiflora in the full extent models. The observed high 

contribution of elevation is only true for E. coracana, E. indica, E. jaegeri, and E. multiflora in 

the narrow extent models. Soil type has a high contribution to the distribution modeling of E. 

intermedia and E. tristachya in the full extent and the distribution modeling of E. floccifolia, E. 

intermedia, E. kigeziensis, E. multiflora, and E. tristachya in the narrow extent model. The relative 

contribution of slope was high (>10 %) for E. africana and E. intermedia only in the narrow extent 

models. 

Table 2.6: Number of substantial (with relative contribution greater than or equal to ≥ 1%) 

environmental variables for the full and the narrow extent Maxent models.  

 

  Number of substantial (≥ 1%) environmental variables 

Species Full Extent Model Narrow Extent Model 

E. africana 13 14 

E. coracana 20 13 

E. floccifolia 10 13 

E. indica 20 17 

E. intermedia 12 10 

E. jaegeri 12 13 

E. kigeziensis 17 13 

E. multiflora 12 8 

E. tristachya 4 4 
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Full       Narrow 

I(i)   I(ii)  

Figure 2.10: Tree plots of the relative contributions of major environmental variables relative 

contribution greater than or equal to ≥ 1%) to the full (i) and the narrow (ii) Maxent models. (A) 

E. africana, (B) E. coracana, (C) E. floccifolia, (D) E. indica, (E) E. intermedia, (F) E. jaegeri, 

(G) E. kigeziensis, (H) E. multiflora, and (I) E. tristachya. 

 

Discussion 

Model predictions 

This assessment is the first environmental distribution modeling specific to Eleusine 

species. Thus, it hopefully lays the foundation for more profound environmental and geographic 

studies and potentially inform agricultural and conservation planning. The broad choice of 

environmental predictor variables was to explicitly consider all variables relevant to species 

distribution. This approach is a recommended first step to identifying and eliminating ineffective 

variables and comprehensively selecting applicable environmental predictors based on high 

contribution level and expert knowledge for SDM of target species (Lin and Chiu, 2020). 

Environmental distributions were modeled with Maximum Entropy software. Maxent is a species 

distribution modeling software suitable for presence-only data used in this analysis (Elith et al., 

2010). One advantage of using a maximum modeling algorithm over more straightforward 

statistical tools, such as logistic regression, is that it reduces the impact of interactions that could 

occur among these variables (Phillips et al., 2006). This approach has allowed new insights into 

how climatic and soil variables may have influenced the distribution of Eleusine in Africa. 
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Full Africa extent maxent models 

Binary maps were generated for the full extent models in this study with the logistic 

threshold cutoff values from maximum training sensitivity plus specificity. These values, which 

vary for each species and model, are based on Maxent's probability of prediction of occurrences. 

The maximum sum of sensitivity and specificity has been considered consistent in producing 

results and one of the best threshold selection methods with presence-only data when random 

points are used instead of genuine absences (Liu et al., 2005; Liu et al., 2016).  

The binary maps for the full extent models reflect the limited distributions of Eleusine 

species described by Philips (1972). Species with abundant records, such as the wild occurring E. 

africana, E. indica, and the cultivated E. coracana, have somewhat unique distributions that do 

not overlap. The probability of occurrence for E. africana covers a large extent in eastern and 

southern Africa, with a continuous patch in the northern parts of West Africa. An unusual 

prediction for E. africana is that the full Africa model also suggests north Africa as a highly 

suitable environment. This northerly Africa occurrence of E. africana has never been reported. E. 

indica, in contrast to E. africana, is highly probable in west Africa, with patches of occurrence 

along the edges of east and southeast Africa and in Madagascar. Even though E. indica is widely 

known as a tropical and subtropical weed (Phillips, 1972, 1995; Liu and Peterson, 2010); Maxent 

model shows a low probability of occurrence in many places in tropical Africa. It is interesting 

that although E. coracana is reported as widely cultivated from the west to the east in Africa 

(Phillips, 1972; Liu et al., 2011), the observed distribution predictions in this study reflects a 

mainly eastern Africa cultivation with an isolated occurrence in West Africa (Nigeria and 

Senegal). This prediction is somewhat consistent with the description of E. coracana as evolved 

and adapted to east Africa (Liu and Peterson, 2010; Phillips, 1972; Liu et al., 2011). The observed 

pattern of occurrence could be due to cultivation and consumption preferences. Nevertheless, this 
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result may also suggest that west Africa has a limited suitable environment for cultivating finger 

millet and that the environment preferences of E. coracana may be different from other adaptable 

millets like Digitaria—known to west Africa (National Research Council, 1996). The probabilities 

of occurrence of the constrained E. intermedia, E. floccifolia, E jaegeri, and E. kigeziensis are high 

around the locations where they have been reported in the east and southeast Africa. The 

distribution patterns show a unique patch for each species and largely reflect the described 

distributions by Phillips (1972). However, E. multiflora showed an extended environmental 

preference beyond Eritrea, Ethiopia, Kenya, and Tanzania to neighboring Uganda in the east and 

South Africa, Namibia, and Zimbabwe in the south. The eastern occurrence suggests that it could 

be present or, at least, could thrive outside its presently known range. Similarly, the probability of 

occurrence of E. tristachya (a south American endemic and only widely reported in South Africa) 

is high in North Africa, and it indicates that the species could, possibly, thrive in north Africa, 

particularly closer to the coasts. 

Performance measures of full Africa extent models 

The predictive performances of the potential distributions of Eleusine species modeled by 

Maxent with the full Africa map show increasing improvements with an increasing number of 

location records. The plots of omission (training and testing) against the cumulative threshold were 

increasingly closer to the prediction versus cumulative threshold graphs (AUC graphs). Generally, 

the receiver operating curves (ROC) show values greater than 0.8 for all species indicating a high 

fit of the model to the data (predictive power) (Philips, 2017). Like the AUC plots, the ROC curves 

improved with increasing sample size. Maxent has been cited as robust in modeling distribution 

for species with small occurrence datasets (generally less than 100 locations) (Hernandez et al. 

2006; Papes and Gaubert 2007; Phillips et al. 2006). However, as shown in the model performance 
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plots, Bean et al. (2012) reported that prediction accuracy is affected by small sample sizes. 

Therefore, inferences should be made with caution when dealing with small sample sizes.  

Narrow extent Maxent distribution models 

The predicted species distribution pattern generated by Maxent with the narrow extents are 

generally similar to corresponding distribution maps in the full Africa extent models. The species 

distribution maps generated are only for the countries where presence records exist and exclude 

countries where species have not been reported. Each species prediction shows a slimmer 

geographical distribution pattern than the corresponding full extent model. The advantage of 

limiting background is that it increases the likelihood of a more ecologically realistic distribution 

because it reduces artifacts of prediction statistics when modeling with Maxent (Elith et al., 2010; 

Phillips, S. J., 2017).  

Performance measures of narrow Africa extent models 

Although the narrow extent models are expected to be more realistic due to their more 

limited background than the full extent models (Elith et al., 2010), their predictive performances 

modeled by Maxent are mainly like the full extent models. They show increased improvements 

with an increasing number of location records. The plots of omission (training and testing) against 

the cumulative threshold were close to the plot of prediction versus cumulative threshold (AUC 

graphs) in E. africana, E. coracana, and E. indica with many occurrence records. The receiver 

operating curves (ROC) values were also greater than 0.8 for all species and indicated a high fit of 

the model to the data (predictive power) (Philips, 2017).  

Narrow extent predictions 

One other advantage of limiting background used in the narrow extent model is that it was possible 

to contrast reported areas with and unoccupied environments and make predictions of the likely 
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distribution of Eleusine in areas where they have never been reported. In this analysis, Maxent 

projections were broadly consistent with the distribution models of the full extent models. For 

example, the northerly occurrence predicted for E. africana in the full extent model was affirmed 

by the narrow extent projections providing more support for the environmental suitability of the 

region for E. africana. Additionally, E. coracana shows a low probability of occurrence or 

suitability in west Africa, albeit with new areas that may support cultivation identified along the 

coast. Projecting the narrow model extent of E. tristachya to a complete map of Africa shows a 

much different contrast to the full Africa model. The high northerly probability predicted in the 

full Africa model is mainly absent in the narrow model projections. It suggests that the high 

probability shown in the full extent model could be due to artifacts from the more prominent 

environmental background (Elith et al., 2010; Phillips, S. J., 2017). It is, however, interesting to 

note the new suitable environments—in the east and southeast Africa—identified from the narrow 

extent projections, especially for the highly constrained E. intermedia, E. floccifolia, E jaegeri, 

and E. kigeziensis. Identifying novel suitable environments particularly emphasizes the usefulness 

of species modeling to the management and conservation concerns of endemic Eleusine species 

(Elith et al., 2010; Phillips, S. J., 2017). 

Analysis of variable contributions 

The relative contributions of environmental variables are considerably similar in the full 

and narrow extent modeling approaches. The observed variations in environmental predictor 

contributions may result from artifacts from the more extensive background in the full extent 

model. These similarities in the composition of contributing environmental factors could be due 

to the robustness of Maxent modeling software in modeling species distribution prediction with 
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presence-only data (Hernandez et al. 2006; Papes and Gaubert 2007; Elith et al., 2010; Phillips, 

2017).  

Biologically relevant aspects of temperature and precipitation are the most consistent 

predictor variable in the two models for Eleusine species. This reflects the theory that plant species 

distribution is mainly associated with water availability, especially at latitudes closer to the 

equator, where the sun's radiant energy is abundant (Hawkins et al., 2003). The observed high 

contribution is also consistent with reported correlation between climate and grass distribution 

(Hartley, 1950). The occurrence of elevation as a high (> 10%) contributing factor for many of the 

Eleusine species in Africa is in tandem with their known occurrence and cultivation at high 

latitude. West Africa generally has a low altitude, and the high contribution of elevation to the 

distribution modeling of E. coracana may help explain its limited cultivation in the region. 

Conclusion and future recommendations 

A larger sample size will be required to better comprehend Eleusine species’ distribution. 

My analyses included all possible geocoordinates on GBIF for Eleusine in Africa, but the model 

statistics were poor for species with low data points. It is fair to highlight that the precision of 

geocoordinates used in this study was inconsistent. Some values were given precise to the three-

hundredths degree, and others seemed collected to one-ninth degree precision and then 

approximated. Thus, field validation is an essentially critical next step in validating the results of 

these models (Rebelo & Jones 2010). 

Furthermore, field validation should include factors that were not available to this study 

and which could be ecologically meaningful to the adaptation and distribution of Eleusine species. 

These include biotic interactions, disturbance, and topography/land use data (Mod et al., 2016). 

These concerns show the need to collaborate with known locality records (e.g., herbarium records) 
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to carry field verifications. It is also essential to do carefully repeated sampling to determine that 

the target species is genuinely present or absent from a locality in building strong distribution 

models. Sufficient repeated field observations would help adopt a distribution model that accounts 

for imperfect detections of large-scale analysis. This is invaluable for identifying new populations, 

defining environmental characteristics, and is helpful for habitat restoration and conservation 

efforts of wild Eleusine species. 
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Chapter 3: Structural Variation Analysis of Eleusine coracana whole-genome sequences 

Introduction 

The uniqueness and similarities of plant species' habitat, growth, and reproduction can be 

traced to their genomes. Unlocking the information in the structure, organization, evolution, and 

function of plant genomes will advance our understanding of plant biology and help crop 

improvement. Genomics can help us find correlations between genomic variations and observed 

traits (Edwards and Batley, 2004).  

Next-generation DNA sequencing (NGS) technology with reduced cost has increased the 

quality and diversity of publicly available plant genomic resources and since completing the 

primary genomic sequence of Arabidopsis thaliana. The availability of high-quality data has 

facilitated the development of tools for analyzing genomic data and the integration of information 

from the field of omics. Genome analyses include identifying genes and gene products and 

elucidating functional relationships between genotype and phenotype using whole-genome 

sequencing and re-sequencing data (Edwards and Batley, 2004; Li et al., 2009). Single Nucleotide 

Polymorphisms (SNPs) (or variants) studies have dominated NGS plant genetic variants 

identification in genetic mapping and genome-wide association. However, recent studies show that 

SNPs do not capture large genomic variations that equally contribute to phenotypic differences 

(Saxena et al., 2014; Francia et al., 2015). 

Genomic structural variants (SV) are large sequence differences in a genome relative to a 

reference genome. SVs could be a loss (deletion) or gain (duplication) in copy number, a change 

in orientation (inversion), or chromosomal location (translocation) of a sequence (Medvedev et al. 

2009; Escaramís et al. 2015). These changes can lead to loss or variation in gene dosage. SV 

analyses in humans show that structural variants account for more variations in base pairs than 
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SNPs (Alkan et al., 2011; Baker 2012; Sudmant et al. 2015). SVs are large and possibly altering 

gene structure, dosage, or location (Layer et al., 2014). Variation in a gene copy number has been 

called copy-number variation (CNV) and missing regions in some individuals relative to others, 

called copy-number variation (CNV) (Schiessl et al., 2018).  

Several studies have also interrogated the association between structural variants and plant 

phenotypes. They reveal that SVs overlap and enrich abiotic stress response genes, protein-coding 

genes, and disease resistance genes in soybean, rice, potato, and Arabidopsis (Cook et al., 2012; 

Fuentes et al., 2019; Kyriakidou et al., 2019; Zmienko et al., 2020). SVs have also been linked to 

boron tolerance in barley (Sutton et al., 2007). Furthermore, Li et al. (2016) found variations of 

PAVs informative for assessing patterns of genetic diversity in Glycine spp. 

Plant genomes contain many repetitive regions, and many plants have multiple ploidy 

(multiple copies of entire chromosomes) levels (diploid tetraploids, hexaploids, and others). 

Ploidies are from spontaneous genome duplication (autopolyploidy) or hybridization of 

chromosomes from different species (allopolyploidy). SVs can arise through these duplication 

events, with the eventual differential loss of duplicated genes (Iovene et al., 2013).  

Bioinformatics tools for identifying structural variants from high throughput sequencing 

short read data utilize one of the following approaches. The first method involves inferring from 

discordantly mapped paired-reads whose distances are significantly different from the 

predetermined average insert size in the paired-end mapping approach (or RP) (Sindi et al. 2009). 

Second, using the position and distance between fragments of a read independently aligned to the 

reference genome to determine structural variants in split-read mapping approach (or SR) 

(Schröder et al. 2014). Read depth approach (or RD) uses the correlation between sequencing 

depth coverage and the frequency of a genomic region (Abyzov et al., 2011; Duitama et al. 2014; 
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Smith et al. 2015). Finally, the de novo assembly approach (or AS) reconstructs DNA fragments 

(contigs) from short reads and compares them to a reference genome to infer SVs (Rizk et al. 2014; 

Yang et al. 2015). No single method can detect the total genomic structural variations. However, 

the highest resolution studies of SVs can be achieved using a de novo assembly-based approach; 

this is computationally intensive for large individuals. 

Due to the complexity of structural variants and their occurrence in repetitive regions, 

discovering structural variation (SV) from whole-genome sequencing data is better with a 

combination of approaches and prior knowledge. (Rausch et al. 2012; Layer et al. 2014; 

Mohiyuddin et al. 2015). LUMPY is an SV discovery framework that utilizes signals from read-

pair, split-read, read-depth jointly. LUMPY yields improved sensitivity and performed well in 

calling SVs of diverse sizes, especially when a low coverage data signal is reduced owing (Layer 

et al., 2014; Kosugi et al., 2019). 

Finger millet (Eleusine coracana L. Gaertn.) is a historical, nutritional crop, particularly in 

Asia and Africa. It is a self-fertilized allotetraploid (2n = 4x = 36) annual considered a hardy crop 

due to its wide adaptability. It is a drought and disease-tolerant crop and has been reported to have 

an extended shelf life (Parashuram et al., 2011). However, unlike wheat and other popular grains, 

E. coracana has remained unpopular due to its coarse texture and intense seed coat color (Sood et 

al., 2018). Recently, there has been an increased interest in adapting finger millet as an 

economically viable, super future crop, with studies to elucidate the genetic architecture and 

decipher the relationship between genotype and phenotype in finger millet.  

Recently, there is an explosion in the number of high-quality whole-genome sequencing 

(WGS) data and transcriptomics data for finger millet accessions on the National Center for 

Biotechnology Information (NCBI). Furthermore, the recent availability of a draft genome 
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sequence (E. coracana genome v1.1 on Phytozome13, https://phytozome-

next.jgi.doe.gov/info/Ecoracana_v1_1) makes it possible to analyze genomic variations in finger 

millet. Presently, over a hundred whole-genome sequence data of E. coracana are publicly 

available on NCBI. These are global collections from various finger millet accessions released by 

various Bioprojects. Some of these WGS data were created for SNPs analysis and genome 

building.  

Here, I investigated genetic variations in the accessions by identifying structural variants 

in 116 WGS from NCBI with LUMPY. I determined the distribution and functional genomic 

impact of SV regions by analyzing genes overlapping with SVs. Identifying and understanding the 

distribution of SVs in E. coracana could assist researchers in the identification of novel resistance 

genes and improve current breeding efforts. 

 

Materials and Methods 

Structural variants and their genomic distribution in E. coracana were analyzed by 

downloading publicly available, paired-end, whole-genome sequences from the National Center 

for Biotechnology Information (NCBI) Sequence Read Archive (SRA) repository. The accessions 

were analyzed with custom bash and R scripts created based on freely available bioinformatics 

tools (Fig. 3.1). 



47 

 

 
Figure 3.1: Summary chart of bioinformatics pipeline for structural variants identification analysis 

in Eleusine coracana 

Step 1: Data Sourcing and Cleaning 

Raw data archive files from NCBI 

To identify E. coracana genomes for structural variant analysis, I searched for publicly 

available paired-end whole-genome sequence on NCBI (accessed June 24, 2021) using the 

scientific name of the species — ‘Eleusine coracana’ as the search term under the Taxonomy 

section. The SRA sequence link from the results table showed 347 sequences filtered with the 
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following parameters: Source-DNA; Type-genome; Library-paired and Strategy-genome. After 

manually removing plastid genomes from the search result, the SRA table was downloaded from 

the SRARunSelector. This table contained 116 samples of Illumina reads from 5 NCBI BioProject 

databases (http: //www.ncbi.nlm.nih.gov/bioproject) under the accession numbers PRJNA383952, 

PRJDB5606, PRJNA338521, PRJNA377606, and PRJNA610152 (Table 3.1). The SRA Runtable 

was used to download sequences to the Alabama Supercomputer for analysis. 

 

Table 3.1: BioProject accession numbers and numbers of SRAs per each downloaded for analysis 

from NCBI database 

SN 

BioProject 

Accession Number 

Number of SRA 

in BioProject Data Source 

1 PRJDB5606 9 Beijing Genomics Institute, China 

2 PRJNA338521 6 University of Agricultural Sciences, India 

3 PRJNA377606 11 University of Zurich, Zurich 

4 PRJNA610152 88 
The University of Trans-Disciplinary Health 

Sciences and Technology, India 

5 PRJNA383952 2 University of Agricultural Sciences, India 

 

FASTQ files from Raw Reads 

To obtain FASTQ files in identified SRA, I created a custom bash script. SRA files are 

compressed files suitable for archiving sequences. In the script, the list of SRA files to download 

was prepared by pulling them from the first column of the SraRunTable.  After that, the SRA were 

downloaded files from NCBI database using the prefetch command of sra2.10.9 toolkit 

(https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software) with the --option-file option set 

to the list of SRA list, and the --max-size option to 50G (due to the large size of some of the SRA 

files). The SRA files were discarded after extracting the fastq files with the fasterq-dump 

command in sra2.10.9. The total size of the SRA files was 4.4terabytes. 
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Data Filtering and Quality Analysis 

To obtain high quality data for my analysis, I performed quality assessment, trimming, and 

QC result aggregation of downloaded sequences in a sequence of custom scripts. In the scripts, 

downloaded sequences were first assessed for quality with FastQCv.0.11.9 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc), and thereafter trimmed accordingly 

with Trimmomatic v.0.39 (Bolger et al., 2014), after which the reads were reevaluated for quality. 

In trimming, Illumina adapter sequences (in a custom list of adapters) and the leading and trailing 

sequences with a base quality of less than 20 were taken out. Reads with less than 40 bases and 

reads with local drops in average base quality less than 22 measured within a six-base sliding 

window were also removed. Quality assessment results were aggregated by BioProjects using 

MultiQcv1.7 (Ewels et al., 2016). All 116 accessions had more than 10 million reads following 

the quality-based filtering; therefore, none was excluded from further analysis.  

Step 2: Read Mapping and Normalization Procedures 

Read mapping and duplicate tagging 

To realign reads in FASTQ files to the respective regions they likely originated from, I 

downloaded the recently published E. coracana reference genome assembly v1.1 (Devos et al., 

2021) from Phytozome and mapped the trimmed reads the it using the Burrows-Wheeler Aligner 

(BWA) in 3 steps. First, the reference genome was indexed using bwa index command and default 

parameters. The trimmed forward and reverse reads were then mapped to the indexed genome with 

the faster and more accurate bwa-mem algorithm v.07.12 (Li and Durbin, 2010) using default 

parameters in the second step. In post-alignment, aligned outputs were sorted with 

SAMToolsv.1.11 (Li et al., 2009). samblasterv.0.1.24 (Faust and Hall, 2014) was used to remove 

duplicates (--excludeDups option) and to tag discordant and split reads (--addMateTags and –

https://www.bioinformatics.babraham.ac.uk/projects/fastqc
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maxSplitCount options) to reduce variant analysis complexity and runtime. After this, the SAM 

files were compressed to BAM files using samtools with default parameters. 

Excluding high coverage regions 

  To improve the quality of SV calls and reduce false positives from high coverage regions, 

I identified and excluded regions with very high coverage were using two custom python scripts 

by Ryan Layer (https://github.com/arq5x/lumpy-sv) for LUMPy structural variant analysis. First, 

the get_coverages.py (modified) script was used to find the min, max, mean, and standard 

deviation coverages of the split reads and paired-end bam files and create coverage profiles for the 

bam files. I chose to exclude regions that have more than five times the standard deviation coverage 

from the output. The get_exclude_regions.py (modified) script was used to create the 

exclude.bed files. get_coverages.py and get_exclude_regions.py were called bam files from a 

custom bash script. 

Step 3: Structural Variant Discovery Pipeline with LUMPy Express 

To detect structural variants in the bwa-mem aligned 116 WGS samples, I called the 

lumpyexpress module of LUMPyv.0.3.1 (Layer et al., 2014) on the samples independently in a 

custom bash script. In calling lumpyexpress, I used the defaults parameters for a single sample 

with pre-extracted splitters and discordant. LUMPy is a probabilistic framework for structural 

variant discovery based on read-depth, read-pair, and split-read density. High coverage regions 

identified in the previous step were provided to the software with the -x option to reduce artifacts. 

LUMPy produced a VCF 4.2 specification file with a raw catalog of 4 structural variant events 

(deletion—DEL, duplication—DUP, inversion—INV, and breakpoints—BND) filtered for 

precision and type of event in downstream analysis. 
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Step 4: Structural Variant Merging, Refinement and Filtering 

To obtain high quality calls, I parsed the structural variant files with a custom script as 

follows. First, precise variant calls (high confidence calls) were separated from imprecise calls for 

each VCF file generated per sample. Next, bed files with chromosome, start position, stop position, 

and the number of support (read depth and split reads) and length were created for each precise 

variant calls separated by events into individual files. A union of all structural variants in all 

samples was created per event by combining the individual event bed files of the samples. LUMPy 

identified many overlapping structural variants. The variants were merged using BEDtools.2.26.0 

(Quinlan and Hall, 2010) merge command and sorted by chromosome number and start position to 

remove redundancy.  

Distribution of SVs relative to gene models 

The overlap of identified structural variants (by events and samples) with the intergenic 

regions in E.coracana was carried out using the BEDtools intercept command. Structural variant 

events were intersected with the genic regions in the Eleusine genome v1.1 annotation file (gff3) 

(Devos et al., 2021). The gene names of intersected regions were pulled from the description text 

file provided with the genome. Graphical representations of the distribution and genes of the 

structural variant in the genome were prepared with IGVv.2.9.4 (Robinson et al., 2011). 

Graphical charts of different analyses statistics 

To visualize and to understand variation or show relationships between variables, graphical 

representation of the structural variant results, the number of events discovered per sample, the 

boxplot of the number of supports for the calls, and the number of genes overlapping each event 

type were created in R v4.11 (R Core Team, 2021). 
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Step 5: Annotation and Analysis of Structural Variation Genes 

To understand the potential impact of identified structural variants on genes, the TOPGO 

package (Alexa and Rahnenfuhrer, 2021) of R software was used for the functional analysis of 

trait-related genes. The analysis pipeline, written in a custom R script, required the GO.db, 

biomaRt, and Rgraphviz libraries. The GO enrichment analyses for Biological Process, Molecular 

Function, and Cellular Component of deleted, duplicated, and inverted genes were carried out with 

the GO:IDs using the annFUN.gene2GO function. The gene annotation list of the GO:IDs were 

created by retrieving them from Phytozome 13 (Goodstein et al., 2012) BioMarts (database). The 

pipeline tested for significance between genes that overlap structural variants and the total genes 

in the E. coracana genome v1.1 (Devos et al., 2021) using the weight01 algorithm with fisher 

(default). The GO annotation analysis results were saved to file, and the hierarchical plots of 

enriched GO terms were plotted. The geom_bar function of ggplot2 was used to generate the 

histograms of the top enriched terms. 

 

Results 

Detection of structural variations using whole-genome re-sequencing data 

One hundred and sixteen whole genome sequences (WGSs), downloaded from the National 

Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) repository under 

five BioProjects, were mapped to the newly published E. coracana reference genome v1.1 on 

Phytozome 13 to detect structural variations. Available metadata indicated that sequences were 

generated from total DNA extract of young leaves of 93 different Eleusine accessions (grown in 

greenhouse conditions) with Illumina sequencer. 
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Data Filtering and Quality Analysis 

Table 3.2 provides a summary of sequence quality (by BioProjects) before and after 

trimming. Briefly, about 5 to 45 % of reads were removed from the sequences. BioProject 

PRJNA610152 had the highest quality sequences, and only 5% of the reads were removed. None 

of the downloaded WGS was excluded from the analysis after trimming. 

Table 3.2: Bioprojects, number, number of reads and quality of reads of E. coracana sequences 

downloaded from NCBI before and after trimming. Quality is grouped by Bioprojects with 

MultiQC 

 

Number of structural variants detected 

This SV analysis pipeline used LUMPy (Layer et al., 2014), a software that calls structural 

variants based on three read signatures (read pair, read depth, and split read). LUMPy detected 

between 0 and 32,176 in each accession (Fig. 3.2). Most of the events detected were breakpoint 

events which were not further analyzed in this study due to their complexities. Inversion events 

were the least reported structural variant type in E. coracana. Imprecise calls were also removed 

from further analyses to improve the accuracy of the SVs.  Many of the detected calls were found 

SN Bioproject  
Number 

of SRA  
Data Source 

Number of reads 

before trim (in 

millions) 

Read length 

before 

trimming 

Number of 

reads after trim 

(in millions) 

Read length 

after 

trimming 

Percentag

e after 

trimming 

1 PRJDB5606 9 
Beijing Genomics 

Institute, China 
50 – 210 100/150 50-190 92-142 ~90 

2 
PRJNA3385

21 
6 

University of 

Agricultural 

Sciences, India 

12-97 60-150 7-78 60-150 ~55 

3 
PRJNA3776

06 
11 

University of 

Zurich, Zurich 
10-190 81-300 3-163 84-225 ~63 

4 
PRJNA6101

52 
88 

The University of 

Trans-

Disciplinary 

Health Sciences 

and Technology, 

India 

25-70 100/125 18-63 97-123 ~95 

5 
PRJNA3839

52 
2 

University of 

Agricultural 

Sciences, India 

2 250 2 225 90 
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to be overlapping and thus merged into one. The number of events recognized in each accession 

was reduced based on the quality control, merging overlapping events, and exclusion of complex 

BND events (Fig. 3.3). The size distributions of these SVs and distribution of the number of 

supports are shown in Figures 3.4 and 3.5, respectively.  
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Figure 3.2: Number of structural variant events found for each whole-genome sequence downloaded from NCBI database when 

compared to the E.coracana v1 genome. 
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Figure 3.3: Number of high confidence structural variant events found for each whole-genome sequence after merging complete 

overlaps. 
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Figure 3.4: Boxplot showing the size distribution of the length of structural variation events (Deletion (A), Duplication (B), and 

Inversion(C)) found for each whole-genome sequence downloaded from the NCBI database. 

 

C 
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Figure 3.5: Boxplot showing the number of evidence (number of reads, number of split reads) supporting Deletion (A), Duplication (B), 

and Inversion(C) events found for each whole-genome sequence downloaded from the NCBI database. 

C 
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Identification of Deletion, Duplication, and Insertion Events 

Structural variation events (deletion, duplication, and inversion) present in all E. coracana 

were identified by combining all high confidence variants discovered by LUMPy in all accessions, 

followed by merging regions that overlapped to reduce redundancy. This procedure resulted in 93 

inversions, 1,922 duplications, and 3,344 deletions. The distribution of these structural variants in 

the newly drafted genome as viewed in Integrative Genomics Viewer (IGV) (Robinson et al. 2017) 

is presented in Figure 3.6. 

 

Figure 3.6: Genomic Distribution of Structural Variants (deletion, duplication, and inversion) in 

the Eleusine coracana Genome viewed in IGV. 

 

The interplay between the Structural Variation and Genes 

There are 48,883 identified genic regions in the recently published E. coracana genome 

v1.1. Intersecting identified structural variants with genic regions showed that 41,238 and 40,747 

genes overlapped deletion and duplication events, respectively. Inversion events have low genic 

overlap in finger millet—324 genic regions (Fig. 3.7). 
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Figure 3.7: Number of genes overlapping identified structural variants in Eleusine coracana 

genome (inversion-324, deletion-41,238 and duplication-40,747, total number of genes in genome-

48,883). 

 

 

 

Functional impact of SV-overlapped genes 

The assessment of the functional impact of discovered structural variations in Gene 

Ontology (GO) annotation indicated possible effects of variants on overlapped genes. A summary 

of the functional impact is shown in Table 3.3, categorized into all three primary genes GO 

categories—molecular function (MF), biological process (BP), and cellular component (CC). A 

complete list of GO:IDs affected is available in Supplementary Table. The deletion and duplication 

affected biological processes included several metabolic, biosynthetic, and transport processes 

(Fig. 3.8 and 3.9).  Duplication events also affect biotic stress response and phosphorylation 

processes. Molecular functions affected by deletion and duplication events include ATP binding, 

protein tyrosine kinase, and transporter activity. The impact of inversion events was low for 

biological processes and molecular functions (Fig 3.10). All three events showed little influence 

on cellular components (Fig. 3.8, 3.9 and 3.10). 
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Table 3.3: Summary of significant (p<=0.05) GO:Process functional annotation of genes 

overlapping identified structural variations in Eleusine coracana under Biological Process (BP), 

Molecular Function (MF), and Cellular Component (CC)  

GO:Process SV Type 
Number of Significant 

Processes 

Number of Significant 

Genes 

BP Deletion 18 19013 

BP Duplication 15 8495 

BP Inversion 11 22 

MF Deletion 17 10102 

MF Duplication 20 8573 

MF Inversion 17 32 

CC Deletion 3 3442 

CC Duplication 1 36 

CC Inversion 2 2 

 

 

   

Figure 3.8: GO functional annotation of significant (p<0.05) genes overlapping identified deletion 

variation events in Eleusine coracana under Biological Process (BP), Molecular Function (MF), 

and Cellular Component (CC). 
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Figure 3.9: GO functional annotation of significant (p<0.05) genes overlapping identified 

duplication variation events in Eleusine coracana under Biological Process (BP), Molecular 

Function (MF), and Cellular Component (CC). 

 

 

Figure 3.10: GO functional annotation of significant (p<0.05) genes overlapping identified 

duplication variation events in Eleusine coracana under Biological Process (BP), Molecular 

Function (MF), and Cellular Component (CC). 
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Discussion 

Detection of structural variations in E. coracana using whole-genome re-sequencing data 

This analysis is the first analysis of structural variants in E. coracana, and it utilized 116 

"short reads” whole genome sequences (WGS) generated by high-throughput sequencing from the 

National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA). To date, 

our knowledge of genomic variations in E. coracana has primarily been about Single Nucleotide 

Polymorphisms (SNPs). However, it has become evident that SNPs do not capture long genetic 

variations, which may affect the dosage and presence of genes leading to phenotypic diversity 

within a species (Alkan et al., 2011; Baker 2012; Sudmant et al. 2015; Layer et al., 2014; Cook et 

al., 2012; Fuentes et al., 2019; Kyriakidou et al., 2019; Zmienko et al., 2020). Genomic structural 

variants are crucial to consider when uncovering the genetic basis of observable plant traits (Cook 

et al., 2012; Fuentes et al., 2019; Kyriakidou et al., 2019; Zmienko et al., 2020). In a series of bash 

and R scripts, I performed SV analysis of E. coracana by removing low-quality reads from 

downloaded WGS and mapping them to the newly published draft E. coracana genome on 

Phytozome 13. My analysis utilized LUMPy, a probabilistic framework for calling SVs based on 

read-pair, read-depth, and split read signals. LUMPy has been identified as a high-performing SV-

caller (Layer et al., 2014; Kosugi et al., 2019). WGS analyzed in this study were generated from 

young leaves of ninety-three finger millet accessions. There are over 10,000 documented 

accessions of E. coracana, so the number of accessions represented in this study is small (Sood et 

al., 2019). Results show SVs are important in E. coracan, and it would be interesting to incorporate 

more accessions in future analysis. 
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Data Filtering and Quality Analysis 

Downloaded WGS retained at least 55 % of their reads or more than 5 million reads after 

trimming lower quality reads and adapter sequences; therefore, all WGS were represented in 

mapping and SV detection. However, I could not extract any information about SVs in 5 WGS 

which had about 55% reads remaining after trimming. Although the reason for no detection was 

not verified, it is likely due to low quality and reduced number of reads, as reported in their copy 

number variation (CNV) analysis of Arabidopsis thaliana (Zmienko et al., 2020).  

Number of structural variants detected. 

On average, LUMPy made about ten thousand raw structural variants calls in this analysis. 

The raw SVs detected do not include coverage regions greater than five standard deviations in 

each WGS, removed to reduce false positives SV calls as recommended (Li, 2014; Layer et al., 

2014). However, it is possible that excluding high coverage areas reduced the sensitivity of SV 

calls. Filtering raw calls and merging overlapping events in each WGS cut the number of identified 

variants to five thousand on average. The filtering process also excluded translocation events 

(identified as BND by LUMPy) due to their complexity and the inability to differentiate the events 

contained within them in this analysis. Difficulty in differentiating BNDs was also reported as a 

challenge in the SV analysis of rice ((Fuentes et al., 2021). The number of high confidence SVs 

retained is close to the reported eight thousand SV in the papaya genome (Liao et al., 2021) but 

incomparable to the approximately 1.5 million SV events found in the rice genome (Fuentes et al., 

2019). 

Identification of Deletion, Duplication, and Insertion Events 

Structural variants events were merged across WGS, followed by the combination of 

overlapping regions. The merger resulted in ninety-three inversions, 1,922 duplications, and 3,344 

deletions variants. The reported number of structural variants per event is in finger millet is 
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consistent with the number of SV reported for papaya (Liao et al., 2021). Furthermore, the high 

incidence of deletion and duplication events is consistent with theoretical predictions that 

polyploidy increases the likelihood of occurrence of genomic structural variants, and that the path 

to diploidization involves the loss, retention, or maintenance of duplicate genes due to increased 

sequence similarity (Adams and Wendel, 2005; Schiessl et al., 2018). The higher number of 

deletions indicates that deletions were very common in the finger millet genome. Theory suggests 

that hybridization leading to activation of genes and promoting unequal crossing over are causally 

responsible for high deletion variants in allopolyploid genomes like E. coracana (Otto, 2007). The 

detected low inversion events are consistent with other plant studies, and the low records have 

been explained as a likely result of purging these events from essential genes due to their 

deleterious effects (Zmienko et al., 2019; Hämälä et al., 2021; Liao et al., 2021; Fuentes et al., 

2021). The distribution of the events in IGV viewer shows that each chromosome has a reasonably 

equal amount of SV for each event, suggesting that each chromosome may have been subjected to 

a similar selection process (Liao et al., 2021). However, the distribution of SVs along the genome 

has an uneven coverage, suggesting that functional constraints may have interacted with the 

abundance of SVs and impacted their distribution (Otto, 2007; Zmienko et al., 2020). 

The interplay between the Structural Variation and Genes 

The intersection of identified structural variants with the genic region in the E. coracana 

draft genome shows three-hundred and twenty-four genes overlap inversion events, 40,747 gene 

coding regions overlap duplication events and 41,238 gene coding regions deletion events across 

the finger millet chromosomes. The overlap with gene coding regions further strengthens the 

hypothesis that SVs pose structural and functional constraints on genes and affects their dosages. 

Structural variant simulation studies predict that SVs tend to accumulate deleterious variants and 
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thus may constrain adaptation (Berdan et al., 2021). Most of these SVs may be signatures of 

selection and adaptation in E. coracana accessions.  

Functional impact of SV-overlapped genes 

The GO annotations of gene overlapping SVs reveal that metabolic biosynthetic and 

transport processes are top biological processes affected by deletion and duplication. A high 

overlap is observed in the significant gene categories under biological function and molecular 

component categories of deletion and duplication events.  This functional gene overlap between 

deletion and duplication events may suggest that duplication events could have lessened the effects 

of deletion variants. In addition, key processes critical to biotic stress responses, which might play 

important roles in environmental adaptability, were also highlighted in duplication events in E. 

coracana. Further investigation and analysis of genes present in significant categories would 

provide an opportunity to understand domestication, diversification, and adaptation in E. coracana 

and provide resources for developing molecular markers (Schiessl et al., 2018). 

Conclusion and future recommendations 

There is increasing attention to the role of structural variants in plant species diversification 

and adaptation. The number of plant species for which SV regions have been identified at the 

genome-wide scale has proliferated within the last decade (Cook et al., 2012; Fuentes et al., 2019; 

Kyriakidou et al., 2019; Zmienko et al., 2020).  This study, hopefully, lays the groundwork for 

identifying structural genomic variations that can help our understanding and improvement of E. 

coracana. It is crucial to analyze the WGS used in this study in combined multiple approaches 

with other high-performance SV callers like PINDEL and DELLY and compare the results. 

Combined multiple approaches are fundamental to producing a more robust prediction and 

reducing error calls from LUMPy. 
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Furthermore, an integrative study that would involve detailed characterization and 

validation of identified structural variants and their impact on gene dosages would help identify 

and develop desired agronomic traits. A recent extensive genome-wide genotyping of 423 finger 

millet landraces, using the same genome assembly used in this study, identified 8,778 SNPs. 

Identified SNPs were used to analyze patterns of divergence and population structure (Bančič et 

al., preprint 2021). There are at least 10,000 recorded accessions of E. coracana, and only three 

accessions in this study were used in the SNP study. Generally, SVs show a similar population 

structure with SNPs, albeit with weaker signals. Although not covered in this study, it will be 

interesting to investigate the similarities between the distribution genomic variation and population 

divergence in SNPs and SVs analyses of E. coracana. Structural Variants and transposable 

elements (TEs) reportedly have similar high sequence genomic distribution, and it has been 

suggested that SVs are products of TE activity. Therefore, it would also be noteworthy to 

incorporate how genomic distribution of SVs correlates with TEs in the E. coracana genome.   
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Chapter 4: General Conclusion 

In this thesis, I predicted bioclimatic and edaphic factors that affect the distribution of 

Eleusine species in Africa using the full Africa map extent and extent narrowed to countries in the 

collection record. Maxent worked quite similarly to a large degree in the two extents; however, 

the narrow extent had the advantage of identifying likely suitable environments. Further 

understanding of the distribution pattern and factor is hinged on collaborating with known locality 

records for field verifications. It is essential to carefully repeat sampling in determining realistic 

environmental factors and in building strong distribution models. Good, repeated field 

observations would help adopt a distribution model that accounts for imperfect detections of large-

scale analysis. 

Secondly, I investigated structural variations in the allotetraploid, E. coracana. The results 

show a high incidence of structural variants in the E. coracana genome, overlapping essential 

genes in critical biological processes such as metabolic and biotic stress adaptations. The result 

suggests they play an essential role in evolution, growth, and development. It is necessary to 

corroborate the findings with other high-quality SV callers. Furthermore, I recommend 

investigating identified variants in future genomic variations analyses targeting crop improvement 

in E. coracana.  

Overall, the research approaches used in this thesis underscore the usefulness of public data 

for plant research, and they demonstrate the possibility of analyzing extensive data using 

computational biology tools. The approaches together present the first data uncovering 

environmental preferences and genomic variation influences in Eleusine and can help our 

understanding of the genus. 
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Appendix 1. code used for selecting mapping extent for each species in ArcGIS 

## code for Eleusine africana 

ADM0_NAME = 'Angola'  Or ADM0_NAME = 'Botswana'  Or ADM0_NAME = 'Burkina Faso'  Or ADM0_NAME = 

'Burundi'  Or ADM0_NAME = 'Cameroon'  Or ADM0_NAME = 'Chad'  Or ADM0_NAME = 'Eswatini'  Or ADM0_NAME 

= 'Ethiopia'  Or ADM0_NAME = 'Gambia'  Or ADM0_NAME = 'Kenya'  Or ADM0_NAME = 'Lesotho'  Or ADM0_NAME 

= 'Madagascar'  Or ADM0_NAME = 'Malawi'  Or ADM0_NAME = 'Mali'  Or ADM0_NAME = 'Mozambique'  Or 

ADM0_NAME = 'Namibia'  Or ADM0_NAME = 'Nigeria'  Or ADM0_NAME = 'Rwanda'  Or ADM0_NAME = 'Senegal'  

Or ADM0_NAME = 'Seychelles'  Or ADM0_NAME = 'South Africa'  Or ADM0_NAME = 'Tanzania, United Republic 

of'  Or ADM0_NAME = 'Uganda'  Or ADM0_NAME = 'Zambia'  Or ADM0_NAME = 'Zimbabwe' 

 

## code for Eleusine coracana 

ADM0_NAME = 'Angola'  Or ADM0_NAME = 'Burkina Faso'  Or ADM0_NAME = 'Burundi'  Or ADM0_NAME = 

'Cameroon'  Or ADM0_NAME = 'ComOros'  Or ADM0_NAME = 'Ethiopia'  Or ADM0_NAME = 'Guinea-Bissau'  Or 

ADM0_NAME = 'Kenya'  Or ADM0_NAME = 'Madagascar'  Or ADM0_NAME = 'Malawi'  Or ADM0_NAME = 'Mozambique'  

Or ADM0_NAME = 'Nigeria'  Or ADM0_NAME = 'Rwanda'  Or ADM0_NAME = 'South Africa'  Or ADM0_NAME = 

'South Sudan'  Or ADM0_NAME = 'Tanzania, United Republic of'  Or ADM0_NAME = 'Uganda'  Or ADM0_NAME 

= 'Zambia'  Or ADM0_NAME = 'Zimbabwe' 

 

## code for Eleusine floccifolia 

ADM0_NAME = 'Eritrea'  Or ADM0_NAME = 'Ethiopia'  Or ADM0_NAME = 'Somalia' 

 

## code for Eleusine indica 

ADM0_NAME = 'Angola'  Or ADM0_NAME = 'Benin'  Or ADM0_NAME = 'Botswana'  Or ADM0_NAME = 'Burkina 

Faso'  Or ADM0_NAME = 'Burundi'  Or ADM0_NAME = 'Cape Verde'  Or ADM0_NAME = 'Cameroon'  Or ADM0_NAME 

= 'Central African Republic'  Or ADM0_NAME = 'Congo'  Or ADM0_NAME = 'Côte d''Ivoire'  Or ADM0_NAME 

= 'EquatOrial Guinea'  Or ADM0_NAME = 'Eritrea'  Or ADM0_NAME = 'Eswatini'  Or ADM0_NAME = 'Ethiopia'  

Or ADM0_NAME = 'Gabon'  Or ADM0_NAME = 'Ghana'  Or ADM0_NAME = 'Guinea'  Or ADM0_NAME = 'Guinea-

Bissau'  Or ADM0_NAME = 'Kenya'  Or ADM0_NAME = 'Liberia'  Or ADM0_NAME = 'Madagascar'  Or ADM0_NAME 

= 'Malawi'  Or ADM0_NAME = 'Mali'  Or ADM0_NAME = 'Mauritania'  Or ADM0_NAME = 'Mauritius'  Or 

ADM0_NAME = 'Mayotte'  Or ADM0_NAME = 'MOrocco'  Or ADM0_NAME = 'Mozambique'  Or ADM0_NAME = 

'Namibia'  Or ADM0_NAME = 'Nigeria'  Or ADM0_NAME = 'Rwanda'  Or ADM0_NAME = 'Senegal'  Or ADM0_NAME 

= 'Seychelles'  Or ADM0_NAME = 'Sierra Leone'  Or ADM0_NAME = 'South Africa'  Or ADM0_NAME = 'South 

Sudan'  Or ADM0_NAME = 'Tanzania, United Republic of'  Or ADM0_NAME = 'Togo'  Or ADM0_NAME = 

'Tunisia'  Or ADM0_NAME = 'Uganda'  Or ADM0_NAME = 'Zambia'  Or ADM0_NAME = 'Zimbabwe' 

 

## code for Eleusine intermedia 

ADM0_NAME = 'Ethiopia'  Or ADM0_NAME = 'Kenya'  Or ADM0_NAME = 'Somalia' 

 

## code for Eleusine jaegeri 

ADM0_NAME = 'Kenya'  Or ADM0_NAME = 'Tanzania, United Republic of'  Or ADM0_NAME = 'Uganda' 

 

## code for Eleusine kigeziensis 

ADM0_NAME = 'Burundi'  Or ADM0_NAME = 'Ethiopia'  Or ADM0_NAME = 'Rwanda'  Or ADM0_NAME = 'Uganda' 

 

## code for Eleusine multiflora 

ADM0_NAME = 'Ethiopia'  Or ADM0_NAME = 'Kenya'  Or ADM0_NAME = 'Lesotho'  Or ADM0_NAME = 'South 

Africa'  Or ADM0_NAME = 'Tanzania, United Republic of' 

 

## code for Eleusine tristachya 

ADM0_NAME = 'Algeria'  Or ADM0_NAME = 'South Africa'  


