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ABSTRACT 

 

Taste-and-odor episodes affect water quality in reservoirs throughout the world, and utilities 

including the City of Auburn Water Resources Department, Opelika Utilities, and Columbus 

Water Works have each identified having taste and odor issues in recent years and consider them 

high priority for resolution. These episodes are caused by high concentrations of odorous 

compounds, predominantly 2-methylisoborneal (MIB) and geosmin, in drinking water reservoirs. 

MIB and geosmin are volatile compounds that are produced by microorganisms, primarily 

cyanobacteria and actinobacteria, in natural water bodies. Though these compounds are not 

harmful, they produce musty odors in drinking water supplies that lead to distrust and complaints 

from consumers because humans are highly sensitive to these compounds. Both compounds are 

recalcitrant in traditional water treatment processes, thus activated carbon is typically used for 

advanced temporary treatment. The high cost of advanced treatment makes continuous treatment 

of raw water unreasonable for most facilities, leaving a short period between an episode and 

consumer complaints. To determine when these T&O episodes are most likely to occur, predictive 

models are needed for better water-quality management. We developed CART and multiple linear 

regression models for geosmin using R. One of the key advances of this work was the integration 

of geosmin synthase gene abundance which was determined by qPCR. Modeling of the data 

revealed the best model fits were built when the datasets had high (>30 ng/L) geosmin peaks shown 

with Auburn, whereas the current Opelika and Columbus datasets gave us limitations, display low-

moderate peaks and variability, having models with lower predictive power. The inclusion of the 

qPCR data proves to be most effective at predicting the high geosmin levels. Sequencing of the 

qPCR products revealed Anabaena and Planktothrix as likely producers. Another component of 

this work was the evaluation of PCR primers for the MIB synthase gene in cyanobacteria and 

actinobacteria. Specific and efficient primers are needed for accurate quantification of the MIB 

synthase gene which can be incorporated into models, similar to what was done for geosmin. In 

evaluating MIB primers, we discovered good efficiency for 4 primer sets and good specificity for 

one of them. Results from select samples sent for sequencing helped in discovering the primary 

MIB producers for reservoir in our region. 
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INTRODUCTION 

 

The purpose of this research is to develop models for the prediction of taste and odor outbreaks in 

drinking water reservoirs, caused by high concentrations of musty-odor compounds geosmin and 

2-methylisoborneal (MIB). Episodes of high geosmin and MIB have been a perennial problem for 

water utilities in Alabama and Georgia and are also an issue in countries globally (Devi et al., 

2021). These occurrences, though non-harmful, create excessive amounts of customer complaints 

and erode community trust in the water utilities, creating the need to address the issue.  Geosmin 

and MIB are both difficult to remove during traditional water treatment processes and require more 

advanced treatment techniques such as powdered activated carbon to better resolve the problem 

compounds. These more advanced treatment practices come with heightened costs for the drinking 

water utilities and the low human detection limit of 10 parts per trillion (ppt) requires these costly 

treatments to be used in a short period to prevent customer concerns. To allow the water utilities 

time to treat the water only when necessary, to be economically efficient, predictive modeling tools 

are necessary for the predictions of these taste and odor events. A lack of a clear universal 

relationship between geosmin and/or MIB production with environmental factors (Devi et al., 

2021) has made such predictive modeling efforts difficult. It was our goal to develop a predictive 

model for taste and odor episodes. This would allow the water utilities to respond with temporary 

treatment options or provide the community with an alternate water source, as they have done 

before. Our hypothesis was that by focusing on the organisms that synthesize the geosmin, rather 

than focusing on factors correlated with cyanobacterial blooms in general, better predictions would 

be made. We anticipated that this analysis and modeling framework could be more broadly applied 

for geosmin and MIB outbreaks in the Southeastern regional drinking water reservoirs. 

 

Predictive models have previously been made (Jüttner & Watson, 2007; Dzialowski, 2009), though 

many models tend to focus on factors correlated with algal blooms although only a small subset 

of algae actually produce MIB or geosmin (Jüttner & Watson, 2007; Suurnäki et al., 2015). Algal 

blooms tend to occur when warm and sunny weather is met with elevated nutrient levels in a 

waterbody. Efforts to use proxies for algae blooms, like chlorophyll-a, weather, and other water 

quality parameters, to predict these T&O events are only successful if the reservoir is dominated 

by a T&O producing algae (Dzialowski, 2009). When empirical models are developed in these 
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particular cases, the effectiveness could fade over time as the microbial population evolves or if 

the model is applied to a different water body. Rather than focusing on algae blooms, our focus 

was on the abundance of the compound synthase genes. Knowing that cyanobacteria and 

actinobacteria are the primary producers for these compounds, our focus was on their geosmin 

synthase and MIB synthase genes. The presence of these genes is a necessary state in order to 

experience a T&O episode. Thus, a high abundance of such genes, accompanied by other 

environmental factors could allow for better prediction of T&O episodes. Sequencing these 

synthase genes can also help utilities understand which specific organisms are contributing most 

to particular T&O episodes, providing new opportunities for reservoir management. 

 

1.1. Overall Objective 

The objective of this research was to develop Classification and Regression Tree (CART) and 

multiple linear regression models for predicting T&O episodes. These models include synthase 

gene abundance data for MIB and geosmin. Levels of MIB were low and sometimes undetectable 

in the reservoirs analyzed during the study period from March to October of 2020, causing us to 

focus our modeling efforts on geosmin model development. Our hypothesis was that by focusing 

on the organisms that synthesize the compounds, rather than predicting algal blooms in general, 

enhanced prediction tools would be developed. The expected outcome was that the analysis and 

modeling framework can be applied more broadly throughout the Southeastern regional drinking 

water reservoirs for other utilities’ use. We quantified water quality parameters (including geosmin 

and MIB levels) across three seasons in three drinking water reservoirs, quantified the abundance 

of geosmin gene synthase in water samples and generated predictive modeling tools using CART 

and multiple regression to predict the geosmin. Water samples were collected from three drinking 

water reservoirs in Auburn, AL (Ogletree), Opelika, AL (Saugahatchee), and Columbus, GA 

(Oliver). Three separate reservoirs were measured to increase data variability and better understand 

the comprehensiveness of the developed models. A secondary objective of this work was to 

evaluate qPCR primers targeting the MIB synthase gene. Developing primers targeting this gene 

has proven challenging (Devi et al., 2021). Studies using qPCR for T&O detection have 

demonstrated usefulness, though oftentimes primers have a limited capacity for detecting all 

cyanobacterial or actinobacterial species involved in T&O episodes, and some primers simply have 

poor efficiency or specificity (Devi et al., 2021). Validation of previously developed primer sets 
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in different geographical locations is helpful in their verification and development of standard 

protocols (Devi et al., 2021). Our aim was to identify primers with high specificity and efficiency 

that could be used to develop future models for MIB, similar to what we would develop for 

geosmin. 

 

This thesis is composed of three chapters, the first being a literature review, the second being our 

efforts for predictive modeling of geosmin in drinking water reservoirs, and the third chapter being 

an evaluation of primers targeting the MIB synthase gene. This study was performed over a 14-

month period, with the sampling taking place from March to October of 2020. There were 19 water 

quality parameters incorporated in the datasets in this study, including geosmin and MIB. Because 

MIB levels were very low in the three drinking water reservoirs throughout the study period, we 

obtained additional samples from fishponds and other sources to aid in the evaluation of the MIB 

synthase primers. 
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CHAPTER 1: LITERATURE REVIEW 

 

1. Background 

Taste-and-odor episodes effect water quality in drinking water reservoirs throughout the world, 

and regional utilities have reported having these issues arise in past years. These episodes are 

caused by high concentrations of odorous compounds, predominantly 2-methylisoborneal (MIB) 

and geosmin (Suurnäki et al., 2015), in drinking water reservoirs. These unpleasant tastes and 

odors in drinking water reservoirs, though not currently known to be harmful to human health, 

lead to consumer complaints (Giglio et al., 2010) and subsequent high cost of advanced treatment 

for the utilities due to the low human detection limit of around 1.3 ng/L for geosmin and 6.3 ng/L 

for MIB (Kehoe et al., 2015), though 10 ng/L is the accepted lower limit for utilities. In recent 

history, consumer complaints for regional drinking water utilities ranged from 20-60 complaints 

per day during taste and odor events. These utilities consider the resolve of these T&O episodes a 

very high priority for their customers, spending extra funds on management strategies to treat the 

reservoirs in response. These tastes and odors have caused users to instead purchase bottled water, 

mineral water, or otherwise processed water (Parinet et al., 2010), though these issues extend to 

affect other uses of tap water such as showering and cooking. Just in the US, an estimated $813 

million is spent annually by the consumers on bottled water to avoid the tastes and odors associated 

with these compounds (Kehoe et al., 2015). The regional utilities that have identified having these 

issues arise near the border of Alabama and Georgia in the USA include the City of Auburn Water 

Resources Department, Opelika Utilities, and Columbus Water Works, with Columbus having to 

outsource their water from a different Georgia utility when a massive outbreak occurred in the 

past. 

 

The two most common compounds associated with taste and odor episodes are geosmin and MIB, 

which are volatile musty-odor compounds produced by microorganisms in water bodies (Suurnäki 

et al., 2015). These compounds have been concerns globally, with research occurring in many 

countries including America, Canada, China, Korea, Europe, and Australia (Dzialowski et al., 

2009; Kehoe et al., 2015; Chen & Zhu, 2018; Chung et al., 2016; Suurnäki et al., 2015; Asquith et 

al., 2018) attempting to find resolutions to this issue. Geosmin and MIB are not easily removed 

during the conventional water treatment methods, and advanced treatment methods therefore must 
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be used, which again are costly. The low human detection and difficulty for removal during typical 

processes leaves little time for the drinking water utilities to remove geosmin and MIB below the 

level of 10 ppt. Being able to predict when these geosmin and MIB episodes might occur would 

provide a more viable option for time and cost efficiency for drinking water providers by allowing 

the utilities to initiate advanced water treatment practices before major customer complaints occur, 

rather than treating the water around-the-clock or having to outsource their water from surrounding 

cities. 

 

2. Most Common Taste and Odor Compounds: Geosmin and MIB 

Geosmin and MIB are both odorous metabolites that cause musty taste and odor problems in water 

bodies worldwide (Suurnäki et al., 2015). They are secondary metabolites (small organic 

molecules produced by organisms, but are not essential for their growth, development, or 

reproduction), and are the main causes for T&O episodes in drinking water reservoirs. 

 

There has been considerable research on these compounds since their isolation and identification 

from actinomycetes in the 1960s (Gerber & Lechevalier, 1965; Medsker et al., 1969). Geosmin (-

4,8a-dimethyloctahydronaphthalen-4a-ol) has the molecular formula of C12H22O and MIB (-

1,2,7,7-tetramethylbicyclo [2.2.1] heptan-2-ol) has the molecular formula C11H20O (NCBI, 2021). 

Geosmin is an irregular sesquiterpene which has lost an isopropyl group and MIB is a methylated 

monoterpene (Fig. 1) (Jüttner & Watson, 2007), and both exist as (+) and (-) enantiomers, though 

the (-) enantiomers which are naturally produced are the cause for odor outbreaks because it is 10 

times more potent than the (+) enantiomers (Jüttner & Watson, 2007). The genes identified for the 

biosynthesis of the off-flavor compounds have been found in bacterial genomes and the 

biosynthetic pathway reported on in detail for MIB (Komatsu et al., 2007) and geosmin (Giglio et 

al., 2011). 
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Figure 1. Structures of microbial volatile terpenoid metabolite: (a) geosmin and (b) MIB (image 

adapted from Watson, 2003). 

 

Geosmin and MIB in freshwater systems are produced by a subset of benthic and pelagic 

microorganisms in water bodies and are also known to be produced by terrestrial microorganisms, 

like actinobacteria (Jüttner & Watson, 2007). Recognizing the sources of these compounds is 

essential to our ability to predict and treat these outbreaks.  

 

2.1. Geosmin and MIB Producers 

Geosmin and MIB are produced primarily by prokaryotes including cyanobacteria, actinobacteria, 

proteobacteria, myxobacteria, and are also produced by some eukaryotes including some fungi, 

liverworts, and amoeba (Jüttner & Watson, 2007). There are often misperceptions that these 

compounds are synthesized by “algae” which is a generic term that includes both eukaryotic taxa 

and cyanobacteria (“blue-green algae”) together (Watson et al., 2008), though no green-algae have 

been cited as geosmin/MIB producers. Green-algae is not known to produce these T&O 

compounds. Pelagic and benthic cyanobacteria are considered the primary producers of these T&O 

compounds in freshwater systems (Asquith et al., 2018), with a total of 132 strains from 21 genera 

having been observed to produce geosmin, and 72 cyanobacterial strains from 13 genera known to 

produce MIB (Devi et al., 2021). However, only 58 sequences associated with geosmin synthase, 

and 28 sequences associated with MIB synthase have been assembled in the NCBI database. 

Known cyanobacterial taxa producing geosmin and MIB are listed in Tables 1 and 2. The primary 
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actinobacteria producer of these compounds is thought to be Streptomycetes (Asquith et al., 2013, 

Asquith et al., 2018) due to it being the first producer that was isolated and identified. However, it 

is now known that Nocardia and Micromonospora are also producers (Otten et al., 2016; 

Lindholm-Lehto & Vielma, 2018). 

 

Table 1. List of reported cyanobacterial producers (genus) of geosmin (Geo) and MIB 

compounds (adapted from supplemental data from Devi et al., 2021). 

Cyanobacteria genera Geo MIB 

Anabaena + + 

Aphanizomenon +  
Calothrix +  
Coelosphaerium +  
Cylindrospermum +  
Fischerella +  
Geitlerinema +  
Gloeotrichia +  
Hyella + + 

Leptolyngbya + + 

Lyngbya + + 

Microcoleus + + 

Neowollea +  
Nodosilinea +  
Nostoc +  
Oscillatoria + + 

Phormidium + + 

Planktothricoides  + 

Planktothrix + + 

Pseudanabaena + + 

Schizothrix +  
Scytonema +  
Spirulina  + 

Symploca +  
Synechococcus + + 

Tychonema +  
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Table 2. List of reported actinobacterial and other non-cyanobacterial producers of geosmin 

(Geo) and MIB (with data from Juttner & Watson, 2007; Asquith et al., 2013). 

Actinobacteria 

genera Geo MIB 

Actinomadura  + 

Aspergillus + + 

Microbispora +  
Micromonospora  + 

Nocardia + + 

Penicillium + + 

Streptomyces + + 

Symphyogyna +  
Vannella +  

 

The genes and biosynthetic pathway for geosmin and MIB synthase in some Streptomycetes and 

myxobacteria are found in a simplified biosynthetic scheme in Figure 2 where there are two main 

pathways for synthesis, with the 2-methylerythritol-4-phosphate (MEP) pathway (also called the 

non-mevalonate pathway) suggested for being the major route for many bacterial (cyanobacterial) 

groups (Jüttner & Watson, 2007; Giglio et al., 2011; Komatsu et al., 2007). Depending on growth 

stages, the Mevalonate (MVA) pathway is also suggested for being the chosen pathway by some 

organisms (typically Streptomyces) (Jüttner & Watson, 2007), though both pathways can lead to 

the production of geosmin and/or MIB. For Figure 2, after IPP and DMAPP have been produced 

by Streptomyces, they can generate GPP (geranyl diphosphate) which generates MIB using MIB 

synthase, or farnesyl diphosphate, then germacradienol (geosmin synthase) to produce geosmin 

(Jüttner & Watson, 2007; Komatsu et al., 2007) and the cyanobacteria Nostoc punctiform PCC 

73102 (Giglio et al., 2008). The dynamics of production vary among species and strains and the 

product also varies by amount (Watson, 2003), which makes monitoring and prediction more 

difficult. The biological and ecological function of geosmin and MIB have not been explicitly 

identified through research (Tyc et al., 2017). Asquith et al (2013) addressed that the production 

in Streptomyces is generally the defense strategy for its survival of the next generation of 

germinating spores, suggesting the geosmin and MIB could be allelogens acting against one or 

many species, or that it may act as an antibiotic by reducing parasitic bacteria or fungi that harm 

the algae around it. However, the levels would need to be > 0.45 mg/L and >480 ng/L for geosmin 
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and MIB, respectively, to be effective. Antifungal properties of geosmin and MIB have also been 

reported being produced by Streptomyces alboflavus (Wang et al., 2013). It is interesting then that 

many fungi also produce these compounds. 

 

Figure 2. Simplified biosynthetic scheme for the formation of MIB and geosmin in some 

streptomycetes and myxobacteria (Jüttner & Watson, 2007; Giglio et al., 2011; Komatsu et al., 

2007). (Pyr: Pyruvate; G3P: glyceraldehyde-3-phosphate; DXP: 1-Deoxy-D-xylulose-5-

phosphate; MEP: 2-C-methyl-D-erythritol-4-phosphate; HMG-CoA: 3-Hydroxy-3-

methylglutaryl-CoA; IPP: Isopentenyl diphosphate; DMAPP: Dimethylallyl diphosphate) 

 

The genes associated with the synthesis of geosmin and MIB have also been elucidated. Devi et al 

(2021) reports that the main target for both cyanobacteria and actinobacteria (actinomycetes) for 

geosmin synthase is the geo gene and the MIB synthase (cyclase) gene is the mic gene, also called 

mibC.  
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The geosmin and MIB in water bodies are developed and released through metabolism along with 

the biodegradation of cyanobacteria and their metabolites (Kim et al., 2014). The blooming 

cyanobacteria can produce extracellular metabolites during their decay process (Xuwei et al., 

2019), and most of the MIB and geosmin are released during their death and decay (Srinivasan & 

Sorial, 2011). Degradation of dissolved geosmin includes photolysis (photo-oxidation), biolysis 

(biodegradation), volatilization, and adsorption, whereas degradation of cell-bound (particulate) 

geosmin includes cell lysis or damage which then becomes dissolved geosmin (Chung et al., 2016). 

It has been observed that bacterial biodegradation was more important for MIB loss than 

volatilization, photolysis, or adsorption (biosorption) and some soil and aquatic bacteria are 

capable of that biodegradation though little is known about MIB and geosmin degradation in water 

supply reservoirs (Westerhoff et al., 2005). Through batch experimentation in a lab for both MIB 

and geosmin degradation, Westerhoff et al. (2005) found bacterial biodegradation rates ranging 

from 0.5-1.0 ng/L-day (~30 ng/L-month), which was comparable to the total loss rate of 0.23-1.7 

ng/L-day. Using sand filters and bioreactors, rates of biodegradation have also been found to be 

0.10-0.58 ng/L-day (Ho et al., 2007), comparable to the study before. Due to volatilization, the 

half-life of geosmin and MIB was found (using each compound’s Henry’s constant) to be around 

1 year, which is too long to be important to total degradation, and biosorption removed both 

compounds at a negligible rate as well (Westerhoff et al., 2005). Natural lake bacteria 

(heterotrophic aerobes) could be stimulated by higher biomass densities and potentially increase 

the MIB and geosmin biodegradation rate, observed as up to 5-50 ng/L-day removal, though it was 

not specified how much of that removal was due directly to bacterial biodegradation (Means & 

McGuire, 1986). Pseudomonas, Bacillus, and Enterobacter sp. have been found to be able to 

deplete MIB (Izaguirre et al., 1988; Tanaka et al., 1996), and Sphingopyxis alaskensis, 

Novosphingobium stygiae and Pseudomonas veronii (only when all three are present) to deplete 

geosmin (Hoefel et al., 2006). Alphaproteobacterium, Sphingomonas, Acidobacteriaceae, 

Methylobacterium, and Oxalobacteraceae have also been identified as capable of geosmin 

biodegradation (Ho et al., 2007; Xue et al., 2011). There is no comprehensive list of bacteria 

responsible for either geosmin or MIB biodegradation, though research continues to discover more 

strains responsible. Photolysis is also a possibility for the degradation of geosmin and MIB, though 

the average 254 nm radiation is ineffective in removing these compounds from water, thus 
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additional techniques such as oxidation must be used for effective degradation (Kutschera et al., 

2009). Degradation can also occur through grazing of zooplankton, such as the dominant 

freshwater planktonic herbivore Daphnia. With some copepods exhibiting high food selectivity 

and sensory-based feeding, it has been suggested that odor moderates the food selection of some 

small herbivores, though this has not been characterized, and the robust Daphnia do not exhibit 

this sensitivity to volatiles (Watson et al., 2003). Grazing of the zooplankton almost completely 

transferred particulate geosmin into the dissolved form (Jüttner & Watson, 2007). This transition 

into a dissolved form would then, though, make it easier for bacterial biodegradation. 

 

Because cyanobacteria can produce geosmin and MIB as well as cyanotoxins, there is a little 

overlap which is species specific though there is no robust relationship between toxins and T&O 

compounds in source waters (Watson et al., 2008). The utilities that we were paired with for this 

research have not reported cyanotoxin abundances, and otherwise low incidence of human 

poisoning by cyanotoxins might be related to the avoidance of unfiltered drinking water when 

significant odor is perceived. Major producers of cyanotoxins are Microcystis, which is not known 

to produce either geosmin or MIB (Watson, 2003), and Clyindrospermopsis (Chiu et al., 2017), 

which can produce geosmin (Devi et al., 2021). There are species of Anabaena which can produce 

geosmin along with saxitoxins, microcystins, and anatoxins, as well as Phormidium and 

Planktothrix which can produce geosmin and MIB, along with lipopolysaccharide and 

microcystins (Watson, 2003). Aphanizomenon and Oscillatoria have also been accounted for being 

important cyanobacterial species which can produce toxins and geosmin/MIB (Kim et al., 2020), 

though it is species specific. Watson (2003) provides a table which lists all cyanobacterial species 

which can produce volatile organic compounds, which toxins they can also produce, and their 

typical habitat.  

 

Knowing this genetic information allows for the development of further molecular tools for the 

monitoring and prediction of T&O outbreaks. However, there is significant variability in the 

synthase gene sequences among taxa. While this can be helpful for organism identification, it 

makes it challenging to develop universal primers that target these genes across a wide range of 

taxa. 
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2.2. Conditions that Promote Producers 

These off-flavor compounds are often found in raw water sources, though the conditions that 

promote their production by organisms is varied by location and the dominant organisms in each 

water body. Aside from the varied locations of water sources, the differences in taste and odor 

production are likely due to different microbial compositions of the organismal community, which 

is driven by the changing environmental conditions, where the T&O concentrations could rapidly 

increase if a particular or dominating species or genotype becomes favored by environmental 

conditions (Peter et al., 2009). Peter et al (2009) found that the main producers of geosmin in a 

lake they sampled had only very small numbers present after 10 years, and some species had 

disappeared completely. The quality of the water and the local environmental conditions play a 

large role in the proliferation of different taste and odor outbreaks, including those outside of 

geosmin and MIB. For a drinking water utility, the most widely available water quality parameters 

are the ones that are easily and routinely measured (e.g. temperature, pH, DO, conductivity, etc.) 

(Parinet et al., 2013). It is also important to keep in mind that it is difficult to detect relationship 

between the biomass of the T&O producers and the T&O compound if it is not measured as both 

the cell-bound, or particulate, and dissolved, or extracellular, fractions (Jüttner & Watson, 2007). 

This is because particulate geosmin can build up in the cyanobacterial cells and be released as 

dissolved geosmin depending on the environmental conditions as they biodegrade or are eaten by 

zooplankton, like Daphnia (Dzialowski et al., 2009; Jüttner & Watson, 2007). 

 

Climate change is a factor that can affect environmental conditions in favor of cyanobacterial 

blooms, like eutrophication, increasing water temperatures, increasing severe storms, and shorter 

winter seasons (Huisman et al., 2018; Srinivasan & Sorial, 2011) that could lead to elevated T&O 

issues in drinking water resources. The effects of environmental factors on cyanobacterial 

production of odorous compounds have been explored and found that warm, nutrient-rich waters 

are prone to the cyanobacterial blooms that can be accompanied by T&O episodes, though the 

linkage between nutrients and the T&O compounds are still not understood clearly (Jüttner & 

Watson, 2007). Some studies have relied on the abundance of cyanobacteria as a predictor of T&O 

compound concentrations, yet Dzialowski et al. (2009) states that the measurements of 

cyanobacterial biovolume were not consistent predictors of the dissolved geosmin detected in their 

study, and that their efforts even found a negative relationship between the variables. This contrasts 
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with the finding that geosmin has a positive relationship to the cyanobacterial biovolume (Jüttner 

& Watson, 2007). This underscores that the predominant T&O producers vary significantly across 

systems. It has been found that Anabaena sp. FACHB-1384, a major MIB producer, is sensitive to 

low temperature (<20° C), and that Anabaena sp. Chusori and Anabaena sp. NIER (both geosmin 

producers) are sensitive to high light intensity above 100 µmol/m2/sec but are not sensitive to low 

temperatures (Oh et al., 2017). Another species, Oscillatoria limosa was found to have maximum 

growth at 25 C (Cai et al., 2017). Thus, developing a model with universal predictive power is 

very difficult. 

 

Chlorophyll-a has been shown to have r = 0.47 correlation with particulate MIB levels detected in 

a Lake Taihu, China, possibly due to the high concentrations of chlorophyll-a providing 

biodegrading cellular material and carbon source that is useful for the growth of odor-producing 

organisms (Xuwei et al, 2019). Research on the correlation of dissolved oxygen and odorants is 

scarce (Xuwei et al, 2019), with Jüttner (1984) pointing to lower MIB concentrations with 

anaerobic environments for shallow eutrophic lakes. 

 

Geosmin concentrations (linearly proportional to cell density) were also found to increase under 

high nitrate concentrations, and that phosphorus stress decreased the geosmin production in 

Anabaena sp. NIER (Oh et al., 2017). This differed from MIB productivity which only had reduced 

productivity in Planktothrix sp. FACHB-1374 under phosphorus stress (Oh et al., 2017). It was 

concluded that high light intensity and P-stress contribute to lower geosmin levels and lower 

temperature contribute to lower MIB levels, but they state that no universal optimal conditions for 

cyanobacterial odor compound production have been found likely due to different strains having 

their own specificities (Oh et al., 2017; Dzialowski et al., 2009). Researchers at Chaohu Lake in 

China found a -0.709 (P<0.05) Pearson correlation between TP and geosmin levels, but no 

significant correlation for MIB (Zhang et al., 2019). Treatments in another experiment revealed 

that the highest MIB concentrations were produced when low TN:TP ratios were supplied, though 

it was stated that it is still hard to determine whether the specific nutrient levels (TN or TP) or the 

individual TN:TP ratio effected the experiment greater (Olsen et al., 2016). There is little other 

evidence supporting that TN, TP, or TN/TP ratios are important in cyanobacterial dominance or 

whether they make a difference in concentrations of MIB, though their odor-producing potential 
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and concentrations could be affected by cyanobacterial species and volume (Bai et al., 2017). An 

aerobic and organic-rich environment is known to stimulate the growth of actinomycetes and the 

subsequent production of geosmin and MIB in the system (Guttman & Rijn, 2008).  

 

Another study in China found that geosmin was correlated to dissolved oxygen, ammonia, and 

nitrate with Pearson correlation coefficients of -0.798 (P<0.05), 0.935 (P<0.01), and 0.744 

(P<0.05), respectively in their Songhua Lake (Zhang et al., 2019), and no significant variables 

correlated with MIB. Although there are studies finding correlations between water quality 

parameters and the T&O compounds, there is no single factor that causes these episodes due to the 

dynamics of the aquatic systems. 

 

3. T&O Mitigation and Treatment Methods 

Before treating these T&O outbreaks, it is essential to be able to detect them in water bodies and 

the main approach for direct detection is solid-phase micro-extraction coupled with gas 

chromatography/mass spectrometry (SPME GC/MS), which can sensitively and accurately 

measure the compounds at levels as low as parts per trillion (ppt) (Suurnäki et al., 2015; Wang et 

al., 2016; Devi et al., 2021). GC/MS can be coupled with other advanced methods that improve 

the sensitivity of detection, like closed-loop stripping analysis (CLSA), resin adsorption (RA), 

solid-phase extraction (SPE), stir-bar sorptive extraction (SBSE), liquid phase microextraction 

(LPME), purge and trap (P&T), static headspace (SH), and dynamic headspace (DH) (Devi et al., 

2021). The SPME pre-conditioning method is simple, easy, and fast making it the most used 

standard method for geosmin and MIB in water samples. With the low detection thresholds of 

these compounds for humans being so low (<10 ng/L) it is then necessary for the drinking water 

utilities to control and treat. 

 

Because the compounds are recalcitrant in traditional water treatment processes like coagulation, 

sedimentation, and filtration (Srinivasan & Sorial, 2011; Jüttner & Watson, 2007), further 

treatments must be employed to stop their persistence in open waters. Oxidation with the chemicals 

chlorine (Cl2), chlorine dioxide (ClO2), and potassium permanganate (KMnO4) are not found to be 

effective for the compound removal (Srinivasan & Sorial, 2011), and though chlorine can mask 

the musty odor it may also produce altered unwanted odors and chlorinated biproducts. Ozonation 
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is a process that has shown great efficiency at destroying T&O compounds, but it has downfalls in 

that it can form carcinogenic bromate (BrO3) during the ozonation depending on the pH, 

temperature, ozone dosage, and bromide ion concentration (Liato & Aider, 2017). To improve the 

use of ozonation, other processes can be used in combination, such as ultraviolet (UV), hydrogen 

peroxide (H2O2), or (manganese) Mn2+ treatments. More turbid waters can use ultrasonic 

irradiation (sonication) for the proposed decomposition of odorous compounds, and UV treatment 

alone can also be used but is only effective at high doses (>254 nm) though it can form unwanted 

nitrite products (Liato & Aider, 2017; Srinivasan & Sorial, 2011). A relatively newly (2011) 

researched method is electrochemical treatment, which has been found to have high efficacy at 

destroying T&O molecules along with being simple and robust in structure and operation at a low 

cost (Liato & Aider, 2017). Biodegradation using biofilters has also been used to remove geosmin 

and MIB from drinking waters but have issues in drinking water reservoirs with degrading the 

micropollutants, though pairing it with ozonation can improve usefulness (Nerenberg et al., 2000). 

One of the most effective methods for odor compound removal is through adsorption by 

powdered/particulate activated carbon (PAC), which is successful at reducing concentrations, 

though it is less successful for geosmin and MIB than other T&O compounds and the presence of 

other chemical oxidants (chlorine or chloramines) reduces the effectiveness (Liato & Aider, 2017; 

Srinivasan & Sorial, 2011). To increase efficacy, membrane systems have been studied in 

combination of both coarse and fine PAC (Kim et al., 2014). 

 

4. Predictive Models for T&O 

The removal of geosmin and MIB can have high costs and constant PAC dosing becomes 

impractical for water utilities, therefore predictive tools are needed to help foresee when these 

T&O episodes are most likely to occur. Multiple types of modeling have been used in previous 

research in efforts to predict T&O outbreaks, such as empirical, hydrologic, numeric, machine 

learning, and classification and regression modeling. 

 

Empirical modeling can be used to relate water quality parameters with measured geosmin 

concentrations. Dzialowski et al (2009) developed two regression models to predict dissolved 

geosmin levels in Kansas reservoirs. The first was a best-subsets regression, providing two “n”-

variable models with the highest coefficient of determination (r2) values, and the second was a 
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stepwise regression method which added a candidate explanatory variable to the regression model 

one at a time (P = 0.10 to enter) if they increased the model’s predictive power significantly 

(Dzialowski et al., 2009). This was done until they got the highest coefficient of multiple 

determination (R2), providing a measure of how much of the geosmin level variation was explained 

by predictor variables in the models. Their one and two-variable cross-sectional models developed 

had a 24-35% explanation in geosmin level variation for all five of their reservoir locations 

combined. For their five reservoir sampling locations in the Kansas reservoir, their highest R2 was 

0.94, whereas one of their locations was not able to develop any significant regression model. They 

found significant relationships in separately developed equations for geosmin with Secchi Disk 

depth, dissolved PO4-P, dissolved NO3-N, Anabaena biovolume, chlorophyll-a, total algal 

biovolume, total phosphorus, total cyanobacterial biovolume, and dissolved oxygen (Dzialowski 

et al., 2009). Favorably, they only included variables that are easy and inexpensive, and likely 

routine, for the water utilities to collect data on. The models they developed only used samples 

that exhibited geosmin levels of 5 ng/L or higher due to detection limits. They concluded that they 

were not able to identify any consistent spatial patterns or any positive relation to cyanobacterial 

biovolume for their reservoirs (Dzialowski et al., 2009). They also did not use varying depths for 

their sampling depths, potentially hindering their ability to account for all geosmin or 

cyanobacteria. Previous research on similar reservoirs in Kansas found similar and contrasting 

variables to be significant, such as turbidity and specific conductance (Christensen et al., 2006), 

chlorophyll-a (Smith et al., 2002), Secchi Disk depth, specific conductance, and turbidity (Mau et 

al., 2004), and total phosphorus, chemical oxygen demand, and dissolved oxygen (Suguira et al., 

2004). Temperature, velocity, and phosphorus have also been linked in a simple binary model to 

the occurrence and prediction of cyanobacteria (Kim et al., 2020), though not all cyanobacteria are 

linked to geosmin and MIB production, therefore not being useful. A negative of empirical 

modeling is that, like the above reviewed research displays, the models for the individual reservoirs 

have the best predictive power because the dissolved geosmin levels are largely based on local 

environmental factors (Dzialowski et al., 2009) and are useful only if the water body is dominated 

by one major producer of T&O compounds. Linear models rely on correlation analysis, which 

relies on independency of variables and therefore not robust because odor production relies on 

multiple variables. 
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A comparison of the use of multi-linear regression (MLR), principal component analysis 

regression (PCA), and multi-layer perceptron (MLP) found that among them the simple multi-

linear regression had reasonable predictive capabilities (R2 = 0.657, P<0.001), but the use of PCA 

did not lead to better model performance (Parinet et al., 2013). Multiple regression could be 

realistically useful for utilities to use, though the parameters described in the Canadian research 

are not routinely monitored in our regional drinking water reservoirs, like phaeophytin, sum of 

algae, and redox potential.  

 

Aquatic systems are dynamic, so the models for predictions of odorous compounds have also been 

developed to be dynamic. Empirical Dynamic Modeling (EDM) is nonparametric and is a robust 

method that can be used in R. Through EDM on a reservoir in Japan (Wang et al., 2019), it was 

found that Phormidium spp. (a cyanobacteria) was the most important cause and predictor of MIB 

production. A better indication for MIB production in this type of modeling would be of MIB-

producing genes as a better index than cyanobacterial abundance itself (Wang et al., 2019) to 

improve EDM. Another type of predictive modeling is hydrodynamic modeling, which uses inflow 

and outflow, production of geosmin by metabolism of cyanobacteria (Anabaena), and degradation 

and decay (Chung et al., 2016). A particular model developed in China, a 2D hydrodynamic and 

water quality model called CE-QUAL-W2, involved the physical and biological processes of 

“total” geosmin, which left out the long-term transformation processes of particulate geosmin. 

They state that their model reasonably predicted outbreaks for their reservoir, though their Root 

Mean Square Error (RMSE) was 69.14 and their Relative Error (RE) was 78.22% (Chung et al., 

2016). To build an accurate hydrodynamic model better incorporation of the sources of the T&O 

compounds and long-term degradation need to be implemented, which are difficult to accurately 

measure, as well as changing from species and location for the waterbody.  

 

Few numerical models have been developed to directly simulate and predict the generation of MIB 

in freshwater, though another hydrodynamic simulation was developed in China by Chen and Zhu 

(2018) using an adapted ECOMSED model for their Qingcaosha, Shanghai Reservoir. An 

ecological model was developed with RCA (Row Column Advanced), an ecological systems 

operating program frequently used in water quality modeling. The model integrated nutrients and 

cyanobacterial species, which successfully simulated MIB levels in their reservoir, though with an 
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average RE% of 50.56, which are acceptable to describe the variations (Chen & Zhu, 2018). Their 

highest MIB level captured was 10,000 ng/L (10 mg/m3), which the model simulated, though not 

at the correct concentration (Chen & Zhu, 2018). 

 

With odor production being influenced by multiple variables, machine learning has become more 

widely used for prediction of odorous compounds. Using physiochemical water quality data from 

a reservoir in Kansas, twelve linear and non-linear regression modeling techniques were compared 

by Harris and Graham (2017). They concluded that random forest (RF), support vector machine 

(SVM), boosted tree (BT), and Cubist modeling were most predictive out of the 12 models for 

geosmin concentrations, along with cyanobacterial abundance, and microcystin levels, with the 

Cubist modeling being able to predict the geosmin maximum concentrations (Harris & Graham, 

2017). This is a helpful technique because the reservoir’s management pertains mostly to those 

large concentrations. Cubist modeling is a popular regression method in R, which has results of 

low RMSE (Yang et al., 2017; Harris & Graham, 2017) and are made by creating a set of rules 

that split data at terminal nodes, each using a linear equation to predict the response variable but 

is best used for predicting maxima metabolite levels. Harris and Graham’s study used one-way 

ANOVA (Analysis of Variance) to compare variances within their groups of data, which was 

important for their large-scale environmental study. Their random forest model performed best 

with geosmin levels >20 ng/L, though the Cubist model displayed a more robust fit for the same 

geosmin threshold. The Cubist model has potential for improving regression modeling efforts for 

metabolite maxima, it has not been widely used or proven (Harris & Graham, 2017) to be useful 

for ordinary geosmin or MIB level predictions. Random forest and SVM models are machine 

learning algorithms that take multiple variables into consideration to create nonlinear models, but 

are complicated for interpretation (Wang et al., 2019) and would not be easy to integrate into a 

water utility’s routine management. 

 

A Canadian study (Kehoe et al., 2015) used linear regression and random forest modeling in 

comparison for forecast modeling of T&O episodes based on a 24-year time series of data. This 

team was able to develop forecasting random forest models of TON using chlorophyll-a, turbidity, 

TP, temperature, and odor producing algal taxa with 0–26-week lag-times. TON is the Threshold 

Odor Number which represents the persistence of geosmin, MIB, and other odors. Their highest 
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performing random forest model (R2 = 0.71) was able to forecast 12 weeks in advance with a 93% 

true positive rate and 0% false positive rate, with the taxonomic data being the most important in 

the model (Kehoe et al., 2015). The ability to use this type of modeling on just geosmin and/or 

MIB would be harder than simply TON due to a lack of long-term data for calibration and 

validation and would be difficult for utilities to implement. 

 

Because aquatic ecosystems are nonlinear systems with chemical, biological, and physical 

variables in constant interactions with temporal and spatial variations, nonlinear tools are a 

necessity for odor predictions. Classification and Regression Tree (CART) modeling is another 

form of nonlinear modeling in R using the ‘rpart’ package and is one of the most well-known 

decision-tree learning algorithms in literature (Yang et al., 2017). CART uses a recursive binary 

splitting process on a dataset by identifying an input variable and a breakpoint and partitioning the 

samples into two child-nodes (Yang et al., 2017). Split-nodes in the trees are made with the 

expected sum variances for two resulting nodes to be minimized (squared residuals minimization 

algorithm or Gini index) (Choubin et al., 2017). The tree is then pruned to optimize the prediction 

accuracy and reducing overfitting by minimizing the number of branches and can then be analyzed 

through performance metrics. In past research, CART has been used in determining the quality of 

water in a reservoir (Chou et al., 2018) and has been shown to best predict suspended sediment 

loading (R2 ranging from 0.53 to 0.74) with “very good” performance (Choubin et al., 2017). It 

has shown to be better at predictions than support vector machines (SVM) and artificial neural 

networks (ANN) (Choubin et al., 2017). CART is computationally fast and is robust to outliers 

and although no previous research has been done on predictions of taste and odor compounds in 

water bodies using CART, literature proves that where hydrological data are available CART 

modeling can be useful in developing easy to read visual decision trees for predicting a categorical 

variable. To date, CART modeling has not been used for the prediction of T&O levels using 

genetic data. 

 

5. qPCR and Primer Production 

Quantitative Polymerase Chain Reaction (qPCR) has proven to be a promising tool for the 

detection of geosmin and MIB events (Devi et al., 2021; Gaget et al., 2020; Suurnäki et al., 2015; 
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Wang et al., 2016; Tsao et al., 2014) by focusing on the gene encoding the geosmin or MIB 

synthesis. To better improve modeling efforts, rather than focusing on cyanobacterial abundance 

itself, enhanced indicators for episodes are the T&O producing genes (Wang et al., 2019). qPCR 

has the ability to quantify the number of copies of a particular strand of DNA (gene) in a sample 

using specific primer tools. SYBR green qPCR uses a fluorescent dye which binds to the amplicon 

(DNA fragment being amplified), which changes the fluorescent pattern, which allows the qPCR 

machine to detect how much DNA is in the sample after each cycle of amplification (MilliPore, 

n.d.). A primer is a tool that is used to target the specific gene sequence in the DNA of an organism, 

such as the conserved gene regions geo (geosmin synthase enzyme) or mic (MIB synthase 

enzyme). There are existing primer tools that have been developed (Suurnäki et al., 2015; Gaget 

et al., 2020; Wang et al., 2016) that have accurately developed PCR protocols for the detection of 

geosmin and MIB synthase in water samples.  

A high-quality primer is of importance, where a low primer concentration decreases the 

accumulation of primer-dimer formation, which is critical for SYBR green use in qPCR (MilliPore, 

n.d.). Efficiency and specificity are important factors in evaluating primer sets for qPCR use. 

Efficiency is determined by preparing a dilution series for each primer set, and the efficiency will 

be 100% if the number of molecules of the target gene sequence double during each cycle of 

amplification. Specific amplification of the intended target gene requires that primers don’t match 

other target sequences that would allow for unwanted amplification, and software tools such as 

BLAST or Primer-BLAST can aid in the complex design of primers (Ye et al., 2012). Existing 

primer tools for geosmin and MIB have been developed but many have issues with non-specificity 

or exclusion of important organisms.  

As part of the research reported in this thesis, evaluation of primers targeting the MIB synthase 

gene was carried out. Using Primer-BLAST, Suurnäki et al. (2015) developed a primer set, 

MIB3324F/4050R, that was designed to amplify the MIB synthase gene based on Oscillatoria, 

Planktotricoides, and Pseudanabaena species and had specific and efficient results. In developing 

a primer that targets the mic gene in Pseudanabaena, Planktotrhricoides, and Leptolyngbya, Wang 

et al. (2016) developed MIB-Rf/Rr and found no non-specific amplification and a wide coverage 

for MIB-producing cyanobacterial species for the first time, along with developing a Streptomyces 

spp. specific MIB primer, Str-Rf/Rr. Gaget et al. (2020) was able to develop a primer set, MIB-
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MS-F1/R1, based on the alignment of Castaic Pseudanabaena limnetica (HQ630883; California, 

USA), NIVA-CYA111 Pseudanabaena sp. (HQ630887; Japan) and LBD305b Oscillatoria limosa 

(HQ630885; South Korea) and conclude that it worked effectively.  

These primer developments are great advances on developing efficient and specific primers in 

their sampling systems and help in proving the usefulness and necessity of qPCR in the detection 

of synthase genes for T&O outbreak predictions rather than cyanobacterial and actinobacterial 

abundance alone. Variations in sampling, DNA extraction, and quantification errors, species 

variation in water bodies, and many primer sets having limited capacity to detect a range of species, 

are all difficulties behind the use of qPCR (Devi et al., 2021), and therefore the evaluation of these 

primer sets on varied water bodies is necessary for improvement. 
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CHAPTER 2: GEOSMIN MODELING 

 

1. Introduction 

Geosmin is a naturally occurring taste and odor compound that is produced by bacteria and 

released into drinking water reservoirs, causing musty flavors. In aquatic systems, geosmin 

production has been primarily attributed to freshwater cyanobacteria and actinobacteria. This 

compound is an issue because it can be detected at such low levels, as low as 10 ng/L (Devi et al., 

2021). It is a stable compound that is not easily oxidized, and requires advanced treatment methods, 

such as sorption to activated carbon, ozone/GAC, ozone/UV, hydrogen peroxide/UV and 

membrane water treatment processes (Kim et al., 2014). The utilities involved in this research 

project use activated carbon in order to minimize consumer complaints, however, this approach is 

expensive. The other alternative would be to remove the issue at the source, by being able to detect 

which organisms are producing T&O compounds and developing a reservoir management strategy 

to minimize the growth of such organisms. Such an approach may not work because water utilities 

often have limited control over influent into their drinking water reservoirs. To treat the water 

quickly and efficiently, it is helpful to be able to predict the geosmin episodes and treat the T&O 

event with temporary advanced water treatment, such as with activated carbon. Such an effective 

predictive tool is not currently available.  

 

The cause for geosmin production by organisms is largely unknown, though it is noted that 

geosmin production might act as a possible chemical defense for lichen (Suurnäkki et al., 2015). 

It has also been linked to functioning as a quorum sensing signal molecule, allelogen, and 

competitive-organism inhibitors (Zaitlin and Watson, 2006). The geosmin production cause being 

highly unclear slightly hinders our predictive capabilities. Also, with no clear/universal 

relationships between geosmin levels and easily measured water quality parameters (Watson and 

Ridal, 2004; Zaitlin and Watson, 2006), more sophisticated predictive tools and models are needed.  

Empirical regression models have been developed, and that of Dzialowski et al. (2009) was able 

to predict T&O episodes in multiple Kansas reservoirs, only some with reasonable predictive 

power. The downside to their approach of using cyanobacterial correlated factors is that their 

model is not able to be transferred geographically. Kehoe et al. (2015) was able to develop a 

“random forest” model, which is a machine learning algorithm, using a long-term dataset. They 
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found that cyanobacterial counts of likely producers of T&O compounds was the most significant 

in their modeling, and they were able to forecast T&O events reasonably (Kehoe et all, 2015). 

Among varying models made, a hydrodynamic and mass transport model has also been developed 

by Chung et al. (2016) which relied on inflow and outflow, production of geosmin by 

cyanobacteria, and degradation and were able to capture outbreaks of geosmin in the North Han 

River in Korea. This model also relied on cyanobacteria as a proxy for T&O. A water body could 

exhibit high cyanobacterial counts, but because only a subset of cyanobacteria produces geosmin 

or MIB, the T&O levels could still be low. You could not have high geosmin or MIB counts at the 

same time as having low geosmin or MIB synthase genes present in the corresponding T&O 

producers. Although the studies above were able to develop models with practical predictive 

capabilities, we expected that the use of geosmin and MIB synthase gene abundance, rather than 

cyanobacterial abundance, will lead to higher predictive power.  

 

The purpose of this study was to develop a predictive model for geosmin episodes in regional 

reservoirs using quantification of the geosmin synthase gene in water samples. We hypothesized 

that it is useful to measure the abundance of the organisms that actually have the gene to make 

geosmin, and we can quantify the abundance of the synthase gene using qPCR. By then overlaying 

this data with the routinely collected water quality parameters, we hypothesized that the model 

would have improved predictive capability compared to models that lack this information. This 

hypothesis is supported by the results of previous researchers who have shown that cell count data 

on known geosmin producers was the most significant predictive factor for their success in 

empirical models (Kehoe, 2015; Journey et al., 2013). Other researchers have also shown that 

synthase gene abundance alone can have good predictive power over geosmin concentration (e.g. 

Tsao et al. 2014; Wang et al., 2016). To be able to most accurately predict T&O outbreaks, we 

intended to utilize the ability to quantify the synthase gene abundances in the water samples, and 

then in combination with the water quality parameter data use Classification and Regression Tree 

(CART) modeling in R to predict the conditions and genetic states that contribute to the critical 

thresholds for the T&O compounds. 
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2. Methods and Materials 

2.1. Reservoir Geography and Water Sample Collection 

The three utilities we paired with for this project were the City of Auburn Water Resources 

Department located in Auburn, Alabama, Opelika Utilities located in Opelika, Alabama, and 

Columbus Water Works (CWW) located in Columbus, Georgia. These three utilities routinely 

collect water samples for their own characterization and compliance with regulations for water 

quality. In addition to these samples, each utility agreed to collect and deliver 100-200 ml samples 

for our lab to conduct further molecular biology work from March 1st through October 31st of 2020. 

The map in Figure 3 shows the watersheds and sub-basins that include the reservoirs in this study. 

The starred locations represent the intake locations where sampling occurred in Lake Ogletree 

(Auburn, AL) and Lake Saugahatchee (Opelika, AL). While these intake samples may not be fully 

reflective of all upstream sources of taste and odor compounds, they were collected on a frequent 

basis by the utilities at multiple depths, which reflects the extent of stratification in the reservoir. 

The goal was to develop a predictive tool that would not be burdensome for the utilities to be able 

to use, thus the single intake location minimizes the burden to the utilities. The Saugahatchee Creek 

basin and the Chewacla Creek basin both drain into the Tallapoosa River. Lake Oliver (Columbus, 

GA) lies on the Chattahoochee River and is a much larger and deeper reservoir than Saugahatchee 

and Ogletree.  

 

Figure 3. Lake Ogletree (Auburn, AL) and Lake Saugahatchee (Opelika, AL) shown within the 

red square, each with only 1 sampling location at the intake, represented by the pink and orange 

stars, respectively. 
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Figure 4. Lake Oliver (Columbus, GA) with intake sampling location denoted by the yellow star, 

and the 4 other sampling locations denoted by the red stars. 

 

Figure 4 shows the sampling locations in the watershed for Lake Oliver that were carried out by 

Columbus Water Works (CWW). Columbus agreed to engage in more diverse sampling locations 

throughout their large reservoir. The red stars show upstream sampling locations, and the yellow 

star shows the treatment plant’s water intake location, having five total sampling locations for 

CWW. The five different locations within Lake Oliver are the Intake, Boathouse (BOAT), Roaring 

Branch (RB), Standing Boy (SB), and Heiferhorn (HH) locations. Each of the utilities also agreed 

to conduct water quality analysis and provide the data to us, described in the following section. 
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2.2. Standard Methods of Water Quality Characterization by Utilities 

The Auburn, Opelika, and Columbus water utilities individually performed the water quality 

analyses shown in Table 3 for each of their reservoirs. The sampling occurred during peak season 

for taste and odor episodes, allowing our lab to best capture the data needed for predictive tools. 

Auburn and Opelika samples were analyzed every two weeks for most variables, with air 

temperature, precipitation, and wind speed being collected daily by weather stations. Columbus 

sampled at their five locations twice per week while also collected daily probe data parallel to 

Auburn and Opelika. All three of the utilities agreed to engage in this more intensive sampling and 

analysis than is typical. The geosmin quantification was performed by gas chromatography/mass 

spectrometry (GC/MS) using external laboratories, and by in-house analysis by Columbus Water 

Works. The anion chromatography panel for soluble anions, described in section 4 below, was 

conducted in our lab. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39 

Table 3. Sampling and analysis parameters and frequency from March 1, 2020, through October 

31, 2020. 

  Auburn Opelika Columbus 

Parameter 
Ogletree Intake 

Saugahatchee 

Intake 
Oliver Intake Oliver Watershed 

Total phosphorus 2 months 2 weeks Twice/week  Twice/week  

Total Kjeldahl nitrogen 2 months 2 weeks Twice/week  Twice/week  

Nitrite + nitrate 2 months 2 weeks Twice/week  Twice/week  

Water temperature 2 weeks 2 weeks Twice/week  Twice/week  

pH 2 weeks 2 weeks Twice/week  Twice/week  

Dissolved oxygen 2 weeks 2 weeks Twice/week  Twice/week  

Specific conductance 2 weeks 2 weeks Twice/week  Twice/week  

Turbidity 2 weeks 2 weeks Twice/week  Twice/week  

Secchi depth 2 weeks 2 weeks Twice/week  Twice/week  

MIB 2 weeks 2 weeks Twice/week  Twice/week  

Geosmin 2 weeks 2 weeks Twice/week  Twice/week  

Anion panel* 2 weeks 2 weeks Twice/week  Twice/week  

Chlorophyll-a Daily 2 weeks Twice/week  Twice/week  

Phycocyanin Daily 2 weeks Twice/week  Twice/week  

Blue-green algae count NA NA Twice/week  Twice/week  

Air temperature Daily Daily Daily Daily 

Precipitation Daily Daily Daily Daily 

Wind speed Daily Daily Daily Daily 

Sample depths 5 ft, 10 ft, 15 ft 5 ft, 10 ft, 15 ft 20 ft 0 ft (Surface) 

Sample time points 16 16 69 69 

No. samples/site 3 3 1 1 

No. of sites 1 1 1 4 

Total water samples 48 48 69 276 

*Conducted in our lab 
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2.3. Water filtration and DNA Extraction 

In the eight-month sampling season, the water samples were delivered to our lab for further 

research. Each sample was filtered using 0.2 mm nitrocellulose (VWR) filters to concentrate the 

solid material. Up to 200 ml of each sample was filtered using a vacuum flask, stopping when the 

filter had completely fouled, and the filtered amount was recorded for each sample. After each 

filtration, 2 ml of the filtered sample was collected for ion chromatography analysis. The vacuum 

flask was then cleansed with deionized water and nano-pure water between each filtration, and a 

new filter was applied to the apparatus. 

 

For each sample, the respective filter was then cut into strips and extracted directly in the bead 

homogenization tubes using the PowerSoil DNA Isolation kit by MoBio Laboratories, Inc. The 

manufacturer’s instructions were followed regarding the use of this kit, which has already been 

shown to be effective for extraction of DNA from both soil and water samples (Kaevska, 2015). 

This procedure involved vortexing the PowerBead tubes with the cut-up filters inside for rapid and 

thorough homogenization, then adding different solutions and transferring the liquid step-by-step 

to ensure cell lysis occurs by the mechanical and chemical methods. The total genomic DNA was 

captured on the silica membrane in a spin column and was then washed and eluted from that 

membrane. This kit allowed for further sample analysis using qPCR analysis as well as sequencing. 

 

2.4. Anion Chromatography 

The anion chromatography panel complemented the nutrient analyses carried out by the utilities 

and aided in providing a more complete depiction of the soluble anions including chloride, nitrite, 

nitrate, phosphate, and sulfate. Soluble ions were of particular interest for algae and cyanobacteria 

because these are the key nutrient sources for growth, as nitrate and phosphate are the typical 

limiting nutrients in freshwater systems (Zhang et al., 2019, Oh et al., 2017). Anion 

chromatography was carried out per the methods described in Chaump et al 2018. Mobile phase 

was prepared with 4.5 mM sodium carbonate plus 1.5 mM sodium bicarbonate using Milli-Q 

water. Anion standards were prepared and included chloride, nitrite, nitrate, phosphate, and sulfate 

at concentrations ranging from 0.195-800 mg/L to detect the low concentrations. A Shimadzu 

Prominance High Performance Liquid Chromatograph with a conductivity detector was used in 

conjunction with an AS22 column (Dionex Thermo). An AERS500 suppressor was used to reduce 
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noise and improve sensitivity with detection limits on the order of 50 ng/L. The flow rate was set 

at 1 mL/min with a system pressure of around 10-12 MPa. With all the samples loaded in their 

individual HPLC vials, the anion chromatography batches were run. 

 

2.5. Quantitative Polymerase Chain Reactions (qPCR) 

2.5.1. Primer Sets 

Primers are the tools used to target a specific gene, such as geosmin synthase. Existing primer 

tools for geosmin are not well developed and those that are documented have many issues with 

non-specific amplification or exclusion of important organisms. The primers in Table 4 have been 

referenced and used in publications by at least one other research group other than their own 

developers. The last two primer sets in the table were developed in our lab and were previously 

tested for efficiency and specificity via gel electrophoresis and sequencing. 

 

Table 4. Primer sets from literature and those developed in our lab for geosmin. 

Primer Set Target Taxa Reference 

Giglio 250F/971R Cyanobacteria Giglio et al. 2008 

288A F/R Cyanobacteria Giglio et al. 2008 

SGF1/JDR1 Cyanobacteria Tsao et al. 2014 

AMgeo F/R Actinobacteria Auffret et al. 2011 

Cgeo1 Cyanobacteria Our lab 

ActGeo2 Actinobacteria Our lab 

 

Prior work in our lab showed that at high and low tested annealing temperatures the Giglio 250 

primer set led to significant non-specific amplification, and that the 288A primer set led to almost 

exclusive primer-dimer complexes, diminishing its usefulness in our future work. The SGF1/JDR1 

primer set showed some promise and amplified both actinobacteria and cyanobacteria. The AMgeo 

primer set showed extreme non-specificity but this could be partly the result of low levels of 

actinobacteria in certain samples. Prior work in our lab also showed that the ActGeo primer set 

performed acceptably in areas of specificity and efficiency and was further sequenced to determine 
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the producers of these geosmin gene sequences. ActGeo sequencing mapped to actinobacteria, 

though showing up to 30% of cyanobacteria, proteobacteria, and bacteroides as well.  

 

The Cgeo1 primer set showed high specificity for geosmin synthase in cyanobacteria based on gel 

electrophoresis and sequencing of the products. The sequencing results showed that 100% of the 

amplicons mapped to the correct target of cyanobacteria geosmin synthase, confirming the gel 

results. The Cgeo1 sequencing showed high specificity for targeting only genes in the 

cyanobacterial phylum while still being broad enough to include multiple producers, including 

several common cyanobacteria known to produce geosmin, such as Anabaena and Planktothrix. 

The primers in this set are: 5’-GATCACTTCCTGGAAATCTAT-3’ and the reverse primer 

sequence 5’-GCCATTCTACAGACTTAGTAA-3’, with melting temperature, annealing 

temperature, and target gene referenced in Table 5. Given this high level of specificity, we chose 

to include the qPCR results using Cgeo1 primers in our modeling effort.  

 

Table 5. Cgeo1 primer set melt temperature, annealing temperature, and gene that is targeted. 

  

Melt Temperature (Tm, 

0.5 μM primer), °C 

Annealing 

Temperature, °C Target Gene 

Cgeo1 50.1 50 geoA 

 

2.5.2. qPCR and DNA Quantification 

qPCR was used to measure the abundance of geosmin synthase gene abundance in the water 

samples for each utility. The goal of this project was to concentrate on cyanobacterial contributions 

to the geosmin synthesis given past findings that they are typically the largest contributor to taste 

and odor compounds in freshwater systems compared to other organisms (Watson et al., 2008; 

Jüttner & Watson, 2007). The qTower3 qPCR instrument (Analytic Jena) was used to quantify the 

abundance of geosmin synthase in the DNA extracts from the water samples using SYBR green 

detection. The primer set used to amplify the cyanobacterial geosmin synthase gene abundance 

was Cgeo1. Cycling parameters were 95° C for 5 min, 36 cycles of 95° C for 15 s, 50° C for 30 s, 

and 72° C for 45 s. It then ran at 72° C for 5 min before the machine shut down and the qPCR 

products were able to be removed and the data analyzed. The DNA standards required for qPCR 

were made using previously amplified products from DNA obtained from raw fishpond water 
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samples. These samples were sequenced and found to contain predominantly Oscillatoria sp. PCC 

9240 geosmin synthase (geoA) and Planktothrix sp. 328 geosmin synthase (geoA). This previously 

amplified product was cleaned using the QIAquick PCR Purification Kit (Qiagen) and then 

quantified using a double stranded DNA fluorescent quantification kit (Promega QuantiFluor 

dsDNA System). Dilutions of this reference material were used to generate standard curves in 

subsequent qPCR runs with the Cgeo1 primers. In this manner, I was able to quantify the 

abundance of the geosmin synthase genes in the collected water samples by using the constant 

reference point with the standards. This allowed us to track the change in abundance of genes over 

the sampling season. 

 

2.5.3. Sequencing 

After qPCR for the amplification of the synthase genes, it was important to check for the correct 

product being amplified using sequencing. Select qPCR products from samples taken across 

multiple water bodies using the Cgeo1 primer set were sent to an external laboratory for Sanger 

sequencing. This approach is inexpensive but generally not effective in cases where there are many 

forms of geosmin synthase amplicons present. Rather, it works best when only one dominant 

organism is present. This proved to be the case in several samples and allowed us to confirm the 

primary geosmin producer in certain samples with high geosmin levels.  

 

2.6. CART Model Development and Multiple-Linear Regression 

In previous literature, Classification and Regression Tree (CART) modeling has proven to be a 

powerful alternative to traditional multiple regression-based models for taste and odor episodes 

(Kehoe, 2015), especially when dealing with aquatic systems (Harris & Graham, 2017; Downing 

et al., 2001). They are non-linear decision tree models that divide data into more homogenous 

groups to explain how an outcome variable’s values can be predicted based on other variables. A 

CART output is a tree where each fork is split in a predictor variable and each end node contains 

the prediction value for the outcome variable, which for this research is geosmin levels. This 

CART analysis was carried out using the free statistical software package R so that it could be 

freely and easily implemented by the regional utilities. This is a much simpler option compared to 

other machine learning algorithms, like random forests, to complete our goal of having developed 
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a simple tool that could be implemented. For use of this software by the utilities, a file containing 

instructions was also developed.  

 

Once all water quality parameters were obtained, the full datasets for each utility were uploaded 

into the R software. The CART fit was then made, taking all parameters into consideration. The 

program then reports back the most significant variables and produces an unpruned regression tree, 

typically with multiple branches. The program also reports the adjusted R2 value of the CART 

model produced. Next, using the important variables listed a new fit was made and a pruned 

regression tree was output with a new adjusted R2 value. Each tree developed gives an output of 

the predicted geosmin levels. This was done for each of the three water utilities. To test our 

hypothesis that the inclusion of the genetic data results found through qPCR would result in better 

geosmin predictions, I ran CART models for each utility that included and then excluded the 

genetic data to compare the adjusted R2 values. Successful predictions of geosmin level allow the 

utilities more knowledge on how to best handle their reservoir treatment. For the most successful 

prediction capabilities, sample variation is key. If there is only a small level of variation in the 

datasets (e.g. geosmin levels are very low in all samples), the predictions capabilities are unlikely 

to be meaningful.  

 

After CART modeling, multiple linear regressions were used for inspecting more closely the 

relationships between water quality variables to aid in answering the question of when geosmin 

levels might spike. Multiple regression, an extension of simple linear regression, was able to be 

used in R using the ‘lm’ function using all variables as input variables initially. In all cases, 

stepwise regression was manually used to reduce the number of variables used to attain the most 

impressive adjusted R2 value using significant variables. To do so, all 19 original variables from 

the water quality parameters and genetic data were entered into the regression function in R. The 

least significant variable listed was then removed. This process was repeated multiple times until 

all variables were included and the adjusted R2 peaked. The adjusted R2 value is a modified R-

squared value that has been adjusted for the number of predictors in the model. It increases only if 

the new term improves the model more than would be expected by chance and decreases when a 

predictor improves the model by less than expected by chance. In other words, it shows whether 

adding additional predictor variables improves the regression model or not. This is in comparison 
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to the multiple R-squared value that is also given, which doesn’t provide any incentive to stop 

adding more variables. Too many variables in a model can produce results that cannot be trusted 

(Gardener, 2012), so we use the adjusted R2.  

 

3. Results and Discussion 

 

3.1. Standard Methods of Characterization by Utilities 

3.1.1. Geosmin Levels 

Through GC/MS, the geosmin levels (ng/L) were measured in all water samples. In our sampling 

time from March to October of 2020, the geosmin levels were rarely elevated above the 10 ng/L 

threshold level, with Auburn elevated 60% of the time (Fig. 5), Opelika 0% of the time (Fig. 6), 

and Columbus only 16.2% of the time (Fig. 7). Typically, the customer complaints begin when 

geosmin exceeds 20 ng/L. In 2020, water samples from Auburn were above that higher threshold 

27% of the time, Opelika 0% of the time, and Columbus only 0.87% of the time. With these low 

levels of geosmin for the 2020 sampling months, the modeling efforts were not expected to show 

great adjusted coefficients of determination (adjusted R2) or fit, due to that low variation of data. 

Because of its higher variation in geosmin level, the best model for this research was expected to 

be developed for the Auburn samples, but lower predictive power was expected for Opelika and 

Columbus. 
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3.1.1.1. Auburn 

The spikes occurred primarily around April and then again in July to August of 2020, with the 

highest spike occurring at 67.3 ng/L in the lowest depth sample on August 18th. This compares 

similarly with known spikes in water odor persistence levels in previous studies where the most 

intense annual peak was in August, while April was when the first increase occurred after a winter 

minimum (Kehoe et al., 2015). 

 

 

Figure 5. Geosmin over Time: Auburn. “A-Upper” represents samples taken from the upper 

layer (11.5-17.4 ft.), “A-Middle” represents the middle layer samples (18-23.9 ft.), and “A-

Lower” represents the lower layer samples (25.5-30.9 ft.). 
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3.1.1.2. Opelika 

Figure 6 shows similar trends to that of Auburn, with the initial spike occurring in late March/early 

April and then another spike occurring from late August into late September of 2020, though the 

most intense spike only reached a level of 8.67 ng/L on March 26th, and subsequently at 7.85 ng/L 

on September 22nd. 

 

   

Figure 6. Geosmin over Time: Opelika Utilities. 
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3.1.1.3. Columbus 

The highest geosmin concentrations were observed in March and June (Figure 7). The first spike 

occurred on March 2nd at a level of 25 ng/L in the Roaring Boat sampling location (the second 

upstream location from the intake), and subsequent smaller spikes throughout March to June 

ranging from 14.9-21 ng/L. The largest spike occurred on June 10th at a level of 27.7 ng/L at the 

Standing Boy sampling location (the third upstream location from the intake). Another cluster of 

smaller spikes (~15 ng/L) occurred in early-mid September. 

  

Figure 7. Geosmin over Time: Columbus Water Works. 

 

3.2. Anion Chromatography 

Below are graphs of soluble nitrate and phosphate measured in all water samples taken post-

filtration through the 0.2 mm nitrocellulose filters. The levels of nitrogen and phosphorus were 

important to focus on in this study, as they typically promote cyanobacterial growth in lakes when 

high concentrations are found (Oh et al., 2017; Harris & Graham, 2017). The anion concentrations 

were integrated into the Pearson’s correlations analysis to determine correlations between nitrate 

or phosphate levels and geosmin levels. 
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3.2.1. Auburn 

The phosphate levels (Fig. 8) for Auburn only show small increases in early April and slight 

increases in late June. The nitrate levels show spikes in late March and again with smaller spikes 

from August to late September. The mean soluble nitrate ion (NO3
-) level was 0.23 ± 0.21 mg/L 

and soluble phosphate had a mean of 0.14 ± 0.88 mg/L. Nitrate levels tend to be higher than the 

phosphate levels, but these levels were rather low in comparison to other lakes (Dzialowski et al., 

2009).  

 

 

Figure 8. Auburn: Concentrations of nitrate ion (NO3
-) on the primary scale, and phosphate ion 

(PO4
2-) on the secondary scale from anion chromatography. “Upper” represents samples taken 

from the upper layer (11.5-17.4 ft.), “Middle” represents the middle layer samples (18-23.9 ft.), 

and “Lower” represents the lower layer samples (25.5-30.9 ft.). 
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3.2.2. Opelika  

Opelika’s soluble anion levels (Fig. 9) spiked for both nitrate and phosphate around April, with 

levels of around 0.5 mg/L. The mean phosphate level throughout the sampling period was 0.03 ± 

0.07 mg/L, and nitrate had a mean of 0.12 ± 0.09 mg/L. 

 

 

Figure 9. Opelika: Concentrations of nitrate ion (NO3
-) on the primary scale, and phosphate ion 

(PO4
2-) on the secondary scale from anion chromatography. “Upper” represents samples taken 

from the upper layer (0 ft.), “Middle” represents the middle layer samples (5 ft.), and “Lower” 

represents the lower layer samples (15 ft.). 
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3.2.3. Columbus  

In CWW’s drinking water reservoir, the phosphate levels peaked most intensely in October, 

primarily in the location for Standing Boy at a level of 1.26 mg/L (Fig. 10). All the location’s 

phosphate levels spiked slightly from late March to mid-April, though they never surpassed 0.55 

mg/L. In Figure 11, the nitrate levels increased from ~2.5-4.7 mg/L in late April to early May, and 

then again even higher throughout October, at 4.3-5.1 mg/L. The mean phosphate level was 0.03 

± 0.10 mg/L and the mean nitrate level was 1.29 ± 1.00 mg/L. 

 

Figure 10. Columbus: Phosphate ion concentration from anion chromatography. 

 
 

Figure 11. Columbus: Nitrate ion concentration from anion chromatography. 
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The key take-aways from these figures are that the phosphate levels were elevated primarily in 

spring at first and then again from late summer to fall. The nitrate levels were also elevated most 

obviously around the same times in spring and fall from this water sampling period. The nitrate 

and phosphate are likely being taken up by for productivity during the summer months by the 

cyanobacteria and other organisms (Gobler et al., 2007). 

 

3.3. qPCR 

The following figures (Figures 12-14) show results of cyanobacterial geosmin synthase gene 

abundance over time calculated after the use of our lab’s previously developed Cgeo1 primer set 

in qPCR. These results were used in subsequent modeling and regression. 

 

3.3.1. Auburn 

In Figure 12, the Cgeo1 synthase gene abundance over time for Auburn shows spikes in May and 

then again in July, August, and October. These spikes in gene abundance are similar in trend to 

the spikes we saw in the geosmin level detection for Auburn, which also primarily occurred in 

mid-spring and then again in late summer to early fall months, though with decreases in-between. 

 

Figure 12. Cgeo1 synthase gene abundance over Time: City of Auburn Water Resources 

Department. 
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3.3.2. Opelika 

The increases in Cgeo1 gene abundances over time occur at slightly different time periods for 

Opelika Utilities, with the first large spike on June 3rd at 1,180,000 (1.18E6) copy no./ml of water 

sample for Cgeo1 synthase gene abundance in the lower sampling depth. The upper and middle 

depths have increases in gene abundance in mid-June, and then they all spike in late August (Figure 

13). 

 

 

Figure 13. Cgeo1 synthase gene abundance over Time: Opelika Utilities. 
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3.3.3. Columbus 

The largest spike for CWW’s Cgeo1 gene abundance was on March 19th at 2,650,000 copy 

numbers of gene synthase per ml of water sample, though the rest of the smaller spikes happen in 

early June into mid-July, with the smallest abundances being found from August through 

September (Figure 14). 

 

 

Figure 14. Cgeo1 synthase gene abundance over Time: CWW. 
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3.4. CART Model Development and Linear Regressions 

 

3.4.1. Pearson’s Correlations 

Prior to modeling efforts, the individual Pearson’s correlations between geosmin levels and water 

quality parameters were determined to check for existing significant correlations (Table 6). None 

of the correlations indicated strong predictive capability (r > ±0.5), and multi-parameter models 

were therefore explored. In addition, the geosmin synthase abundance (as measured using the 

CGeo1 primer set) was included in these multi-parameter models. 

 

Table 6. Correlations (r) found between geosmin and each environmental variable. 

  Auburn Opelika Columbus 

TP -0.0009 0.1455 0.1204 

TKN 0.3740 0.0000 -0.0418 

Nitrite + Nitrate 0.0133 0.0983 0.0993 

OP 0.2564 - - 

Water temp 0.0723 -0.2298 0.0077 

pH -0.2695 -0.1081 -0.1879 

DO -0.0406 0.0526 -0.1023 

Specific Conductance 0.3804 0.1979 -0.0774 

Turbidity 0.1180 0.1150 0.0790 

Secchi Depth -0.3266 -0.3868 0.0253 

Chlor-a -0.2181 0.3388 0.2159 

Phycocyanin -0.2646 -0.2117 0.1675 

Air temp 0.3821 -0.4337 -0.0417 

Rainfall  0.0082 -0.2500 -0.0218 

Wind Speed  -0.1671 0.2959 0.1417 

BG Count - - 0.1124 

Nitrate -0.0659 0.1929 0.0153 

Phosphate -0.0541 0.0630 0.0117 

 

r   

± 0-0.05   

± 0.05-0.2   

± 0.2-0.4   

> ± 0.4   
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3.4.2. CART Modeling 

3.4.2.1. Auburn

A CART model (Figure 15) was generated using water quality data and geosmin synthase 

abundance data for Auburn water samples to predict geosmin levels at the Lake Ogletree water 

intake sampling location. To build the tree, 20 water quality variables were used as input, including 

each listed variable in Table 3. The variable depth was used twice: once as a measured continuous 

value and once as a categorical value of either upper, middle, or lower sampling depth. The 

unpruned tree algorithm uses 2 of those variables due to significance found using the ‘rpart’ 

package in R. Specific conductance and phosphate anion concentration were found to be 

significant in this initial (unpruned) tree. The initial tree has a coefficient of determination, R2, of 

0.4, explaining approximately 40% of variation in geosmin levels. Further, a pruned regression 

tree was attempted in order to reduce the chances of overfitting the tree to the data and to reduce 

any complexity of the tree (Yang et al., 2017), but the pruned regression tree was unable to be 

made, resulting in a root only. This is due to the minimum number of observations that must exist 

in a node in order for a split to be attempted not being met by this dataset which only had 48 

datapoints. This parameter in the ‘rpart’ package of R can be adjusted manually using the control 

parameters, though it leads to overfitting of the tree, so it was not employed in this study. It was 

interesting that the genetic information was not an important factor in the CART model, in contrast 

to our hypothesis. 
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Figure 15. Unpruned CART model for City of Auburn Water Resources Department. 

The CART model could potentially be used by the City of Auburn Water Resources Department 

in being able to determine up to 40% of variation in taste and odor concentrations, allowing them 

to treat the water in the reservoir. In using this CART model, the use of qPCR would not be 

necessary, as they could follow the branches with the data on specific conductance which they 

currently routinely monitor, and phosphate anion levels, which they could also measure. However, 

there is high probability this model is overfit and won’t perform well in future years – additional 

data points are needed to improve the model. The performance of the model is determined by the 

variation of the input data from the reservoir samples collected through 2020. 
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Multiple regression was also conducted on the Auburn dataset using R. To fit the model, stepwise 

regression was used to choose the predictive variables to be used in the multiple regression. To do 

so, all 20 original variables from water quality parameters and genetic data were entered into the 

regression function in R (Figure 16 shows only parameters with p values less than 0.05). The least 

significant variable was then removed, and this process was repeated multiple times until all 

variables were included and the adjusted R2 peaked (Figure 17).  

 

Figure 16. Multiple regression for Auburn with Cgeo1 gene abundance (adjusted R2 = 0.5405). 

 

Figure 17. Multiple regression for Auburn without Cgeo1 gene abundance (adjusted R2 = 

0.2879). 

It was clear in testing our hypothesis again for whether Cgeo1 gene abundance is an important 

variable to include in predictions, regressions were made with and without the Cgeo1 variable 
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being included. The variables found to be significant in multiple regression differ from those found 

to be significant in the CART models for Auburn. Specific conductance and phosphate anion 

concentration were the most important variables for CART, the depth (continuous), depth 

(categorical), Cgeo1 gene abundance, pH, dissolved oxygen, turbidity, the interaction between 

Cgeo1 gene abundance with categorical depth, and the interaction between continuous depth with 

the Cgeo1 gene abundance are the most significant for the multiple regression with Cgeo1 gene 

abundance. This regression gave an adjusted R2 value of 0.5405. When Cgeo1 gene abundance 

was taken out of the analysis, depth (continuous), depth (categorical), dissolved oxygen, and pH 

were the only significant variables, with an adjusted R2 of 0.2879. There was no similar significant 

value between both multiple regression analyses and the CART model previously made. The 

adjusted R2 without using Cgeo1 was lower by 0.2526 from the multiple regression using Cgeo1 

gene abundance as a variable, exhibiting the improvement of our predictive modeling with the use 

of the qPCR for cyanobacteria geosmin gene abundances. 

 

Figure 18 shows single regression of geosmin versus geosmin synthase abundance for each depth. 

Auburn Upper depth (11.5-17.4 ft.) shows reasonable correlation between the Cgeo1 synthase gene 

abundance and the detected geosmin levels. Auburn Middle (18-23.9 ft.) and Lower (25.5-30.9 ft.) 

depths do not show good correlations. This agrees with the multiple regression in showing that the 

interaction between the Cgeo1 gene abundance and “Auburn upper” depth has a significance of p 

< 0.01, and that the lower depth was insignificant. Cyanobacteria tend to prefer higher 

temperatures and light availability (Guttman & Rijn, 2008; Oh et al., 2017) and these are associated 

with the upper level of water bodies. The Cgeo1 primers appear to exclusively amplify geosmin 

synthase genes in cyanobacteria. The high correlation between gene abundance and geosmin 

suggests that geosmin levels in the upper layers of Lake Ogletree were driven by cyanobacteria 

producers. the higher geosmin peaks occurring in the Auburn Upper depth range (Figure 18) help 

in articulating this correlation. 
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Figure 18. Correlation between cyanobacteria geosmin synthase genes and the detected geosmin 

level. 

 

Overall, multiple regression with geosmin synthase gene abundance resulted in better predictive 

capability (adjusted R2 = 0.5405) compared to CART modeling. It also outperformed the model 

without gene abundance data. 
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3.4.2.2. Opelika 

The Opelika CART model was generated using the water quality data and genetic data for Opelika 

Utilities water samples to predict the geosmin levels at the Lake Saugahatchee water intake 

sampling location. All 19 water quality variables were used for input to build the original tree, 

with the variable, depth, still being used twice: once as a measured continuous value and once as 

a categorical value of either upper (0 ft), middle (5 ft), or lower (15 ft) sampling depth. The 

unpruned tree algorithm found that 2 of those 19 variables were significant (Figure 19).

 

Figure 19. Unpruned CART model for 

Opelika Utilities. 

 

Figure 20. Pruned CART model for Opelika 

Utilities.

Air temperature and Cgeo1 gene abundance were initially found to be significant. This initial tree 

has a coefficient of determination, R2, of 0.6, explaining 60% of the geosmin levels, though those 

geosmin levels were only predicted at a maximum of 6.2 ng/L, which is not of concern. The pruned 
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regression tree (Figure 20) then shows that only air temperature was an important variable for 

predicting the geosmin concentrations for Opelika Utilities, then with an R2 of 0.4. The CART 

model was then built again without the inclusion of the geosmin synthase gene abundance data to 

test our hypothesis that the inclusion of genetic data would result in better prediction capabilities. 

The R2 remained the same for this new model without Cgeo1 gene abundance included, now with 

phosphate ion concentration cited as significant. Again though, air temperature was the most 

significant variable for the model, although it is not logical in the CART model that if the air 

temperature is below 18° C, the geosmin levels would be higher. It is typical that higher 

temperatures result in higher geosmin levels due to most cyanobacteria preferring higher 

temperatures (>20° C) (Oh et al., 2017). These CART models for Opelika were not expected to 

provide meaningful management information due to the geosmin level having low variation and 

not once reaching above the threshold value of 10 ng/L for the sampling season. 

 

As with the Auburn data, multiple regression was then performed using data from Opelika 

Utilities. Stepwise regression was again implemented to choose the predictive variables to be used 

for the multiple regression, with the significance of each variable also listed in Figures 21 and 22. 

Out of the 19 input variables, 3 were found to be significant: air temperature (P<0.01), chlorophyll-

a (P<0.1), and rainfall (P<0.1). Air temperature was the only variable that is comparable to the 

significant variable found in the CART model. With Cgeo1 gene abundance included in the 

multiple regression the adjusted R2 was found to be 0.3537, and without Cgeo1 gene abundance 

the adjusted R2 was 0.3653, not surprising given that it was not a significant parameter in the 

model. Further removal of insignificant variables in the multiple regressions begins to decrease 

the adjusted R2, so the significance (P<1) is noted. Overall, the models for Lake Saugahatchee are 

not likely to be helpful management tools given that they predict geosmin levels below the 

threshold for human detection. 

 



 63 

 

Figure 21. Multiple regression for Opelika Utilities with Cgeo1 (adjusted R2 = 0.3537). 

 

 

Figure 22. Multiple regression for Opelika Utilities without Cgeo1 (adjusted R2 = 0.3653). 
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3.4.2.3. Columbus 

CART models were also created using the water quality data and genetic data for Columbus Water 

Works. Columbus samples come from five different locations within Lake Oliver: Intake, 

Boathouse, Roaring Branch, Standing Boy, and Heiferhorn. To build the trees in Figures 23 and 

24, 18 variables were used as input. For this utility, the variable depth was only used as a 

continuous measurement, at either 0 feet (Boathouse, Roaring Branch, Standing Boy, and 

Heiferhorn sampling) or 20 feet deep (Intake sampling).

 

Figure 23. Unpruned CART model for 

CWW. 

 

Figure 24. Pruned CART model for CWW.

The above figures (Figures 23 and 24) do not take individual sampling location into account. Out 

of those 18 input variables, 9 were found to be significant initially in the unpruned CART model. 

These include chlorophyll-a concentration, pH, water temperature, specific conductance, wind 
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speed, air temperature, blue-green algae count (BG Count), Total Kjeldahl Nitrogen (TKN), and 

turbidity. The unpruned tree has an R2, of 0.4, explaining 40% of the geosmin levels. These 

geosmin levels predicted by the model do not exceed 14 ng/L. Humans can begin to taste these 

compounds at 10 ng/L, but truly become an issue for complains to the utilities at around 20-30 

ng/L. Thus, the usefulness of this model in predicting significant outbreaks is limited. Further, the 

pruned CART model narrows the significant variables to now exclude air temperature, BG Count, 

and TKN. The pruned tree also has an R2 of 0.4. The inclusion of synthase gene abundance data 

did not improve the CART models. 

 

To evaluate the significance of location being used as a variable, it was then included in the CART 

model, seen in Figures 25 and 26 below. Here, the only significant variables were initially location, 

dissolved oxygen, chlorophyll-a levels, nitrate anion concentration, pH, water temperature, 

turbidity, and wind speed. Both models have R2 values of 0.4, though the pruned tree in this 

scenario was much less intricate. 
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Either pruned CART model could be used by Columbus Water Works in being able to predict up 

to 40% of observed geosmin levels. Model performance again relies on the variation in geosmin 

levels in the drinking water reservoirs, and Columbus Water Works only surpassed the 10 ng/L 

threshold 16.2% of the time, and only surpassed 20 ng/L 0.87%. This likely explains the low utility 

of the CART model in predicting outbreaks of significance.

 

Figure 25. Unpruned CART model for CWW 

with location (HEI represents the Heiferhorn 

sampling location, INT represents the Intake 

sampling location). 

 

Figure 26. Pruned CART model for CWW 

with location (HEI represents the Heiferhorn 

sampling location, INT represents the Intake 

sampling location). 
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Multiple regression analysis was performed on CWW water data to determine the significant 

variables and their relationship to the prediction of geosmin levels. The same stepwise regression 

steps were implemented to finalize the correct input variables for the multiple regression. Among 

the 19 input variables, only location, pH, phycocyanin, and wind speed were considered 

statistically significant (p < 0.05). For Columbus, location and depth are seen as the same variable 

due to the only depths being 20 feet at the intake, and 0 feet at every other sampling location. With 

Cgeo1 gene abundance included in the multiple regression the adjusted R2 was 0.2311 (Fig. 27), 

and without Cgeo1 gene abundance the adjusted R2 was 0.2016 (Fig. 28). This small difference 

reflects the fact that synthase gene abundance was not a significant factor in the model. Water 

temperature and pH were the only variables that were both of significance in comparison between 

the multiple regression and the pruned CART model. 

 

 

Figure 27. Multiple regression for CWW with Cgeo1, including location (adjusted R2 = 0.2311). 
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Figure 28. Multiple regression for CWW without Cgeo1, including location (adjusted R2 = 

0.2016). 

 

I also performed multiple regression for the entire Lake Oliver dataset with the location and water 

depth variables excluded. With Cgeo1 gene abundance included, the adjusted R2 was 0.1277 and 

it was not a significant model parameter. When Cgeo1 gene abundance was removed from the 

model, the adjusted R2 goes down to 0.1131. The significant variables can be seen in Figures 29 

and 30, with pH, wind speed, chlorophyll-a, and air temperature showing the most significance in 

both scenarios. We again had the situation where removing any further least significant values 

begins to reduce the adjusted R2 value, though neither of these regressions show high adjusted R2 

values. 
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Figure 29. Multiple regression for CWW with Cgeo1, excluding location (adjusted R2 = 0.1277). 

 

Figure 30. Multiple regression for CWW without Cgeo1, excluding location (adjusted R2 = 

0.1131). 
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3.4.3. CART Summary 

To compare, the empirical models that Dzialowski et al. (2009) developed for each of their 

individual reservoirs in Kansas had a range of R2 values, with the low being 0 (unable to be made) 

and the high being 0.94 using a two-variable equation with water quality variables. Christensen 

(2006) also developed a two-variable equation to predict geosmin levels, which gave an R2 of 

0.709, and another regression model for geosmin (Mau et al., 2004) gave an R2 of 0.70 (p-value = 

0.0016). A simple multiple linear regression had a reasonable predictive capability for geosmin 

(R2 = 0.657, P<0.001) using water quality parameters (Parinet et al., 2013). More advanced 

modeling, like random forest models, have been found to have R2 values of 0.71 to predict the 

threshold odor number for MIB (Wang et al., 2019), R2 of 0.81 for geosmin (Harris & Graham, 

2017), though Harris and Graham got lower R2 values for their Support Vector Machine, Boosted 

Tree, and Cubist models (R2 = 0.34, 0.34, 0.75, respectively). Kehoe et al (2015) developed linear 

regression and random forest models for TON (threshold odor number), with the linear regression 

having low and high R2 values of 0.61 and 0.71, and the random forest model having low and high 

R2 values of 0.48 and 0.52. When comparing these previously found predictive capabilities of 

models, our values of 0.4 demonstrate low predictive power using the CART modeling with the 

current low geosmin level datasets (Table 7). The Opelika and Columbus multiple regressions also 

have low predictive power, though the Auburn dataset has reasonable predictive power in the 

multiple regression. 

Table 7. Summary of CART model R2 and multiple regression adjusted R2 values using R 

software. 

  
CART 

Unpruned 

CART 

Pruned 

Multiple 

Regression with 

Cgeo1 

Multiple 

Regression without 

Cgeo1 

City of Auburn Water 

Resources Department 
0.4 - 0.5405 0.2879 

Opelika Utilities 0.6 0.4 0.3537 0.3653 

Columbus Water Works 

(Locations Combined) 
0.4 0.4 0.1277 0.1131 

Columbus Water Works 

(Separate Locations) 0.4 0.4 0.2311 0.2016 
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4. Sequencing 

Select samples from Auburn, Opelika, and Columbus that had higher geosmin levels were sent for 

Sanger sequencing of the product amplified by the CGeo1 primer set. The top likely geosmin 

producers from the episodes in the upper layer of Lake Ogletree were Anabaena and Planktothrix 

during March and May 2020, whereas Planktothrix was the only dominant organism in April 2020 

for the upper layer. In March in Lake Ogletree, there were small amounts (<5%) of Aphanizomenon 

and Nostoc found, and in May there was Aphanizomenon present. The likely producers found from 

Lake Oliver at the Boathouse sampling location during April 2020 includes Planktothrix (85%) 

and Anabaena (15%), and Lake Saugahatchee sequenced to almost 97% Planktothrix at 5-foot 

depth during April 2020. Dolichospermum (Anabaena) planctonicum and Planktothrix sp. 328 

represent the majority. Anabaena and Aphanizomenon are a widely known cyanobacteria which 

produces musty-odor compounds, which exist as pelagic plankton and can produce toxins (Watson 

et al., 2008). Planktothrix is also a widely known T&O producing cyanobacteria which 

accumulated in large blooms as planktonic and/or benthic species and have the ability to produce 

toxins, dependent on the species. With this knowledge, the individual reservoirs have the ability 

to apply mechanical, biological, chemical or physical methods to control the growth of these 

specific T&O producers. 

 

5. Conclusions 

The inclusion of geosmin synthase gene abundance data was most effective at predicting geosmin 

in Auburn’s Lake Ogletree. This was the only reservoir to experience high (>30 ng/L) geosmin 

levels. The datasets from Lake Saugahatchee (Opelika) and Lake Oliver (Columbus) had low 

geosmin variability and rarely experienced geosmin levels above the threshold value for human 

detection. The multiple regression model for Auburn had the best model fit with an adjusted R2 of 

0.5405 when geosmin synthase gene abundance was included. Models predicting geosmin levels 

for Opelika and Columbus had lower predictive power, due to the low geosmin concentrations 

detected through the sampling period. The results of this study show significant correlations 

between geosmin and a few water quality parameters.  

• For Auburn CART modeling, air temperature, specific conductance, depth, and phosphate 

anion abundance were relevant. For the City of Auburn Water Resources Department 
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multiple regression, dissolved oxygen, depth, pH, and Cgeo1 gene abundance were 

significant. 

• For Opelika Utilities’ CART modeling, air temperature and Cgeo1 gene abundance were 

included, and their multiple regression included chlorophyll-a, air temperature, and 

rainfall, though Opelika’s predictive tools were the least useful.  

• CART modeling for CWW found the most relationships for geosmin level determination, 

including the variables chlorophyll-a, pH, water temperature, specific conductance, wind 

speed, air temperature, blue-green algae count, turbidity, and TKN levels. Columbus was 

also found to have significance in the location of the water sampling. In CWW’s multiple 

regression, pH, wind speed, air temperature, and chlorophyll-a levels showed some 

significance, with location also being an applicable factor. 

 

The most significant finding in this section of study is the relationship between Cgeo1 gene 

abundance and geosmin levels for Auburn’s multiple regressions. With this gene abundance 

included, the fit was 54.05%, whereas without the gene abundance the fit was only 28.79%. In 

order to create models with better fits for the other two reservoirs, it is necessary to collect water 

samples with higher geosmin levels. It is likely that our molecular approach is the most effective 

under these conditions. 
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CHAPTER 3: MIB PRIMER EVALUATION 

 

1. Introduction 

Taste and odor episodes are an important issue when it comes to drinking water reservoirs, and 

cyanobacterial 2-methyisoborneal (MIB) is one of the most commonly detected and problematic 

taste and odor compounds worldwide (Wang et al., 2019). This terpenoid compound is not harmful 

to the human body, occurrences of increased T&O compounds lead to surges in customer 

complaints and often decreases the public’s confidence in the quality and safety of their water 

resource. The consequence, just as with geosmin, is that the regional utility must then undertake 

the cost of more advanced water treatment to remove the recalcitrant compound. To develop 

improved water quality treatment, an early detection and monitoring system for these MIB events 

is necessary. For the detection of source organisms at low concentrations, quantitative PCR has 

proven, in recent research, to be one of the most promising tools (Devi et al., 2020). Cyanobacteria 

are the most widely attributed organism in the production of MIB in freshwater system, though 

not all cyanobacteria are responsible for them (Asquith et al., 2018), with only a small percentage 

of cyanobacteria actually producing MIB (Jüttner & Watson, 2007). One of the major challenges 

with carrying out qPCR assays for MIB synthase is design of primers that are both specific to this 

gene yet offer coverage of multiple taxa. There is a gap in current knowledge on MIB synthase 

gene sequencing, with only 28 of the 72 cyanobacterial synthesis regions having been researched 

and input into the NCBI database. Moreover, MIB synthase has fewer conserved regions than 

geosmin synthase, further limiting opportunities for primer design (Devi et al., 2020). 

Consequently, there is difficulty in developing the design of a universal primer that amplifies MIB 

synthase. Primers targeting the MIB synthase gene are already published in the literature as 

reviewed by Devi et al. and their in-silico analysis suggests these primer sets may offer poor 

coverage across multiple taxa. Here, we expanded on their work by testing multiple published 

primers on environmental samples existing moderate to high levels of MIB and evaluating PCR 

efficiency and specificity to the target. Establishing these metrics is a necessary step for using 

these molecular tools for future sequencing and modeling efforts, similar to what we have done 

with geosmin synthase in Chapter 2. 
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MIB gene synthesis is most frequently found as a secondary metabolite of actinomycetes, 

filamentous cyanobacteria, myxobacteria, and some fungi in freshwater (Komatsu et al., 2008). 

Suurnäkki et al. (2015), developed a primer set for detecting MIB synthase in qPCR, called 

MIB3324, based on gene sequences from Oscillatoria, Planktotricoides, and Pseudanabaena. The 

primer was tested and analyzed using a database to confirm it was MIB synthase specific. MIB 

was detected in Oscillatoria and Planktothrix strains via SPME GC/MS, and from the qPCR the 

same strains were identified as producers. Consequently, the authors concluded that their 

developed MIB primer set accurately targeted only MIB-producing cyanobacteria (Suurnäkki et 

al, 2015). The shortcoming of this work is that they were only able to identify an MIB primer that 

targets a few genera of cyanobacteria, and none that amplify MIB synthase in actinobacteria. They 

also were only able to identify two genera, whereas they state that there are 8 known genera of 

producers. Consequently, other researchers have continued to develop new primer tools targeting 

MIB synthase. Gaget et al. (2020) was able to develop and validate a primer set to be used in qPCR 

for the detection of the MIB synthase gene in cyanobacteria, which was developed using a reservoir 

in Australia. With the high specificity for primers for planktonic species, the detection method 

produced should allow for detection of low cell numbers and be easily applicable on a range of 

environmental samples (Gaget et al., 2020). Another study by Wang et al. (2014) in China 

established SYBR Green qPCR assays for field monitoring of cyanobacterial MIB producers by 

targeting the mic gene that could be used for the early detection of T&O episodes, and Wang et al. 

(2016) developed primers for qPCR sequencing of the actinobacterial MIB producers by targeting 

the pentalenene synthase in Streptomyces. These developed protocols for qPCR in the detection of 

MIB producers in water bodies will be useful in the future for T&O prediction models. 

 

A previous study focused on reviewing the current status of developed qPCR primers and probes 

in identifying the cyanobacterial blooms along with geosmin and MIB events. The review by Devi 

et al., explains how majority of the current research on MIB producers is on the cyanobacterial 

genera, with Anabaena, Oscillatoria, Planktothrix, Pseudanabaena, and Phormidium as the top 

producers researched, though none of the developed primers is universal for all MIB producing 

cyanobacteria based on their in-silico analysis mapping these primers onto MIB synthase 

sequences in the NCBI database. The review concludes that SYBR green qPCR detection methods 

have high specificity and can quantify low cell numbers while dealing with multiple samples in a 
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single run (Devi et al., 2020). It has also previously been concluded that the gene-based approach 

for MIB event systems is more accurate and specific compared to the conventional laborious cell 

count method (Lu et al., 2019). This molecular method developed is therefore a useful tool in 

monitoring cyanobacterial and actinobacterial producers of the MIB gene synthase. Our process 

described below aimed to evaluate formerly developed primer sets on samples taken from our local 

drinking water reservoirs to evaluate their efficiencies and specificities. We also sequenced the 

amplified products to identify what taxa are represented among the amplified gene products. A 

group of samples with moderate to high MIB (ng/L) levels detected by the utilities and fishpond 

samples was run with SYBR green qPCR to detect the MIB gene copy numbers and this was 

correlated to the MIB concentration in the water column. Having precise primer sets assists in the 

universal goal of knowing the producers and factors influencing the proliferation of T&O synthesis 

so as to better prevent the off-flavor problems more accurately in the future. 

 

2. Methods 

2.1. Reservoir Geography and Water Sample Collection 

Again, the three utilities we paired with for this project were the City of Auburn Water Resources 

Department (Auburn) located in Auburn, Alabama, Opelika Utilities located in Opelika, Alabama, 

and Columbus Water Works (CWW) located in Columbus, Georgia. The 100-200 ml additional 

samples collected were delivered to our lab to further molecular research, including the subsequent 

MIB primer evaluation. The goal was to evaluate MIB primers for these utilities to be used in 

successive research leading to potential MIB modeling, similar to that which we completed for 

geosmin. See Figures 3 and 4 for more detailed information and figures on the reservoir geography 

and water sample collection. One sample from an aquaculture pond with high MIB concentration 

was also included in this analysis. This sample was collected by Alan Wilson. 

 

2.2. Standard Methods of Characterization by Utilities and Pearson’s Correlations  

All three of the utilities agreed to participate in more intensive sampling and analysis described in 

detail in Table 3, including the detection of MIB levels (ng/L) in each of their reservoirs. The MIB 

quantification was performed by gas chromatography/mass spectrometry (GCMS) using external 

laboratories, and by in-house analysis by Columbus Water Works, which are further described in 

Chapter 2, section 2.2 above. With each of the values for these water quality variables recorded, 
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simple Pearson’s correlations were carried out to examine correlations between water quality 

parameters and the MIB levels detected.  

 

2.3. Water Filtration and DNA Extraction 

The water samples were filtered using the 0.2 mm nitrocellulose (VWR) filters to concentrate the 

solid material. The filtered amount, up to 200 ml for each sample, was recorded. After each 

filtration, the vacuum flask was cleansed with deionized water and nano-pure water between each 

filtration, and a new filter was applied to the apparatus to continue the process. The filter for each 

sample was then cut into strips to be used for the extraction of DNA. See above section 3b for the 

protocol for DNA extraction using the PowerSoil Kit to capture total genomic DNA, which 

allowed for further sample analysis for MIB primer evaluation. 

 

2.4. qPCR and DNA Quantification 

2.4.1. Primer Sets 

To target the specific gene for MIB synthesis in samples from reservoirs, primer sets are necessary. 

Existing primer sets for MIB have been developed and reported in the literature (Table 8), though 

there are concerns about specificity or the exclusion of important MIB-producing taxa.  

 

Table 8. Primer sets from literature and those developed in our lab. 

Primer Set Target Taxa Reference 

MIB3324 Cyanobacteria Suurnäkki et al., 2015 

Gaget Cyanobacteria Gaget et al., 2020 

MIB-Rf/Rr Cyanobacteria Wang et al., 2016 

Str-Rf/Rr Actinobacteria Wang et al., 2016 

 

The above listed primer sets were shown to be useful in targeting both cyanobacterial and 

actinobacterial produced MIB synthase genes. The MIB3324F/4050R (noted as MIB3324) primer 

set was designed to amplify the MIB synthase gene similarly based on the alignment of the 

sequences from Oscillatoria limosa LBD305 (HQ630885), Planktotricoides raciborskii 

CHAB3331 (HQ830029), Pseudanabaena sp. dqh152 (HQ830028), Pseudanabaena sp. NIVA-

CYA111 (HQ630887) and Pseudanabaena limnetica str. Castaic Lake (HQ630883) (Suurnäkki et 
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al., 2015). Suurnäkki et al performed in-silico analysis on the primers against putative 

cyanobacterial, proteobacterial, and actinobacterial producers available in the nr database using 

Primer-BLAST to ensure the designed primer was specific to cyanobacterial MIB synthase. The 

Gaget primer set was also made to target the MIB synthase gene, using the cyanobacterial positive 

control of Pseudanabaena galeata, and was one of the most efficient assays that was developed 

for qPCR (Gaget et al., 2020). The MIB-Rf/Rr primer set by Wang et al. was developed to target 

cyanobacterial MIB synthase during SYBR green detection in qPCR, and it specifically targeted 

fragments from Pseudanabaena sp., Planktothricoides raciborskii, Planktothricoides sp., and 

Leptolyngbya sp., verifying its specificity and wide coverage for MIB-producing cyanobacterial 

species. The Str-Rf/Rr primer was made specific to Streptomyces spp. for MIB-producer detection 

(Wang et al., 2015). Table 9 references their forward and reverse sequences used. These primer 

sets were purchased from Invitrogen (Thermo). 

 

Table 9. Primer sets from literature and their forward and reverse sequences. 

 Primer Set Forward Sequence Reverse Sequence 

MIB3324 CATTACCGAGCGATTCAACGAGC CCGCAATCTGTAGCACCATGTTGA 

Gaget CAGCACGACAGCTTCTACACCTCCATGAC GGTGGCTGCTCGTCTGCCAGATC 

MIB-Rf/Rr CGACAGCTTCTACAYCYCCATGAC CGCCGCAATCTGTAGCACCAT 

Str-Rf/Rr GGTGGACGACYKCTACTGCGAG CAGGGVCGGAAGTTGTTGAA 

 

Geneious Prime software (www.geneious.com/features/) was used to determine potential 

amplicons of each primer set through alignment with known MIB synthase gene fragments. The 

molecular weight and length of each amplicon was then calculated (Table 10).  

 

Table 10. Molecular weights and expected base-pair (bp) length of amplicons for each primer 

set from literature. 

Primer Set MW (μg/mol) 

Expected Amplicon 

Length (bp) 

MIB3324 223,175 726 

Gaget 7,900 179 

MIB-Rf/Rr 6,784 202 

Str-Rf/Rr 6,520 339 

http://www.geneious.com/features/
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Initial rounds of PCR were carried out on the environmental samples to generate an initial product 

that was pooled and cleaned using the QIAquick PCR Purification Kit (Qiagen). The resulting 

product was quantified using the Promega QuantiFluor dsDNA System and serially diluted to 

create DNA standards for subsequent qPCR. The Promega QuantiFluor dsDNA System enables 

sensitive quantification of small amounts of double-stranded DNA (dsDNA) in a purified sample 

using a dye-based system. A multi-well detection instrument for measuring fluorescence, nuclease-

free water, a flat-bottom 96-well plate, and 1.5 ml tubes for standards preparation were each needed 

for this procedure. Briefly, a 1X TE buffer was made by diluting the given 20x TE buffer 20-fold 

with nuclease-free water, and a working solution was made by diluting the QuantiFluor dsDNA 

dye 1:400 in 1x TE buffer. A standard curve was made to result in 0.05-200 ng/well because the 

quantification process requires the comparison of the unknown samples (primers) to a dsDNA 

standard curve using the Lambda DNA Standard. 200 ul of the working solution was pipetted into 

each well intended for quantification of standard samples, unknown samples, and the blanks for 

comparison, with 10 ul of each standard, sample, and blank (1x TE buffer) into each well. After a 

5-second plate shake and 5-minute incubation period, the fluorescence was read at 504 nm/531 nm 

with the plate reader. The dsDNA concentration was then calculated using the standard curve to 

be used in further efficiency calculations for each primer set. This allowed for calculation of the 

gene copy number per ml of DNA reference material for each primer set. 

 

2.4.2. qPCR 

qPCR was carried out using the qTower3 by Analytic Jena to quantify the abundance of the MIB 

synthase genes in the DNA extractions from the samples collected. Each primer melting 

temperature was found using the IDT OligoAnalyzer tool, and each primer set was then run for 

qPCR using an annealing temperature 2° C lower and 2° C higher than the melting temperature to 

test for potential tradeoffs in specificity and efficiency. The annealing temperature (and melting 

temperature) relies directly on the length and GC composition of the primer sets, where the melting 

temperature (Tm) of each primer set was found using the IDT OligoAnalyzer. If the annealing 

temperature is set too low, the primer sets are more likely to anneal to DNA sequences other than 

the intended target which then leads to non-specific PCR amplification. Also, if the annealing 

temperature is too high the efficiency may be reduced because of poor primer annealing to the 
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template DNA. The optimal annealing temperature will give the best PCR product yield of the 

correct amplicon (IDT, n.d.). These values are found for each primer set in Table 11. 

 

Table 11. Low and high annealing temperatures and melting temperatures for primer sets from 

literature. 

Primer Set 

Low Annealing 

Temperature, °C 

Melt Temperature (Tm, 

0.5 μM primer), °C 

High Annealing 

Temperature, °C 

MIB3324 57.1 59.1 61.1 

Gaget 62.3 64.3 66.3 

MIB-Rf/Rr 58.0 60.0 62.0 

Str-Rf/Rr 56.1 58.1 60.1 

 

For MIB3324, cycling parameters were 95° C for 5 min, 51 cycles of 95° C for 15 s, gradient 57-

62° C for 30 s, and 72° C for 45 s. For Gaget, cycling parameters were 95° C for 5 min, 55 cycles 

of 95° C for 15 s, gradient 62-66.3° C for 30 s, and 72° C for 45 s. For MIB-Rf/Rr, cycling 

parameters were 95° C for 5 min, 45 cycles of 95° C for 15 s, gradient 56.1-62.9° C for 30 s, and 

72° C for 45 s. For Str-Rf/Rr, cycling parameters were 95° C for 5 min, 45 cycles of 95° C for 15 

s, gradient 56.1-62.9° C for 30 s, and 72° C for 45 s. Each primers set also ran at 72° C for 5 min 

before the machine shut down and the qPCR products were removed, and the data analyzed. Each 

primer was run at the low and high annealing temperature. Nuclease-free water was used as a 

negative control. The DNA standards required for qPCR were then made using known DNA 

concentrations to quantify MIB synthase gene abundance in each sample amplified in qPCR by 

using the constant reference point with the DNA standards. The efficiency of each primer set at its 

low and high annealing temperature were found to analyze which annealing temperature was the 

most efficient. This was found using the equation,  

𝐸 (%) = 2−𝑆 − 1 , where S is the slope of the standard curve. If during each cycle of qPCR, the 

targeted DNA template is doubled, the efficiency will be 100%. The qPCR product quality was 

then evaluated after gel electrophoresis on agarose gels. 

 

2.5. Gel Electrophoresis 

After qPCR was completed, gel electrophoresis was run to check the size of the qPCR products. It 

is a standard lab procedure for separating DNA by size (length of base pairs) for visualization and 
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purification. Electrophoresis uses an electrical field to move the negatively charged DNA through 

an agarose gel matrix toward a positive electrode. Shorter DNA fragments migrate through the gel 

more quickly than longer ones. Consequently, determined the approximate length of a DNA 

fragment by running it on an agarose gel alongside a DNA ladder, which is a collection of DNA 

fragments of known lengths. The procedure has been adapted from Addgene 

(www.addgene.org/protocols/gel-electrophoresis/#faq) to produce a 25x TAE buffer solution, 

using 0.5 M EDTA combined with Tris solution and dH2O. One gel requires 500 ml of the 1x TAE 

to prepare the gel (50 ml) and the running buffer solution (400-450 ml), so the 25x TAE was 

diluted to create 1x TAE buffer solution. A 1% agarose gel was then prepared in a refrigerated gel 

tray with well combs in place in the first and middle slots to allow for double gels. 

 

To run the gel, the DNA samples were first prepared on parafilm with a dilution mixture of 10 ul 

of product, 5 ul of dH2O, and 5 ul of 4x loading buffer. The ladder was diluted with 15 ul of ladder, 

and 5 ul of dH2O since the ladder already contains the loading buffer. All 20 ul of each sample 

was loaded into their respective wells in the gel. The 100 base-pair DNA ladder was added in the 

fifth well on both rows for comparisons of lengths. The gel was run at 75 volts and then a 0.5 

μg/ml EtBr solution was prepared. When the gel was done running, it was soaked in this diluted 

EtBr solution for 20-30 minutes on a shaker table at 60 rpm and 20°C. The gel was then transferred 

to dH2O in a separate container to de-stain for 5 minutes on the shaker. It was then viewed under 

UV light to visualize the bands. 

 

2.6.  Sequencing 

Sequencing for these samples was completed through Mr. DNA Lab Molecular Research, LP. The 

MIB synthase gene sequences were amplified using the four provided primer sets for 30-35 cycles 

using the HotStarTaq Plus Master Mix Kit (Qiagen, USA) under the following conditions: 95°C 

for 5 minutes, followed by 30-35 cycles of 95°C for 30 seconds, the higher annealing temperatures 

shown in Table 11 for 40 seconds, and 72°C for 1 minute, after which a final elongation step at 

72°C for 10 minutes was performed.  After amplification, PCR products were checked in 2% 

agarose gel to determine the success of amplification and the relative intensity of bands. A 

bioanalyzer was also used to confirm product sizes. Only samples that amplified a product close 

to the target size (Table 10) underwent sequencing. Samples are multiplexed using unique dual 

http://www.addgene.org/protocols/gel-electrophoresis/#faq
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indices and are pooled together (e.g., 100 samples) in equal proportions based on their molecular 

weight and DNA concentrations. Pooled samples were purified using calibrated Ampure XP beads. 

Then the pooled and purified PCR product was used to prepare an Illumina DNA library. 

Sequencing was performed at MR DNA (www.mrdnalab.com, Shallowater, TX, USA) on a MiSeq 

following the manufacturer’s guidelines. Sequence data were processed using MR DNA analysis 

pipeline (MR DNA, Shallowater, TX, USA).  In summary, sequences were joined, sequences 

<100bp removed, and sequences with ambiguous base calls removed. Sequences were quality 

filtered using a maximum expected error threshold of 1.0 and dereplicated. The dereplicated or 

unique sequences were denoised; unique sequences identified with sequencing and/or PCR point 

errors were removed, chimera were removed, thereby providing a denoised sequence or zOTU. 

Final zOTUs were taxonomically classified using BLASTn against a curated database derived 

from NCBI for the MIB synthase gene (www.ncbi.nlm.nih.gov).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.mrdnalab.com/
http://www.ncbi.nlm.nih.gov/
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3. Results and Discussion 

3.1. Water Quality Variable Detection and Pearson’s Correlations 

3.1.1. MIB level detection 

The overall detection for MIB levels across all three reservoirs was low for the 2020 

sampling season. The average for all three reservoirs together was only 2.25 ng/L.  

 

3.1.1.1. Auburn 

The City of Auburn Water Resources Department saw MIB spikes from mid-May to early-August, 

though the average for the reservoir was a mere 3.23 ng/L with a range of 0-7.9 ng/L (Fig. 31). 

The detected MIB levels never reached above the 10 ng/L taste threshold. 

 

  
Figure 31. MIB over time: City of Auburn Water Resources Department. 
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3.1.1.2. Opelika Utilities 

Small spikes in MIB occurred for Opelika Utilities first on March 26th, then again on June 3rd and 

July 28th. The highest MIB level detected was only 5.43 ng/L (Fig. 32), lower than the human 

detection level and therefore not a customer issue for the 2020 year. 

 

  
Figure 32. MIB over time: Opelika Utilities. 
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3.1.1.3. Columbus Water Works 

The largest MIB spike for CWW occurred on September 17th for 3 locations in the reservoir: 

Roaring Boy, Standing Boy, and Heiferhorn, with the largest being in Heiferhorn at 18.5 ng/L. 

Other increases above the taste threshold ranged from 11.7-15.4 ng/L in mid-March, late April, 

and mid-June. There was a cluster of increases in MIB level detection from early August until the 

end of September, though none of these levels reached above 10 ng/L, aside from the 9/17 spike.  

 

Figure 33. MIB over time: CWW. 

The key take-aways from these figures (Figures 31-33) are that the MIB levels detected never 

reached above 10 ng/L for the City of Auburn Water Resources Department or Opelika Utilities, 

and only reached above that threshold 2.6% of the time for Columbus, which is not helpful for 

modeling, similar to what was done for geosmin. More samples with elevated MIB levels are 

necessary to develop useful predictive models. 
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3.2. Pearson’s Correlations 

A variety of common water quality metrics were measured and recorded by each utility (Table 

12). Correlation analysis of MIB concentration (ng/L) versus each water quality variable was 

performed. Dissolved oxygen and nitrate showed an r value greater than ±0.5, which could be 

further investigated for importance in possible future multiple linear regression or CART 

modeling. Modeling with this 2020 dataset was limited by the fact that so little MIB was detected 

in the 2020 sampling season. 

 

Table 12. Correlation (r) between MIB and each water quality parameter. 

  Auburn Opelika Columbus 

TP -0.1772 0.0235 0.1455 

TKN 0.0645 0.0000 0.0748 

Nitrite + Nitrate 0.1034 -0.0720 0.0372 

OP 0.0716 - - 

Water temp 0.0420 0.0132 0.0716 

pH -0.1504 -0.1155 -0.0124 

DO -0.5386 -0.0924 -0.0682 

Specific Conductance 0.0555 -0.2295 0.0680 

Turbidity 0.1639 -0.0658 0.2520 

Secchi Depth 0.1742 -0.2520 -0.0471 

Chlor-a 0.0432 -0.1682 0.2536 

Phycocyanin -0.1956 -0.1497 0.3589 

Air temp 0.0447 0.1700 0.0269 

Rainfall  0.2582 -0.1447 0.0660 

Wind Speed  -0.2662 -0.0952 0.0166 

BG Count - -  
Nitrate -0.5641 -0.1664 -0.0420 

Phosphate 0.0257 -0.1149 -0.0707 

 

r   

± 0-0.05   

± 0.05-0.2   

± 0.2-0.4   

> ± 0.4   
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3.3. Primer Set Efficiencies 

For each primer set targeting the MIB synthase gene, the efficiencies were found for the low and 

high annealing temperatures used during qPCR. The low annealing temperatures show very similar 

efficiencies to the higher annealing temperatures, with the low annealing temperature having a 

slightly higher efficiency for 3 out of the 4 primer sets (Table 13). However, in all cases, efficiency 

fell between 90% and 105%, a range that is generally considered acceptable for qPCR. This 

suggests that there is only a small efficiency tradeoff at the higher annealing temperature.  

 

Table 13. Primer set efficiencies found from efficiency tests. 

 Primer Set 

Low Annealing 

Temperature Efficiency (%) 

High Annealing 

Temperature Efficiency (%) 

MIB3324 99 96 

Gaget 97 92 

MIB Rf/Rr 99 103 

Str Rf/Rr 99 98 

 

 

3.4. qPCR 

Figures 34 and 35 below express the abundance of MIB synthase gene copies found per milliliter 

of water sample after qPCR using each of the four primer sets above at the higher and lower 

annealing temperatures. The 8 chosen samples have a range of MIB levels of 0.5-166.62 ng/L and 

MIB synthase levels of 1,431-346,962 copies/ml across the 4 primer sets at the low annealing 

temperatures and 8-2,250,331 copies/ml for the high annealing temperatures, spanning from 

sampling times of May 6th to September 22nd. The log of the MIB synthase gene abundance using 

the Gaget primer set has the highest R2 value for both the low and high annealing temperature 

when correlated with the log of the MIB level, with an R2 of 0.6739 and 0.5523 respectively. This 

suggests that gene abundance alone may have high predictive power for moderate to high MIB 

concentration across water samples from multiple sources. 
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Figure 34. Linear regression of the log of detected MIB levels versus the log of the abundance of 

copy no. of the targeted gene sequence with each primer set, all run at the low annealing 

temperature during qPCR. 

 
Figure 35. Linear regression of the log of detected MIB levels versus the log of the abundance of 

copy no. of the targeted gene sequence with each primer set, all run at the high annealing 

temperature during qPCR. 
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These R2 values show us that the Gaget primer set was able to explain around 67% and 55% of the 

variation in MIB levels detected using its low and high annealing temperatures during qPCR and 

be useful in future predictive modeling using multiple linear regression. At the low annealing 

temperature, MIB synthase gene copy as measured using the MIB-Rf/Rr primers could explain 

56% of the variation in MIB level in these samples. Because both of these primer sets target 

cyanobacteria, it is likely that MIB in these water bodies are largely controlled by cyanobacteria 

MIB producers. To better investigate the usefulness of each of these primer sets, I checked the 

amplified product size using gel electrophoresis, and then further by sequencing the qPCR 

products. 
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3.5. Gel Electrophoresis and Specificity 

 

By using gel electrophoresis to check for DNA fragment lengths that have been amplified during 

qPCR, we can verify the primer specificity toward the single intended target. The specificity of 

primer is controlled by the length of the primer, the annealing temperature used during qPCR, and 

the frequency with which mis-priming occurs during PCR (Dieffenbach et al., 1993). Poor 

specificity of a primer set is clear when extra unrelated amplicons are present in the gel image 

(multiple bands, incorrect band location). In Figure 36, the higher annealing temperature looks to 

be more specific for Gaget, MIB-Rf/Rr, and Str-Rf/Rr. The specific samples that were of greatest 

interest are in the last three columns on the right-hand side of the gel: A-Upper 6/23, USDA 8 

8/20, and C-HH 9/17 since they had higher detected MIB levels of 7.9, 166.6, and 18.5 ng/L, 

respectively, compared to the other samples. The four samples on the left have lower (but still 

detectable) MIB levels of < 6 ng/L and therefore would not be expected to have high MIB synthase 

gene abundance. For the three noteworthy samples, Gaget shows the highest specificity for the 

~179 bp (appears as 200 bp on gel) amplicon length for the DNA sequence. Some variation in 

amplicon length is expected in environmental samples since not all taxa have the same gene 

sequence length. Hence, some bands may appear hazy. For the other three primers, there is 

evidence of poor specificity as seen through multiple bands on the gels or streaking.  
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Figure 36: (a) MIB3324 (726 bp) gel electrophoresis results, (b) Gaget F/R (179 bp) gel 

electrophoresis results, (c) MIB Rf/Rr (202 bp) gel electrophoresis results, (d) Str Rf/Rr (339) gel 

electrophoresis results. 

 

a 

c 
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3.6. Sequencing 

3.6.1. Sequencing Results 

If MIB is present, there must be elevated levels of MIB synthase present in the DNA, and as 

mentioned above the samples with higher levels of MIB are easier to amplify and subsequently 

run sequencing on. Sometimes, the samples did not have a strong enough PCR product to be able 

to sequence. Hence, the following sequencing results may only be shown for a few samples that 

had sufficient product for sequencing. Again, this was not surprising given the overall low levels 

of MIB present in most samples. The samples with the highest MIB levels (Table 14) generally 

had enough amplified product for sequencing and were the focus of this analysis.  

 

Table 14. MIB (ng/L) concentrations detected in chosen samples. 

  MIB (ng/L) 

A-Upper 6/23 7.9 

USDA 8 8/20 166.6 

C-HH 9/17 18.5 
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The Gaget primer set mapped 100% to its intended Cyanobacterial phylum (Fig. 37), with 

Planktothricoides and Pseudanabaena as the major genera identified, and low abundance of 

Oscillatoria and Leptolyngbya identified as well (Fig. 38). All of these genera have previously 

been identified as MIB producers (Devi et al., 2021). These results mean that the primer set was 

able to amplify the correct target DNA sequence specifically within its intended phylum, while 

also being broad enough to include four important genera. The A-Upper sample from 6/23 did not 

generate sufficient product with this primer set for sequencing and is therefore not shown in 

Figures 37 and 38. 

 

 
Figure 37. Phyla identified through 

sequencing of PCR products using the Gaget 

primer set. 

 
Figure 38. Genera identified through 

sequencing of PCR products using the Gaget 

primer set. 
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The MIB3324 primer set mapped almost 100% to actinobacterial phylum rather than its intended 

target of cyanobacteria (Fig. 39), with Frankia and Streptomyces as the major genera identified, 

with very low abundance of Nostoc (cyanobacteria) identified as well (Fig. 40). While 

Streptomyces is a well-known MIB producer, Frankia and Nostoc are not known for their MIB 

production, yet Nostoc can produce geosmin (Devi et al., 2021) and Frankia is presumed to have 

geosmin synthase (Giglio et al., 2008). It is telling that the two samples with the highest MIB 

abundance (and likely produced by cyanobacteria based on two of the other primer sets) did not 

even amplify with the MIB3324 set.  

 

 
Figure 39. Phyla identified through 

sequencing of PCR products using the 

MIB3324 primer set. 

 
Figure 40. Genera identified through 

sequencing of PCR products using the 

MIB3324 primer set. 

 

 

 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A-Upper-6-23-20-MIB3324

%
 P

h
yl

a

Actinobacteria Cyanobacteria

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A-Upper-6-23-20-MIB3324

%
 G

en
e

ra

Streptomyces Nostoc Frankia



 94 

The MIB-Rf/Rr primer set also targets cyanobacteria, but sequencing of the PCR products reveals 

that it also amplified actinobacteria and proteobacteria in one of the samples (Fig. 41). Of the 

cyanobacterial phylum, Planktothricoides, Pseudanabaena, Kamptonema, Novosphingobium, and 

Leptolyngbya were identified (Fig. 42), though not all are known to produce T&O compounds. 

This primer set, despite its tendency toward non-specific amplification based on the gel results, 

was able to amplify known MIB producers in all three water samples. Moreover, there was general 

agreement with the Gaget primer set: the USDA aquaculture pond was dominated by Planktothrix 

and the Heiferhorn location in Lake Oliver was dominated by Pseudanabaena. These were very 

likely the major source organisms for these elevated MIB levels, particularly given the strong 

correlation between gene abundance and MIB for the Rf/Rr and Gaget primer sets. 

 

 
Figure 41. Phyla identified through 

sequencing of PCR products using the MIB-

Rf/Rr primer set. 

 
Figure 42. Genera identified through 

sequencing of PCR products using the MIB-

Rf/Rr primer set. 
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The Str-Rf/Rr primer set was intended to amplify only actinobacteria, specifically within the 

Streptomyces genus. It amplified mostly Streptomyces, though it clearly amplified many other 

genera within the actinobacterial, cyanobacterial, and proteobacterial phyla (Figures 43 and 44). 

In two of the three samples, this set effectively amplified Streptomyces, a known MIB producer. 

In the third sample, it primarily amplified a gene mapping to Sorangium. Sorangium is likely a 

geosmin producer (Lukassen et al., 2019) but there are no known reports of it producing MIB. 

 

 
Figure 43. Phyla identified through sequencing of PCR products using the Str-Rf/Rr primer set. 

 
Figure 44. Phyla identified through sequencing of PCR products using the Str-Rf/Rr primer set. 
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4. MIB Conclusions 

All primer sets displayed high efficiency (within the acceptable range of 90-105%) at their low 

and high annealing temperatures. We were able to amplify 8 water samples with varied MIB levels 

using each of the four primer sets during qPCR. After this, we were able to run the correlations of 

the calculated MIB synthase gene abundance with the detected MIB levels and found that the 

Gaget primer set had the highest correlation at its low and high annealing temperatures (R2 = 

0.5523 and 0.6739, respectively). The Gaget primer set also displayed the best specificity on the 

gel electrophoreses, especially at its higher annealing temperature of 66.3° C. At this annealing 

temperature, the efficiency was found to be adequate, at 92%. After qPCR, the sequencing revealed 

that the Gaget primer set was the only one to amplify 100% of its intended target, cyanobacteria. 

It also displayed the ability to include several cyanobacterial genera, exhibiting the right amount 

of specificity that is essential for further modeling processes. With this, Gaget proves to be the 

best choice of primer for qPCR in the reservoirs sampled in this study and could be used in the 

future for predictive modeling, just as has been done for geosmin. Limitations of this study include 

the extremely low levels of MIB (average of 2.25 ng/L) in the Auburn, Opelika, and Columbus 

reservoirs throughout 2020.  

 

5. Overall Conclusions 

• A series of predictive models were developed relating water quality variables combined 

with genetic data (synthase gene abundance) to concentrations of dissolved geosmin in 

three Southeastern regional drinking water reservoirs. All models have 40-60% predictive 

capabilities for geosmin levels, with Cgeo1 gene abundance being significant in only one 

reservoir. Models were limited by the low-moderate geosmin levels detected throughout 

the sampling season. We anticipate that with greater geosmin levels captured in sampling 

the models would be improved. 

• Multiple regressions were also completed using the water quality and genetic data, with 

the best fit for the City of Auburn Water Resources Department, with an adjusted R2 of 

0.5405. Auburn had the highest geosmin peaks (>30 ng/L), whereas Opelika Utilities and 

Columbus Water Works had consistently low geosmin levels and lower predictive power 

in their subsequent multiple regressions.  
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o Cgeo1 gene abundance improved the Auburn multiple regression (P<0.01). With 

higher geosmin levels and significance shown with the Auburn data, it can be 

concluded that the inclusion of the qPCR data was most effective at predicting 

higher geosmin levels.  

• Sequencing of products using Cgeo1 primer set found Anabaena and Planktothrix as the 

key geosmin producers in the lakes sampled. 

• MIB primer set evaluations found that the Gaget primer (Gaget et al., 2020) has the best 

specificity and adequate efficiency when set at an annealing temperature of 66.3° C. MIB 

gene synthase abundance found using the Gaget primer set during qPCR has the best 

correlation to the MIB levels detected (R2 = 0.5523).  

• Sequencing of MIB qPCR products using the Gaget primer set found Planktothricoides 

and Pseudanabaena as the major genera identified. This knowledge aids in the possibilities 

for the utilities to adapt reservoir management practices, whether it is chemical/physical, 

biological, or mechanical. 

 

5.1. Future Work  

• For the best use of the CART modeling framework, higher geosmin and MIB levels 

should be captured. Though the models produced have reasonably useful predictive 

power, it is senseless to be able to predict such low levels of T&O compounds. The future 

ability to incorporate T&O outbreak data will likely improve prediction power.  

• After evaluation of the four primer sets using the same water sample data, the Gaget 

primer set could be used in future modeling efforts using CART modeling in R to predict 

MIB levels as well. Just as geosmin had low concentrations, MIB had even lower levels 

during this study. To have significant predictions made with this modeling, it is necessary 

to capture higher MIB concentrations.  

• With more time, I would have liked to analyze the confidence with which the organisms 

were matched from the sequencing results for both geosmin and MIB.  

• It would also be of interest to do analysis using both primer sets using sediment samples 

to better include the actinobacterial role for geosmin and MIB. 

• The ability to use mRNA rather than DNA extraction and analysis could be beneficial in 

the future to be able to capture the genetic transcription and therefore the actual gene 
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expression in these samples. The drawback of the use of mRNA is that it is much more 

expensive and difficult to perform, so with the hopes of being able to easily implement 

this at the water utility department this might not be as applicable. 

• With multiple-year datasets incorporating more of this information, drinking water 

utilities could incorporate these models into their routines for better water quality 

management from taste and odor outbreaks.  
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