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Abstract

A variety of weak intermolecular interactions is investigated using both high-accuracy

and approximate methods. A high accuracy potential energy curve for the interaction of two

krypton atoms was produced as a prerequisite for the computation of the most important ther-

mophysical properties of the krypton gas. To obtain the desired spectroscopic accuracy around

the potential miminum, corrections to the “gold standard” CCSD(T) were calculated, including

higher-orders of coupled-cluster theory and the inclusion of relativistic effects. As an addi-

tional requirement for the computation of the second dielectric virial coefficient, similar steps

were taken to produce an accurate analytic form for the interaction-induced isotropic pair po-

larizability for the krypton dimer. The resulting potential and polarizability functions were

among the most accurate in the literature at time of publishing and the thermophysical prop-

erties were in marked agreement with experimental data. The interactions of CO2 and models

of metal-organic frameworks were explored using a variety of wavefunction and density func-

tional methods as a way to evaluate the adequacy of these methods, and the potential multiref-

erence character of such models was considered. The interaction energy is decomposed using

symmetry-adapted perturbation theory (SAPT) to provide insight into the character of the in-

teractions. Lastly, recent work in the advancement and expansion of SAPT is detailed. This

work includes the implementation of the second-order SAPT complete exchange terms using

generalized Coulomb and exchange matrices and density-fitting, as well as the extension of the

recent first-order spin-flip SAPT exchange energy beyond the single-exchange approximation.
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Chapter 1

Introduction and Background

Electronic structure theory, and quantum mechanics in general, provide a unique approach to

the elucidation of chemical problems. Through the application of these theories, a number of in-

teresting chemical phenomena, which are difficult or impossible to investigate experimentally,

can be evaluated with increasingly high levels of accuracy. Additionally, these ab initio meth-

ods can be used to calculate experimentally determinable values for comparison and validation.

With the growth of computing power, these techniques have been adapted and implemented in

a number of computer codes, simplifying the evaluation of otherwise complicated formulas.

Ab initio methods and their computational implementations are not a silver bullet for all ques-

tions and have a number of general issues, with each specific theory or application providing its

own potentially unique concerns. Below, Section 1.1 describes a number of electronic structure

theory methods relevant to the remainder of this dissertation.

An area where the application of ab initio methods has been successful is the investigation

of weak intermolecular interactions. This class of interactions, sometimes referred to as non-

covalent interactions, covers a somewhat varied collection of interactions derived from both

classical and quantum mechanical origins. The quantum character of some of these interac-

tions necessitates an ab initio treatment to be correctly described, and a correlated method at

that. Two specific approaches to the investigation of weak intermolecular interactions will be

discussed in Section 1.2, along with the considerations required to evaluate and ensure their

accuracy.
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1.1 Electronic Structure Theory

The most common interest of electronic structure theory1 is the solution of the time-independent

Schrödinger Equation

HΨ = EΨ (1.1)

where H is the non-relativistic Hamiltonian collecting all interactions between particles in the

system, Ψ is a wavefunction of the system and an eigenfunction of the Hamiltonian, and E is

the energy eigenvalue associated with the wavefunction. The full Hamiltonian is represented in

atomic units as

H = −
∑
A

1

2MA

∇2
A −

∑
i

1

2
∇2
i −

∑
iA

ZA
riA

+
∑
A 6=B

ZAZB
rAB

+
∑
i 6=j

1

rij
(1.2)

where the lowercase indices iterate over the electrons in the system, the uppercase indices

iterate over the nuclei of the system, ZA is the charge of a given nucleus, MA is its mass, rxy

is the distance between two particles, and∇2
x is the Laplacian of a particle. The first two terms

are the kinetic energies of the nuclei and electrons, respectively, and the last three terms are the

electron-nuclei, nuclei-nuclei, and electron-electron Coulombic interactions, respectively.

The Born-Oppenheimer Approximation proposes that since the nuclei of a system move

at a much slower rate than the electrons, the nuclei can be considered to be fixed in place with

the electrons moving around them.2 Conversely, it can also be said that the electrons in the

system move so quickly as to instantaneously adjust to any motion of the nuclei. This approx-

imation leads to a separation of the wavefunction and Hamiltonian in terms of the electronic

and nuclear parts. The electronic part is explicitly dependent on the electronic coordinates r

and parametrically dependent on the nuclear coordinates R and has the electronic Hamiltionian

Helec = −
∑
i

1

2
∇2
i −

∑
iA

ZA
riA

+
∑
i 6=j

1

rij
. (1.3)

The action of this Hamiltonian on the electronic part of the wavefunction produces an electronic

energy, Eelec. It is helpful to define an operator hi as the sum of the first terms in Eq. (1.3)
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to simplify this equation into a one-electron and a two-electron part. The total energy, Etot, is

the sum of the electronic energy and the nuclear repulsion energy, WAB(R) =
∑
A 6=B

ZAZB
rAB

, and

serves as the potential for the nuclear Hamiltonian in the Born-Oppenheimer approximation.

This potential is called the potential energy surface (PES), and its constituent one-dimensional

slices are called potential energy curves (PECs). From here, we begin addressing ways of

solving for the electronic energy. Much of the contents herein are drawn from a selection of

texts on this topic, particularly Refs 1, 3, and 4.

1.1.1 Hartree-Fock Theory

Hartree-Fock (HF) theory, also called Self-Consistent Field (SCF) theory,5–7 is the basis for a

number of wavefunction methods and the first approximation to a solution for the electronic

Schrödinger Equation

HelecΨelec = EelecΨelec, (1.4)

where Ψelec is the electronic part of the total wavefunction. To be able to solve for Eelec, the

form of Ψelec first needs to be defined.

The electronic wavefunction is a function of the spatial and spin coordinates of the elec-

trons and, according to the Pauli principle, should be antisymmetric with the interchange of

spatial and spin coordinates of any two electrons. These properties are enforced by represent-

ing the N -electron wavefunction as a Slater determinant built of one-electron spinorbitals

Ψelec =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(r1) χ1(r2) . . . χ1(rN)

χ2(r1) χ2(r2) . . . χ2(rN)

...
... . . . ...

χN(r1) χN(r2) . . . χN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.5)

where {χN} are a set of orthonormal molecular spinorbitals.8 In general, a spinorbital is the

product of a spatial orbital ψ and one of the spin functions α or β. This set of spin functions

is complete and orthonormal. In the case of a closed-shell system, the set of spinorbitals is

3



the product of some set of spatial orbitals {ψN
2
} and each of the spin functions to produce N

2

doubly-occupied molecular orbitals (MOs).

It is common to represent the spatial orbitals as linear combinations of a basis set of hy-

drogenic atomic orbitals (AOs)

ψi =
∑
µ

Ciµφµ (1.6)

where {φµ} are a set of µ atomic orbitals, and Ciµ is the coefficient of the µth atomic orbital

in the ith molecular orbital. If this basis set were complete, the molecular orbitals could be

represented exactly, but it is practically infeasible to work with a complete basis set. Addition-

ally, the atomic orbitals are normalized, but are not necessarily orthogonal to those centered on

different nuclei. The most preferable form of these basis functions would be a Slater function,

which best replicates the expected qualities of the molecular orbitals. Unfortunately, Slater

functions lead to difficulties during the computation of common terms needed for electronic

structure calculations, specifically the two-electron integrals that will appear later in this sec-

tion. To overcome this issue, the Slater orbitals are approximated by a linear combination of

Gaussian orbitals, which better facilitate the calculation of the two-electron integrals.

HF theory takes advantage of the variational principle and the application of the linear

variational method. The variational principle can be summarized as the fact that any normalized

wavefunction ψA that is an approximation to the ground state wavefunction ψ0 of a system will

have an energy EA, calculated as the expectation value of the Hamiltonian, that is an upper

bound of the true ground state energy E0,

EA =

∫
ψ∗A(r)HψA(r)dr = 〈ψA|H|ψA〉 ≥ E0. (1.7)

Based on this principle, the best approximate function can be obtained by minimizing its corre-

sponding energy. When the MOs of the Slater determinant are represented as a linear combina-

tion of AOs, the optimal coefficients can be determined by minimizing the Roothaan equations9

FC = SCe, (1.8)
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where C are the coefficients relating the MOs to the AO basis, e are the energies of the MOs,

S is an overlap matrix with elements 〈µ|ν〉, and F is the Fock matrix. The Fock matrix is the

HF approximation to the electronic Hamiltonian. The elements of the matrix are

〈φµ|F |φν〉 = 〈φµ|h|φν〉+ 〈φµ|J |φν〉 − 〈φµ|K|φν〉 (1.9)

where 〈φµ|h|φν〉 is the expectation value of the one-electron operator h,

〈φµ|J |φν〉 = Jµν =
MOs∑
j

AOs∑
λσ

CjλCjσ

∫
φ∗µ(r1)φν(r1)

1

r12
φ∗λ(r2)φσ(r2)dr1dr2

=
MOs∑
j

AOs∑
λσ

CjλCjσ 〈µλ|νσ〉

=
AOs∑
λσ

Pλσ 〈µλ|νσ〉 ,

(1.10)

and

〈φµ|K|φν〉 = Kµν =
∑
λσ

Pλσ 〈µλ|σν〉 . (1.11)

The term in Eq. (1.10) is called a Coulomb integral, and also defines the two-electron integrals

〈µλ|νσ〉 and the density matrix Pλσ. Eq. (1.11) is the exchange integral that arises from the

Slater determinant form of the wavefunction. The form of these integrals is the origin of HF’s

classification as a mean-field method, since each electron experiences an average interaction

with all other electrons and is not correlated to their instantaneous positions.

At this point, two difficulties appear in the HF method. The first is the presence of S in Eq.

(1.8), making this a pseudoeigenvalue problem. This issue is due to the lack of orthogonality

in the basis functions. Diagonalizing S reduces it to identity, giving an orthonormal basis

and simplifying the equations to an eigenvalue problem that is solvable. The greater issue is

the presence of the coefficients Ciµ in the density matrix and the density matrix’s presence in

the Fock matrix. The HF method is attempting to find the optimal values of Ciµ, which are

in turn required in the equations being solved. A remedy is found in the iterative solving of

the equations. With some initial values for Ciµ, the equations can be solved for a new set of

5



coefficients. These coefficients are used to construct a new density matrix and calculate the HF

electronic energy

EHF
elec =

∑
µν

1

2
Pµν(hµν + Fµν). (1.12)

This new density matrix is used to solve for another new set of coefficients and the process

continues until the results between consecutive iterations are determined to be the same within

a predetermined criterion.

HF is commonly used in its restricted formulation RHF, where the equations are simpli-

fied based on the assumption that all orbitals are doubly occupied and that the spatial parts of

orbitals with α and β are identical. The restricted formalism can be extended to cases with

singly occupied orbitals as restricted open-shell HF (ROHF), or the system can be treated in an

unrestricted way as UHF.

1.1.2 Electron Correlation and Full Configuraton Interaction

HF is a good first approximation to the electronic structure of the ground state, even with an

incomplete basis set and its mean field treatment of electron correlation. But it has been found

that the lack of electronic correlation often leaves HF results quantitatively inaccurate, and

qualitatively inaccurate in some cases. A simple example of HF’s failure is the interaction

within any noble gas dimer. For these systems, HF predicts a repulsive potential at short range

that decays to zero at infinite separation, while it is known that there is a shallow attractive well

at some short distance for each dimer. The correlation energy that is absent in the HF result is

defined as

Ecorr = E0 − EHF (1.13)

i.e. as the difference between the exact ground state energy and the HF approximation. As

the EHF is always an upper bound of E0, the correlation energy Ecorr will always be negative.

There are a number of methods that attempt to recover some or all of Ecorr, some of which will

now be discussed.

The completion of an HF calculation provides a number of one-electron molecular spinor-

bitals equal to two times the number of basis functions used. While it is possible to use a basis

6



set with the minimum number of basis functions to accommodate the N electrons, most calcu-

lations are performed using a basis set with more functions than the number of electrons in the

system. As the number of basis functions approaches infinity, the molecular spinorbitals are

able to approach their exact form. The HF approximation to the ground state of the system is

the wavefunction where the N electrons occupy the N molecular spinorbitals with the lowest

energies. While this is the best approximation for a single determinant representation of the

wavefunction, it is not necessarily the best approximation that can be constructed from these

components.

Using the molecular spinorbitals from the HF calculation, it is possible to construct a

number of alternate determinants where one or more molecular spinorbitals that are occupied

in the HF ground state have been replaced with an equivalent number of unoccupied, or virtual,

spinorbitals. These determinants can be used as a basis for the construction of a new trial

function that is a linear combination

Ψ = c0ψ0 + c1ψ1 + c2ψ2 + ... (1.14)

where ψ0 is the HF wavefunction, ψ1 is representative of all determinants where one spinorbital

occupied in the HF wavefunction has been replaced with a virtual spinorbital, ψ2 is represen-

tative of two such interchanges, and the expansion continues until all N electrons have been

moved into virtual spinorbitals. The coefficients in Eq. (1.14) can then be optimized in a linear

variational scheme as in HF to minimize the electronic energy.

This approach is called Configuration Interaction (CI), or Full CI (FCI) in the case where

all possible determinants are included in the expansion. FCI is the exact result for a given basis

set, containing all information that can be recovered. FCI is also one of the most computation-

ally expensive methods, as the number of determinants that need to be included grows as
(
2M
N

)
with the number of electrons N and the basis set size M . This scaling becomes unreasonable

for conventional computers very quickly, and so approximations must be made to alleviate the

cost growth while maintaining as much accuracy as possible.

7



1.1.3 Dynamic Correlation Methods

The FCI coefficients provide a useful framework to discuss electronic correlation. Within the

large expansion of determinants, it is often seen that the HF ground state has the largest coef-

ficient and that all others contribute some smaller part to the FCI wavefunction. These small

contributions are associated with the instantaneous correlation of the electrons to each other’s

position. This kind of correlation is referred to as dynamic correlation. It is also generally the

case that coefficients get smaller with more virtual excitations separating a determinant from

the HF wavefunction. Based on this observation, a hierarchy of methods can be defined by

limiting the expansion in Eq. (1.14) based on the number of virtual excitations. As an exam-

ple, the most common of these methods is Configuration Interaction with Single and Double

Excitations (CISD), where the expansion is truncated to only the terms explicitly shown in Eq.

(1.14). The inclusion of more and more excitations (e.g. CISDT or CISDTQ) improves the

calculated results toward FCI, but likewise increases the cost of the calculation.

A somewhat related, alternative approximation is the Coupled-Cluster Theory (CC).10 In

CC, the exact wavefunction is constructed as

Ψ = eTψ0 =
(

1 + T +
T2

2!
+

T3

3!
+ ...

)
ψ0 (1.15)

where T is the cluster operator

T = T1 + T2 + T3 + ... (1.16)

Tn is an operator that produces all possible n-tuple excited determinants from the HF reference

state. If the complete cluster operator is used this method becomes equivalent to FCI, but the

cluster operator is often truncated to a particular excitation level similar to the CI truncations.

Similar to CISD, truncation to double excitations leads to coupled-cluster with singles and

doubles (CCSD). When the cluster operator is truncated to a given number of excitations, the

Taylor expansion in Eq. (1.15) leads to an approximation to higher excitations as products of

8



lower excitations (e.g. a quadruple excitation from the product of two double excitations). It is

this feature of CC that provides its key improvement over CI, size consistency.

Size consistency is best explained through an example like the previously mentioned noble

gas dimers. The interaction energy (discussed in greater detail in Section 1.2) between two

noble gas atoms at a particular distance is the difference between the total energy of the dimer

at that distance and the energies of the lone atoms. If this energy is calculated using CISD,

each of the calculations contains up to double excitations. When the difference is calculated,

the monomer values can contain cases where both lone atoms are doubly excited. These cases

correspond to a quadruple excitation of the dimer and are therefore unreachable for the given

level of theory, resulting in an uneven handling of the dimer and monomers and skewing the

interaction energy. These same values calculated at the CCSD level would contain the same

possible excitations, as the double excitations for both monomers would appear together in the

Taylor expansion for the dimer.

Møller-Plesset perturbation theory (MP), a particular application of the more general Rayleigh-

Schrödinger perturbation theory (RS), takes a slightly different approach to the calculation of

the correlation energy.11 The basis of perturbation theory is that the solution of a difficult prob-

lem can be found by starting from a similar problem that is easier to solve. This solvable part

is then perturbed into the problem of interest. This process can be expressed as the partitioning

H = H0 + λV, (1.17)

where H is the difficult operator of interest, H0 is the similar, solvable operator, V is the per-

turbation operator that contains the difference between the two problems, and λ is an ordering

parameter. For the calculation of the electronic energy, this can be done by defining the un-

perturbed (simpler) problem as the HF problem and the perturbation as the difference between

HF and the exact result. By inserting Eq. (1.17) into Eq. (1.4), performing a Taylor expansion

around λ, and grouping the resulting equations into equalities involving like powers of λ, one

obtains up to an infinite number of corrections to the unperturbed problem. The unperturbed
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energy and the first two corrections are acquired from the following terms

E
(0)
0 = 〈ψ(0)

0 |H0|ψ(0)
0 〉 (1.18)

E
(1)
0 = 〈ψ(0)

0 |V |ψ(0)
0 〉 (1.19)

E
(2)
0 = 〈ψ(0)

0 |V |ψ(1)
0 〉 , (1.20)

where E(n)
0 and ψ(n)

0 are the nth order energy and wavefunction corrections, respectively. It can

be shown that the first-order MP correction, E(0)
0 +E

(1)
0 , is equivalent to the HF energy, and that

improvements are seen at the second-order and onward (MPn with n ≥ 2). The second-order

correction to the electronic energy, a method called MP2, is known to have the form

E
(2)
0 =

1

4

∑
ijab

| 〈ij||ab〉 |2
ei + ej − ea − eb

(1.21)

where i and j index the occupied orbitals, a and b index the virtual orbitals, and the integrals

〈ij||ab〉 are antisymmetric two-electron integrals equal to 〈ij|ab〉 − 〈ij|ba〉 .

As an aside before moving on, it should be noted that perturbation theory can be applied in

a number of other scenarios. The application of this technique to the calculation of interaction

energies will be discussed in section 1.2.4. Another application is as a further improvement of

truncated CC methods. For instance, CCSDT can be approximated in a perturbative manner

from a CCSD calculation. The resulting method is termed CCSD(T), where the parentheses

imply that the triples have been calculated perturbatively.12 CCSD(T) is a considerably faster

calculation than CCSDT and is known to give high quality results, earning it the nickname as

the ”gold standard” of computational chemistry.13–15

1.1.4 Nondynamical Correlation Methods

Returning to the FCI coefficients, it is possible that the HF wavefunction is not the only de-

terminant with a considerable contribution to the FCI wavefunction. For some systems, the

ground state cannot be adequately approximated by a single determinant due to degenerate or
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near degenerate states. An example of such a system is the singlet O2 molecule, where one π?

orbital is doubly occupied and the other is empty. While both electrons occupy the same π?

orbital, they are equally likely to be found in either π? orbital. Therefore, both configurations

have equivalent contribution to the FCI wavefunction and ignoring either is a poor approxi-

mation to this result. This kind of correlation is referred to as strong, static, or nondynamical

correlation.

Multiconfigurational Self-Consistent Field Theory (MCSCF) can be viewed as an im-

provement on SCF that goes beyond a single determinantal treatment. It is reasonable to

describe the basic idea as a highly selective CI truncation. The most important electronic

configurations, determined by chemical or physical intuition, are selected and the energy mini-

mized with respect to their coefficients. One caveat solving for such a multireference problem

is the adequacy of the MOs for the description of all important states. Returning to the O2

example, assume that the pair of electrons was placed arbitrarily in one of the π orbitals and the

HF calculation performed. Now, the occupied π orbital was optimized to minimize the energy,

while the other π orbital was not necessarily as well optimized. The configuration made by

moving the electrons from the optimized one to the unoptimized one is therefore not equiva-

lent. The solution to this issue is the simultaneous optimization of the orbitals along with the

CI coefficients, which is specifically the case in MCSCF.

There are various methods for selecting the configurations to include in the MCSCF cal-

culation. The method called Complete Active Space Self Consistent Field theory (CASSCF)

selects the configurations by identifying a number of electrons and a specific set of MOs, called

the active space, and producing all possible configurations from the distribution of those elec-

trons within the active space.16 This selection can be represented as (# of electrons, # of or-

bitals), e.g. two electrons distributed in four orbitals would be (2, 4).

When performed with the correct configurations, MCSCF is able to capture the most im-

portant static correlation, but is still missing the dynamic correlation from other configura-

tions. Multireference Configuration Interaction (MRCI) is the adaptation of the truncated CI

methods to an MCSCF ground state, and provides a way to capture both dynamic and static

correlation. This specifically denotes truncated methods, as a FCI calculation will reach the
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same result from an HF or MCSCF reference as long as the same basis set is used. Addition-

ally, the other methods mentioned for the calculation of dynamic correlation have formulations

based on the usage of a multiconfigurational reference. Second-Order Complete Active Space

Perturbation Theory (CASPT2)17–19 and Second-Order n-Electron Valence Perturbation The-

ory (NEVPT2)20–22 are two implementations of Multireference Perturbation Theory (MRPT).

These formulations of MRPT and the Multireference Coupled-Cluster Theory (MRCC)23 are

similarly motivated to their single reference equivalents, though some additional complexity

arises from dealing with multiple configurations and leads to increased computational cost.

Some of the complexities will be discussed in later sections.

1.1.5 Density Functional Theory

The last of the general purpose electronic structure methods that will be mentioned here is also

the most different from the others. Density Functional Theory (DFT) arose from a desire to

reformulate the problem of finding the energy of a molecular system in terms of a physical

observable, the electronic density ρ(r), instead of the wavefunction. The electron density is the

square of the wavefunction, which can be expressed as

ρ(r) = 2

N/2∑
i

|ψi(r)|2. (1.22)

The works of Hohenberg, Kohn, and Sham proved24 and provided25 a way to determine the

energy as a functional of the electronic density

E[ρ(r)] = T [ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + Vxc[ρ(r)] (1.23)

where T [ρ(r)] is the kinetic energy of the non-interacting electrons, Vne[ρ(r)] is the nuclear-

electronic attraction, Vee[ρ(r)] is the classical electron-electron repulsion, and the exchange-

correlation functional Vxc[ρ(r)] collects a number of classical and quantum effects. The result-

ing method is called Kohn-Sham DFT, or Kohn-Sham theory (KS).
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If the exact form of the exchange-correlation functional were known, DFT would be able

to provide the exact solution for a given system.26 That said, the exact form of this functional is

not known, and in its place are a number of approximations in an ever growing hierarchy. The

general process of calculating the electronic energy with a given functional is similar to HF in

both methodology and cost. The results can be vastly superior due to the correlation effects in

DFT. Care does need to be taken with DFT methods, as the approximate exchange-correlation

functionals are difficult to improve in any systematic way and their results can vary in quality

from system to system.

1.2 Weak Intermolecular Interactions

Weak intermolecular interactions are ubiquitous in the world at large. They have key influ-

ence on such properties as crystal structure, protein structure, and adsorption. Despite the

widespread importance of this class of interactions, they can be distinctly difficult to handle in

a computational fashion. The size of these values is often many orders of magnitude smaller

than the energies of the systems for which they are being calculated. To accurately model weak

interactions, a number of factors have to be taken into consideration and will be discussed here.

1.2.1 Definitions of Interaction Energy

The interaction energy Eint for the interaction of two monomers A and B can be defined as

Eint = EAB(AB)− EA(A)− EB(B), (1.24)

where EAB(AB), EA(A), and EB(B) are the energies of the dimer and monomers. In this

context, “dimer” will refer to an interacting complex of “monomer” subsystems, regardless of

the homogeneity or heterogeneity or the complex. The subscripts imply that the calculations

were performed in the basis set of the dimer or one of the monomer subsystems. This definition

is the mathematical representation of the statement that the interaction energy is the difference

between the energy of the interacting monomers and the monomers at an infinite separation.

Therefore, to calculate the interaction energy, one can perform three calculations to obtain some
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approximation of these values and calculate this difference. This procedure is referred to as the

supermolecular method.

Somewhat obviously, it is important that the energies of the dimer and monomers are

calculated in an equal fashion, otherwise the resulting value of Eint will be skewed in some

way. One potential imbalance inherent to this first definition is the selection of the basis sets

for the dimer and monomers. Eq. (1.24) states that the energies of the dimer and subsystems

are calculated in their own basis set, i.e. the dimer calculation is performed in a larger basis

set than either of the monomers. This means that the orbitals of the monomer calculations are

more restricted than their counterparts in the dimer calculations. This issue is termed basis set

superposition error (BSSE), and a solution is found in the counterpoise correction of Boys and

Bernardi,27

ECP
int = EAB(AB)− EAB(A)− EAB(B) (1.25)

where the terms on the right hand side are equivalent to the terms in Eq. (1.24) but with the

common subscript implying that they are all calculated in the dimer basis set. As the size of the

basis set approaches infinity, the corrected and non-corrected definitions become equivalent.

Another way of defining the interaction energy was used in the work described in Chapter

3,

Eint = EAB(AB)− E∞AB(AB). (1.26)

This definition replaces the infinite reference in Eqs. (1.24) and (1.25), (E(A) + E(B)), with

the value from a single calculation of the dimer where the monomers are at some large distance

that approximates infinity, E∞AB(AB). The benefit of this version of the procedure is that it

circumvents issues of size consistency in the treatment of the dimer and monomers.

1.2.2 Basis Set Completeness

On the topic of basis sets, the incompleteness of the basis set is one of the leading limitations in

the accuracy of electronic structure calculations. The closer the basis set comes to the complete

basis set limit (CBS), the closer each method comes to its exact result. The balance to this is

that increasing the basis set size also increases the cost of a given calculation. To put this fact
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into perspective, HF scales as O(N4) with the basis set size N , while MP2 scales as O(N5)

and CCSD(T) scales as O(N7). These steep scalings put substantial limitations on how close

to the CBS limit one can get for a system, limiting some calculations to only a minimal basis

set and outright preventing others. While the HF energy converges to the CBS limit quickly,

correlation energy does so at a much slower rate. This slow convergence necessitates either

large basis sets or some alternative way of reaching the CBS limit.

Extrapolation provides a way of approximating the CBS limit from smaller basis sets.

Basis set families have been designed so that they successively capture more and more of the

correlation energy. By performing calculations in two or more of these basis sets, the CBS limit

can be approximated by extrapolating from these results. One such family is the Dunning-type

correlation consistent basis sets, denoted as cc-pVXZ (XZ where X =D, T, Q, 5, ...)28, 29

The cardinal number X primarily indicates the number of basis functions used to represent the

valence orbitals, but the Dunning-type sets follow a specific design pattern that is also conveyed

in the cardinal number. If the energy of a system is calculated in consecutive basis sets, the CBS

value of Ecorr can be approximated as

ECBS
corr ≈

EmZ
corrm

3 − EnZ
corrn

3

m3 − n3
(1.27)

where m and n are the cardinal numbers of the basis sets and n = m − 1.30 This correlation

energy is added to the HF energy from the higher basis set, as it is assumed to be sufficiently

converged. An extrapolation to CBS from two given sets will be denoted as (set1, set2), where

set2 has the larger cardinal number.

In the particular case of weak intermolecular interactions, there are some additional con-

siderations. Because the interactions of interest are relatively long-ranged (compared to cova-

lent bonds), the basis set needs to allow the electron density between monomers to interact at

a distance. One way of accomplishing this is the use of diffuse basis functions that cover a

wide spatial range. For Dunning-type sets, the prefix aug- implies the set has had diffuse, or

augmentation, functions added to it, e.g. aug-cc-pVXZ (aXZ).
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Another way of ensuring that the basis set is able to properly represent the electron density

between the interacting systems is the addition of midbond functions.31 These are additional

basis functions that are added somewhere between the interacting systems, usually along the

line between the centers of mass. The addition of midbond functions increases the coverage of

the basis set in the space where the interaction is most likely to occur. The selection of what

kind of functions and how many to use is not rigidly specific; however, one simple method is

to use the basis functions for the hydrogen atom from whichever set is being used for the rest

of the system. When used with Dunning sets, this prescription with be signified by the notation

cc-pVXZM (XZM).

1.2.3 Method Selection

Returning to the discussion of potential imbalances in the methods used to calculate the en-

ergies, the first and most important fact is that the energies of the dimer and monomers must

be calculated using the same level of theory. If Eint is calculated as the difference between

E(AB) calculated with HF, E(A) calculated with MP2, and E(B) calculated with FCI, the

resulting value is effectively useless due to the wildly varying treatment of correlation in these

systems. Stated more succinctly, the usefulness of the supermolecular method is dependent on

a cancellation of errors between its component values. The usage of multireference methods

introduces another way of potentially unbalancing the treatment of the components. Care must

be taken to ensure that the active space of the dimer contains all orbitals corresponding to those

present in the monomer active spaces.

Understanding that the method selection needs to be balanced for the component calcula-

tions, the next consideration is the quality of the results being acquired. Because Eint is much

smaller in magnitude than E(AB), E(A), and E(B), it is critical that these values be calcu-

lated with a high degree of accuracy to ensure that Eint is not drowned out by error. As stated

above, FCI is the most accurate method, but is too computationally costly to perform for all but

the smallest systems. CCSD(T) is known to provide high accuracy results when calculated in

a large enough basis set, and at a significantly lower cost than FCI. Even still, CCSD(T) in a

reasonably sized basis set is also too costly for many systems of interest.
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One way of reaching a desired level of accuracy is by starting from the best method and

basis set available, and then building up a number of corrections from superior methods in

smaller basis sets. These composite methods are predicated on the idea that the improvements

of one method over another are similar between different basis sets. An example build up of

such a composite method could begin with a calculation at the MP2/(aQZ, a5Z) level. This

result can then be improved by the addition of a CCSD correction from the aQZ set

δaQZCCSD = ECCSD/aQZ
corr − EMP2/aQZ

corr , (1.28)

providing an approximation to CCSD/CBS. This result could be further improved by a correc-

tion to CCSD(T),

δaTZCCSD(T ) = ECCSD(T )/aTZ
corr − ECCSD/aTZ

corr , (1.29)

and a correction to CCSDT(Q),

δaDZCCSDT (Q) = ECCSDT (Q)/aDZ
corr − ECCSD(T )/aDZ

corr , (1.30)

and so on. The final result would be described as the sum of these corrections, MP2/(aQZ, a5Z)

+ δaQZCCSD + δaTZCCSD(T ) + δaDZCCSDT (Q). This kind of composite scheme can be used to account for

a number of different corrections, including core-core and core-valence correlation, relativistic

effects, or improvements to the Born-Oppenheimer Approximation.

As mentioned before, DFT can also provide results with considerably high accuracy at a

low cost, but the different approximate functionals need to be tested for their adequacy in deal-

ing with a particular type of system. This has been accomplished by benchmarking databases

of molecular compounds and complexes with high levels of theory and comparing the results

of the different functionals.32 This practice provides a way of statistically determining the

appropriateness of a functional for certain interactions or compounds, and provides a kind of

confidence value to the result. To obtain high quality interaction energies from DFT, it is usually

necessary to include some correction for dispersion. One such correction is Grimme’s empir-

ical pairwise correction, the most popular version being D3.33–36 Updated parameters for this
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correction were published recently, with the intention of improving the results and providing a

more even treatment of intermolecular distances other than the minimum.37

1.2.4 Symmetry-Adapted Perturbation Theory

Turning away from the supermolecular method now, we introduce an alternative method of cal-

culating the interaction energy. Symmetry-adapted perturbation theory (SAPT) builds from the

same basic starting point as Møller-Plesset perturbation theory, but is focused on the interaction

energy between monomers.38 In contrast to the supermolecular method, SAPT calculates the

interaction energy directly instead of as a difference of total energies. Consequently, SAPT is

not burdened by several of the considerations outlined in the preceding sections. Additionally,

SAPT can provide a decomposition of the interation energy into physically meaningful compo-

nents. These include electrostatics (the Coulombic interactions between the charged particles

of the monomers), induction (the effect that the electric field of one monomer has on the other),

and dispersion (the instantaneous development of multipole interactions arising from the cor-

related motion of electrons between monomers). These components are further accompanied

by their exchange counterparts, arising from the Pauli exclusion principle.

SAPT partitions the Hamiltonian as

H = HA +HB + V, (1.31)

where HA is the Hamiltonian for monomer A, HB is the Hamiltonian for monomer B, and V

is the pertubation operator that collects all interactions between particles from A and B. The

perturbation operator has the form

V =
∑
AB

ZAZB
rAB

−
∑
j,A

ZA
rjA
−
∑
i,B

ZB
riB

+
∑
i,j

1

rij
, (1.32)
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where A are the nuclei of monomer A, B are the nuclei of monomer B, i are the electrons of

monomer A, and j are the electrons of monomer B. In SAPT, the unperturbed dimer wavefunc-

tion is defined as the product of the wavefunctions of the monomers,

Ψ(0) = ΨA
0 ΨB

0 , (1.33)

making the zeroth-order energy the sum of the monomer ground state energies,

E(0) = EA
0 + EB

0 . (1.34)

From this point, the same RS corrections (Eqs. (1.19) and (1.20)) can be applied to SAPT

to produce the first-order correction

E
(10)
RS = 〈Ψ(0)|V |Ψ(0)〉

=
∑
AB

ZAZB
rAB

−
∑
j

〈ψj|A|ψj〉 −
∑
i

〈ψi|B|ψi〉+
∑
ij

〈ij|ij〉

= V0 +
∑
j

Ajj +
∑
i

Bii +
∑
ij

〈ij|ij〉 ,

(1.35)

where i indexes the spinorbitals of monomer A, j indexes the spinorbitals of monomer B, V0

is the nuclear repulsion between monomers, Ajj is a one-electron integral over the nuclear po-

tential of monomer A, and Bii is a one-electron integral over the nuclear potential of monomer

B. The negative signs in the second line of Eq. (1.35) are folded into the definitions of Ajj

and Bii. The second index in the superscript (10) denotes that the reference is at the HF level

and no intramolecular correlation has been included. This first-order correction is the electro-

static energy E(10)
elst between the two monomers, as can be seen from the terms in Eq. (1.35).

Furthermore, the second-order RS correction can be broken down into induction (both B→A

and A→B) and dispersion. The RS corrections derived in this way are sometimes called the

polarization terms.
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To obtain the exchange components, the dimer wavefunction first needs to be inspected.

The dimer wavefunction should be antisymmetric with respect to the interchange of coordi-

nates for any two electrons, but the SAPT zeroth-order wavefunction is not antisymmetric with

respect to the interchange of coordinates for electrons on different monomers. The dimer wave-

function has to be properly antisymmetrized to acquire the exchange energy. This symmetry

adaptation can be accomplished in various ways based on where the symmetry enforcement

enters the theory.38 The most common method of symmetry adaptation is the Symmetrized

Rayleigh-Schrödinger (SRS) theory,39 where the wavefunction corrections are acquired from

RS and an antisymmetrizer is introduced in the formulas for the energy corrections. The first-

order SRS correction is

E
(10)
SRS = E

(10)
elst + E

(10)
exch =

〈Ψ(0)|VA|Ψ(0)〉
〈Ψ(0)|A|Ψ(0)〉 (1.36)

where A is an antisymmetrizer. This correction is further represented as

〈Ψ(0)|VA|Ψ(0)〉
〈Ψ(0)|A|Ψ(0)〉 =

V0S +
∑

ir BirS ir +
∑

jr AjrSjr +
∑

ijrs 〈ij||rs〉 S ij,rs
S , (1.37)

where r and s index occupied spinorbitals on both monomers, S is the determinant of the

overlap matrix S of both monomers

S =

Sii Sij

Sji Sjj

 =

 1 Sij

(Sij)
T 1

 , (1.38)

S ir is a first cofactor of the overlap matrix, and S ij,rs is a second cofactor of the overlap matrix.

S ir is constructed by deleting the row i and column r from the overlap matrix and multiplying

the determinant of this reduced matrix by (−1)i+r. The second cofactor extends this process

to an additional row and column, and the new determinant is multiplied by (−1)i+j+r+s. A

second cofactor has the following relationship with the first cofactors,

S ij,rs =
1

S (S irSjs − S isSjr). (1.39)
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Cramer’s Rule can be applied to relate the overlap matrix and its cofactors in the following way,

Dri =
S ir
S (1.40)

where Dri are elements of the inverse of the overlap matrix, D = S−1. Taking advantage of

these relations, the terms in Eq. (1.37) can be rewritten as

E
(10)
SRS = V0 +

∑
ir

BirDri +
∑
jr

AjrDrj +
∑
ijrs

〈ij||rs〉 (DriDsj −DsiDrj) (1.41)

Higher order SRS corrections provide the exchange counterparts to the second and higher order

RS corrections.

The above method provides the complete E(10)
exch, because the complete antisymmetrizer is

used.40 It is commonplace, however, to use an approximation of the complete antisymmetrizer

A ≈ AAAB(1 + P), P = −
∑
ij

Pij (1.42)

wherePij are the single-exchange operators that exchange pairs of electrons between monomers.

This is called the single-exchange, or S2, approximation because of the limitations it puts on the

exchange between monomers.38 While widely used in SAPT, the S2 approximation is known

to break down at short intermolecular distances.

A hierarchy of SAPT results are derived from the number of terms used to calculate the

interaction energy. The simplest of these is referred to as SAPT0,41 defined as

ESAPT0
int = E

(10)
elst + E

(10)
exch + (E

(20)
ind + E

(20)
exch−ind + δE

(2)
HF ) + (E

(20)
disp + E

(20)
exch−disp). (1.43)

The sum of the terms collected in the first set of parentheses is considered the induction energy,

and the sum in the second set is considered the dispersion energy. The terms E(20)
ind and E(20)

disp

are the induction and dispersion parts of the second-order RS correction, while E(20)
exch−ind and

E
(20)
exch−disp are their exchange counterparts from the second-order SRS correction. The term

δE
(2)
HF is the difference between the supermolecular HF Eint and the sum of the first four terms
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on the R.H.S. of Eq. (1.43). HF intrinsically contains some higher orders of induction and

this term is relatively cheap to include. As implied above, the reference for practical SAPT

calculations tends to be from the HF level. As is typical, the simplest case is a closed-shell

RHF reference. For open-shell systems, ROHF and UHF based SAPT0 have been derived.42–44

1.2.5 Applications of Potential Energy Surfaces

The effective calculation ofEint as a function of the degrees of freedom between the interacting

molecules allows for the development of an approximate PES (or PEC). Though these poten-

tials neglect potential many-body effects, a number of quantities of interest can be extracted

from them. The PES, as defined above, is the potential associated with atomic movement,

which can be used to solve the nuclear part of the Schrödinger equation. The results of this part

of the equation provide information about the rotational and vibrational behavior of the system,

which can be used to predict rovibrational spectra.45, 46 Other quantities that can be derived

from the PES include improvements to ideal gas approximations, such as the virial coefficients

for gas properties. The PES also provides the information necessary to calculate various cross

sections of collisions. Such cross sections play a role in the calculation of transport properties,

such as viscosity, which are based on the interactions within the system.47 Additionally, scat-

tering cross sections can be calculated to predict the results of various experimental methods.

Characteristic points of the PES can be used to identify transition states of reactions. Further-

more, the lowest energy pathway connecting the transition state and related minima provides

an approximation of the reaction pathway. The potential energy surface can also be used in

simulations of condensed phase to predict properties such as radial distributions.48

1.3 Outline of Dissertation

The remaining chapters of this dissertation will be organized as follows. Each chapter will

begin with an overview of the project and topics particular to it. Chapter 2 discusses the pre-

requisite ab initio calculations for the computation of selected thermophysical properties and

second virial coefficients of the krypton gas. Next, Chapter 3 summarizes the investigation of

the interactions between CO2 and representative models of metal-organic frameworks. Lastly,
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Chapter 4 describes recent work in expanding the capabilities of SAPT calculations. These

chapters recompile and expand on the works submitted in partial fulfillment of this disserta-

tion, which can be found in Appendices A-D.
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Chapter 2

Theoretical Calculations for the Kr Gas

With the growth of computational chemistry, it has become possible to produce highly accu-

rate PESs for many systems of interest. A particular category of systems that have attracted

repeated attention is the collection of noble gas dimers.45–47, 49–52 With the accuracy of such

potentials, theoretical calculations of thermophysical properties for these systems can have es-

timated uncertainties as good as, or smaller than, the most advanced experimental data.47, 51–57

To this end, a state-of-the-art PEC for the Kr dimer was developed, going beyond the CCSD(T)

standard to acquire spectroscopic accuracy (≤1 cm−1) around the curve minimum. An analytic

potential was fitted to the high-accuracy points and used in the calculation of several of the most

important thermophysical properties of the Kr gas, specfically: viscosity, thermal conductiv-

ity, self-diffusion coefficient, thermal diffusion factor, and the second pressure, acoustic, and

dielectric virial coefficients. As an additional requirement for the computation of the second

dielectric virial coefficient, the interaction-induced isotropic pair polarizability was produced

at a similar theoretical level as the PEC and fitted to an analytic form. This chapter summarizes

the development of the new ab initio PEC51 and pair polarizability57 for the Kr dimer, originally

described in Appendices A and B, respectively.

2.1 Potential Energy Curve of the Kr Dimer

2.1.1 Investigation of Accuracy at Near-Minimum

To develop the analytic potential for the PEC, the interaction energy for the krypton atom

pair needed to be calculated at several interatomic distances. Furthermore, the level of theory
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needed to acquire the desired spectroscopic accuracy around the minimum had to be deter-

mined. An initial investigation into the uncertainty of the calculated interaction energy was

performed at a near-minimum interatomic distance, R = 4.0 Å. Throughout the chapter, the

interaction energy is the counterpoise corrected value, defined in Eq. (1.25), and the basis sets

are Dunning-type sets.58

The first consideration was how well the frozen-core (FC) CCSD(T) interaction energy

was converged to the CBS limit. Frozen-core implies that only the valence electrons are allowed

to correlate during the underlying CCSD calculation, while the core orbitals are held in their

HF form. Table I in Appx. A presents the pertinent results. The top row of this table shows the

convergence of the FC Eint with respect to the increasing cardinal number of the basis set, i.e.

its size. The uncertainty for each basis set is assumed to be the difference between itself and

the basis set one cardinal number lower, e.g. the uncertainty for the a5Z value is its difference

with aQZ, ±10.45 cm−1. It is clear that this term is not completely converged, even in the

large a5Z basis. The next row provides the results based on extrapolating from successive basis

sets using the previously described X−3 scheme of Eq. (1.27). For the extrapolated values, the

uncertainty is based on the difference between the extrapolated value and the value of the larger

set used in the extrapolation. Based on the trend with the (aTZ, aQZ) result, the (aQZ, a5Z)

result appears better converged but still has an uncertainty of ±10.84 cm−1. Next, the addition

of midbond functions was tested. It is obvious that the aXZM results converge faster to CBS,

but still have not reached saturation. Applying extrapolation alongside the midbond functions

improves convergence, but the uncertainty of the (aQZM, a5ZM) result is still more than the

desired 1 cm−1 threshold.

In an attempt to reach the target uncertainty, the F12 method of explicit correlation was

applied to accelerate the basis set convergence.59, 60 As implied, this method introduces ex-

plicit electron correlation terms into the CC calculation. Two variants of this method, F12a and

F12b,61, 62 were used in conjunction with the midbond functions, and extrapolation was again

performed. The common implementation of CCSD(T)-F12 is a bit of a misnomer. The full

CCSD(T)-F12 method is quite complicated, so it is common to perform the standard perturba-

tive triple calculation (i.e. without explicit correlation) on top of a CCSD-F12 calculation. A
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method of approximating the explicitly correlated perturbative triples is to scale the standard

triples by the ratio of the corresponding MP2-F12 and MP2 values,63, 64

E
(T∗∗)
int = E

(T )
int

EMP2−F12
corr

EMP2
corr

. (2.1)

These MP2 values are side products of the CCSD(T)-F12 calculations and require no additional

expensive computations. The double star notation in Eq. (2.1) is to specify that the MP2 ratio

for the dimer calculation is used to scale the dimer and monomer triples, as opposed to using the

monomer ratios for the monomer triples. Applying explicit correlation and midbond functions

shows a substantial increase in the rate of convergence, even before extrapolation. The addition

of extrapolation shows that each of these methods appears to converge to approximately the

same CBS value, around -133.5 cm−1. Two of these methods, CCSD(T)-F12a/(aQZ, a5Z)

and CCSD(T**)-F12b/(aQZ, a5Z), also have uncertainties lower than the desired threshold.

CCSD(T**)-F12b/(aQZ, a5Z) has the lower uncertainty and was selected as the method for

calculating the leading FC term of the interaction energy for all points.

With the selection of the leading term, the next consideration is determining what correc-

tions to the leading term contribute more than 1 cm−1 at the near minimum separation. The

results for the investigation of these corrections can be found in Table II of Appx. A. The first

term inspected was the removal of the frozen-core approximation and allowing the core elec-

trons to be excited. This correction is referred to as the core-core and core-valence correlation

correction, but will be termed the all-electron (AE-FC) correction here. Due to the consider-

able number of core electrons in the Kr atom, it is conceivable that this correction could be

of some importance. The AE-FC corrections were calculated in the aug-cc-pCVXZ (aCXZ)65

and aug-cc-pwCVXZ (awCXZ)66 basis sets, which are Dunning-type sets designed for the ap-

propriate treatment of core electrons. The key observation is that even the least saturated basis

sets provide corrections greater than 1 cm−1, confirming the importance of this correction for

an accurate interaction energy. The addition of midbonds to this correction had only moderate

benefit over an increase in cardinal number, and the highest available set with midbonds was

limited to aQZM. The (aCQZ, aC5Z) and (awCQZ, awC5Z) extrapolated values are similarly
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converged and have similar uncertainties. The (awCQZ, awC5Z) result was picked as the level

for the AE-FC correction because it is slightly better converged.

The second correction of interest was the improvement beyond the CCSD(T) level to

higher levels of CC, specifically to CCSDT(Q). At first glance, the (Q)-(T) correction appears

insignificant within the required uncertainty. Closer inspection reveals that the size of this

correction is due to a cancellation between its components, the T-(T) and (Q)-T corrections.

Individually, these corrections are large enough to warrant inclusion in the interaction energy,

but they are of similar magnitude and opposite direction. Based on the individual size of the

component corrections (as well is its increased importance at short intermolecular distances

seen in the next section), it was decided to include the correction in the aQZ set.

The last considered correction to the interaction energy is the correction due to relativistic

effects. Electrons in the core of the Kr atom can reach speeds near enough to the speed of light

that relativity can have considerable effect. The relativistic correction was investigated at the

second-order Douglas-Kroll-Hess (DKH) level.67, 68 The basis sets used for this correction were

the aXZ sets, but the contraction of the Gaussian orbitals was removed to provide a significantly

larger basis space. The relativistic correction is of similar magnitude to the AE-FC correction,

which necessitates its inclusion in the interaction energy. The (decontracted aQZ, decontracted

a5Z) result appears sufficiently converged and was selected as the level of the correction to

include in the final points.

2.1.2 Fitting Analytic Potential

The total Kr-Kr interaction energy for this work is defined as

Eint = E
CCSD(T )/FC
int + ∆E

CCSD(T )/AE−FC
int + ∆E

(Q)−(T )
int + ∆Erel

int, (2.2)

where the leading FC term and the corrections were calculated at the previously determined

levels. The resulting interaction energy was calculated for selected interatomic distances along

the PEC, ranging from 2.60 Å to 12.00 Å and with an increased density of points around the
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Figure 2.1: Contributions to the ab initio krypton dimer interaction energy and the total inter-
action energy (cm−1) as functions of interatomic distance R (Å).

expected minimum. The selected distances can be seen in Table III of Appx. A, along with the

numerical values for the terms of the interaction energy at each point.

The role of the leading term and corrections at different interatomic distances can be ob-

served graphically in Fig. 2.1. At long and medium ranges, the FC term is shown to be a good

approximation to the complete Eint, while the corrections all tend to zero for distances greater

than 4.5 Å. In the well region, the ∆E
CCSD(T )/AE−FC
int and ∆Erel

int corrections are equally im-

portant. These corrections deepen the well compared to the FC value and shift the apparent

minimum to a shorter separation. Past the well and into the repulsive wall, ∆Erel
int becomes

more negative than ∆E
CCSD(T )/AE−FC
int , while both corrections counteract some of the repul-

sion from E
CCSD(T )/FC
int . ∆E

(Q)−(T )
int has minimal effect throughout much of the PEC, but does

play a small role in the wall.

To approximate the potential at arbitrary interatomic distances, an analytic formula was

fitted to the ab initio data points. The form of the function is

V (R) = (A+BR + CR−1)e−αR −
4∑

n=3

f2n(βR)
C2n

R2n
(2.3)
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Figure 2.2: The ab initio values of Eint and the fitted Kr dimer potential (cm−1) as functions of
the interatomic distance R (Å).

where A,B,C,α,β,C6, and C8 are fitting parameters. The functions f2n are the Tang-Toennies

damping functions,69

f2n(x) = 1− e−x
2n∑
k=0

xk

k!
, (2.4)

which serve to damp the dispersion interactions of the C6 and C8 terms in Eq. (2.3). These two

parameters were fitted first to the long range points (R ≥ 8.0Å), then held constant during the

fitting of the other parameters. The fitting was accomplished by the method of least-squares,

with each data point weighted by scaling the squared difference of the fitted value by the inverse

of the squared uncertainty associated with the ab initio result at that point. This weighting

scheme ensures that the least uncertain points are prioritized over the others, e.g. points around

the minimum versus points high on the repulsive wall. The optimized values of the parameters

are provided in Table IV of Appx. A, while the interaction energy values of the fitted potential

at the selected data points are in Table III of the appendix.

Figure 2.2 shows the calculated values of Eint, with their uncertainties, along with the

fitted potential. The number of parameters in the parentheses in Eq. (2.3) was selected to

ensure that the fitted potential passed within the range [E − U(E), E + U(E)] for all points,
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while also keeping the number of fitted parameters to a minimum. The zoomed-in region of Fig.

2.2 shows this behavior clearly around the potential well. This potential predicts a minimum

distance of 4.01 Å with an interaction energy value of -140.06 cm−1, which agrees well with

previously reported values70 and values from detailed works more recent than that presented

here.52

The reasonability of the fitted potential is assured from the shortest ab initio data point to

infinite separation, but not so for particularly short separations. Specifically, the wall region

of the potential discussed here actually flips over and proceeds to negative infinity starting at

some short distance. To overcome this unphysical behavior, the values of the fitted potential

are replaced with a well-behaved function starting at a distance shorter than 2.6 Å (the shortest

fitting point) but before the function becomes ill-behaved. The form of this short range function

is simple,

Vsh(R) = (Ash/R)e−αshR+βshR
2

(2.5)

with the fitting parameters Ash, αsh, and βsh fitted to ensure physical behavior and that the

potential and its first derivative are continuous at the splicing point (R = 1.8 Å). The values

of these parameters are listed alongside the other potential parameters. In addition, functions

of the same form as Eq. (2.3) (and with the same short range form as Eq. (2.5)) were fitted

to E − U(E) and E + U(E) for all points to facilitate the determination of uncertainty for

the properties computed from the new dimer potential. The parameter values of these limit

functions can be found in Table IV of Appx. B.

2.2 Interaction-Induced Isotropic Pair Polarizability of the Kr Dimer

2.2.1 Investigation of Accuracy at Near-Minimum

The pair potential discussed above is sufficient for the calculation of the second pressure and

acoustic virial coefficients. For the second dielectric virial coefficient, the interaction-induced

isotropic pair polarizability ∆αave is also required. This quantity is the average change in

polarizability from the lone monomers to the dimer due to their interaction, and is defined in
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the following equations

∆α‖(R) = αDimer‖ (R)− 2αMonomer
‖ (R) (2.6)

∆α⊥(R) = αDimer⊥ (R)− 2αMonomer
⊥ (R) (2.7)

∆αave(R) =
1

3
[∆α‖(R) + 2∆α⊥(R)] (2.8)

where α is the polarizability of either the dimer or monomer (superscripts), either parallel or

perpendicular to the axis of interaction (subscripts). A related value is the anisotropy ∆αaniso,

defined as

∆αaniso(R) = [∆α‖(R)−∆α⊥(R)]. (2.9)

Though not necessary for the property computations, this value is a side product of the calcu-

lation of ∆αave.

As with the pair potential, the pair polarizability was first investigated at the same near-

minimum distance (which is effectively the minimum determined from the potential). The

CCSD(T)/FC value of ∆αave(R) was first checked for convergence. Then, the same correc-

tions beyond the FC term (AE-FC, relativistic, and higher order CC) were considered for their

importance. Unlike for the interaction energy, the desired level of accuracy was not predeter-

mined and the corrections were evaluated by their size relative to the FC term. The results

for all terms inspected can be found in Table I of Appx. B. The parallel and perpendicular

components of the CCSD(T)/FC term seem to converge at similar rates, and have values with

relatively small magnitudes. The aCXZ and awCXZ basis sets were checked for this term,

but provided no improvement over the more appropriate aXZ sets. Furthermore, the aXZ sets

extended one cardinal number further than the other sets. Midbond functions were determined

to be unnecessary given the effectiveness of the conventional basis sets. CCSD(T)/FC/a6Z was

determined to be a suitable level of theory for the leading term.

The AE-FC correction was checked for the same basis sets as the FC term, where the

awCXZ set was found to converge the fastest. The size of this correction was significant

enough to warrant including it, but the calculation would be limited to the awCQZ basis since
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Figure 2.3: Contributions to the interaction-induced isotropic polarizability ∆αave for the kryp-
ton dimer and the total ∆αave (a30) as functions of the interatomic distance R (Å).

the correction was already well enough converged at that point. The correction for higher orders

of CC, specifically CCSDT, was found small enough to be neglected (∆αT−(T )‖ /aDZ = 0.0023

a30 and ∆α
T−(T )
⊥ /aDZ = -0.0003 a30). The relativistic correction was calculated analytically

using the exact two-component method (X2C),71 as opposed to DKH used in the pair potential.

The available implementation of this method necessitated validating due to its experimental

nature. This process is described in Appx. B and the method was found to be sound. The

decontracted basis sets were again found to be the most suitable for this correction, and the

decontracted aQZ set was selected for use at all data points.

2.2.2 Fitting an Analytic Function

With the necessary components and basis sets selected, the interaction-induced pair polariz-

ability was calculated for the same interatomic distances as used for the potential. The total

∆αave is defined as

∆αave = ∆αCCSD(T )/FC
ave + ∆αAE−FCave + ∆αrelave. (2.10)
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Figure 2.4: The ab initio values of ∆αave and the fitted Kr dimer isotropic interaction-induced
pair polarizability (a30) as functions the interatomic distance R (Å).

The numerical results for all points can be found in Table II of Appx. B, and the various

contributing terms are shown in Fig 2.3. Through most of the displayed range, the FC term

remains a good approximation. Only at the shortest ranges do the corrections lead to any

considerable difference in the total and FC values. Both the AE-FC and relativistic corrections

are small and positive until these short ranges, where they become negative and about equal in

magnitude. At R ≥ 3.0 Å, the relativistic correction contributes slightly more than the AE-FC

correction.

The fitting scheme used for the potential was also used for the pair polarizability, utilizing

least-squares fitting and weighting the points as the inverse square of their uncertainty. The

form of the function used to fit the isotropic pair polarizability is

∆αave(R) =(A(ave)R−1 +B(ave) + C(ave)R +D(ave)R2)e−α
(ave)R

+
∑
n=6,8

fn(β(ave)R)
C

(ave)
n

Rn

(2.11)
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where A(ave), B(ave), C(ave), D(ave), α(ave), β(ave), C(ave)
6 , and C(ave)

8 are the fitting parameters

and fn are the Tang-Toennies damping functions. Again, the C(ave)
6 and C

(ave)
8 terms were

fitted to only the long range points and held constant as the other parameters were fitted to

all data points. The upper- and lower-limit functions were fitted to ∆αave + U(∆αave) and

∆αave−U(∆αave), respectively, using the same functional form and procedure. The parameters

for all three functions can be found in Table III of Appx B. As illustrated for most points in Fig.

2.4, the fitted function passes within the uncertainty range of all ab initio datapoints.

2.3 Evaluation of Computed Properties

The new potential was first used to calculate the vibrational transition frequencies of 84Kr2

isotopomer, the results for which are found alongside previous literature values in Table V of

Appx. A. The transitions are in good agreement with the empirical70 and experimental results,72

and are likely more accurate than the previous ab initio results.73 Most importantly, the highly

accurate experimental values for the 86Kr2 isotopomer from LaRocque et al74 are within the

uncertainty of the theoretical results based on the new potential.

With the analytic potential fitted to the high accuracy ab initio results, the new values

for the viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor

could be computed. Furthermore, the second virial coefficients can also be computed, with

the dielectic one requiring the pair polarizability function. The method of computing these

properties is described in Appxs. A and B, and will not be addressed in any detail here other

than to say that they are calculated classically and that the virial coefficients utilize quantum

corrections. The properties were calculated for temperatures ranging from 116 to 5000 K, and

the results of these computations are found in Table VI of Appx. A and Table V of Appx. B.

The accuracy of the new viscosity and thermal conductivity values will now be evaluated, while

the uncertainties associated with the comparisons for the self-diffusion coefficient and thermal

diffusion factor provide little insight.

The newly calculated viscosity values are initially compared with reported literature values

in Fig. 2 of Appx. A. This initial comparison shows moderate agreement with the new values,

with most literature data points having relative deviations with magnitudes greater than 0.5%.
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It is useful to note that the experimental viscosity values are determined relative to some other

calibrated value. The instruments used to gather the literature values were calibrated with older

data with uncertainties larger than those available more recently, specifically those produced

via ab initio calculations (other than this work). To improve the literature data, the points

were worked backwards to the relative ratio of the viscosity of Kr with the reported reference

gas and then the updated value was determined using a corresponding ab initio result for the

reference gas. The comparison of the newly calculated results and the updated literature results

is displayed in Appx. A, Fig. 3. This figure also contains previously calculated theoretical

results and the uncertainty values of the newly calculated viscosity.

The re-evaluation described above moves most of the literature points within ±0.5% of

the computed values, with several points falling within the uncertainty of the new results. The

agreement of the updated literature results is also much better with the new viscosity results

over the previous theoretical ones, with the empirical potential70 leading to an overestimation

across the range and the ab initio potential73 underestimating most of the experimental values.

Similar trends are seen for the thermal conductivity in Fig. 4 from Appx. A, where there are

less experimental data points for comparison. While it is harder to differentiate between the

thermal conductivity results based on the newer and older ab initio potentials, the new values

have a more consistent agreement with the experimental literature.

For the second virial coefficients, the amount of literature data for comparison was limited

and consisted mainly of previous theoretical results. The pressure and acoustic coefficients,

seen in Figs. 3 and 4 in Appx. B, chiefly highlight the considerable agreement between the

values of these works and those from the more recent potential of Jäger et al.52 The values

corresponding to their newer potential uniformly fall within the upper uncertainty bound of

the coefficients produced in this work. For the second dielectric virial coefficient, a lack of

experimental data limits the characterization of the newly computed results.

The good agreement with experimental results leads to the conclusion that this new poten-

tial is more accurate then those previously calculated, and that the properties computed from it

are suitable for use as reference values. The recent development of a more accurate potential52

did produce somewhat smaller uncertainties, but was not useful to draw conclusions about the
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relative accuracy of the resulting properties and those presented here due to relatively high

uncertainties in the experimental values.
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Chapter 3

Investigation of Metal-Organic Framework Adsorption of CO2

Metal-organic frameworks (MOFs) are composed of metal atoms or clusters coordinated to

organic linker molecules that produce a crystalline structure with high porosity. This class of

compounds has garnered interest for a variety of chemical purposes, including selective gas

separation.75, 76 The structure and properties of an MOF are tunable via altering the metal(s)

or linker(s), providing a pathway for optimizing interactions with a particular adsorbate.77, 78

Carbon dioxide is a particularly relevant adsorbate of interest.79 The large scale of these MOFs

makes them difficult cases for the application of expensive ab initio methods. For this reason,

model systems are used in an attempt to replicate the interactions of the bulk system at a more

tractable size.77, 80, 81 High-accuracy results for such models can then be used to benchmark

more approximate methods that can be applied to larger sized systems. Additionally, the in-

teractions of these models can be decomposed (with methods like SAPT) to provide increased

insight into the rational design of MOFs for specific purposes.81–83 This chapter summarizes the

work in Appendix C, wherein the interaction of CO2 with MOF model systems is investigated

with a number of ab initio methods.

3.1 Model Structures of Metal-Organic Frameworks

Each of the mimic systems in this work contains one of three metals species: Mn2+, Co2+,

or Zn2+. These metals were chosen as representatives of high spin open-shell, low spin open-

shell, and closed-shell systems, respectively. The selection of these metals allows for testing

the relative importance of a multireference treatment for MOF mimic systems. The mimics are
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constructed from one or two atoms of one metal species and a varying number of organic lig-

ands to represent the MOF linkers. Two of the models contain one metal and one ligand, either

benzenedicarboxylate (BDC, also called terephthalate) or furandicarboxylate (FDC). Another

model contains a single metal with two formate ligands, and the last contains two metals and

four formates. These last two models are referred to as the diformate and paddlewheel models,

respectively. The approximate structure of each mimic, with an arbitrary metal, interacting

with CO2 can be seen in Fig. 1 of Appx. C. The formate ligands all have a -1 charge and BDC

and FDC have -2 charges, resulting in each of the model systems being electronically neutral.

The BDC and FDC systems were optimized at the B3LYP/aDZ84, 85 level, the paddlewheel

systems at the MP2/aDZ level, and the diformate ones at MP2/aTZ. The systems containing

Mn2+ and Zn2+ were optimized in a generally unconstrained fashion. In the diformate models,

the mimic systems were required to have all atoms coplanar, but all other degrees of freedom

were optimized freely. For the paddlewheel models, two minimum structures were obtained:

one with the CO2 aligned with the axis of the metal centers, and another where the CO2 appears

to be interacting with the formate ligands as well as one of the metal centers. A comparison

of these geometries can be seen in Fig. 2 of Appx. C. While this second structure is indica-

tive of real effects in MOFs (i.e. adsorbate interaction with the organic linkers), it reduces the

symmetry of the dimer from C4v to Cs. The axially aligned geometry was selected to take

advantage of the higher symmetry and the computational advantage it grants. The optimized

structures of the other systems were each nearly symmetric and were symmetrized for the same

computational benefits. The BDC and diformate models have C2v symmetry, while the FDC

models have Cs symmetry. Additionally, a second optimization of each dimer was performed

with the monomers held in their individually optimized geometries. This second dimer geome-

try was used exclusively for the calculation of simple one-dimensional PEC scans, where only

the intermolecular separation was altered.

The systems containing Co2+ were treated more cautiously, due to their potentially mul-

tireference nature. For each model system, the corresponding Mn2+ structure was used as a

starting point for CASSCF/aDZ scans of the most important parameters of each model. The

metal-CO2 distance (RM2+−CO2
) was scanned for all mimic dimers, along with the following
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parameters that were checked for both the isolated mimics and the complexes with CO2. For

the paddlewheel systems, the important parameters are the distances from the model center of

mass for the metals (RX−M2+) and the formates (RX−Ligand). For the diformate, BDC, and

FDC systems, the ligand-metal distances (RLigand−M2+) were scanned. Additionally, the angle

between the ligand, metal, and CO2 (ΘLigand−M2+−CO2
) was scanned for FDC since it was not

fixed by symmetry. In the BDC and FDC monomers, it was also necessary to scan the ΘO−C−O

angle of the carboxylate coordinated to the metal. This caution proved unnecessary, as latter re-

sults will show that the Co2+ systems can be well represented by a single reference calculation.

The Co2+ containing structures were optimized in the same way as the other metals, and the

cautious results were deemed similar enough to keep. Table 1 in Appx C. provides the values

for the important parameters of each system. For all systems, Zn2+ is bound more closely to

the ligands, followed first by Co2+ and then Mn2+. The binding of CO2 is less universal, being

dependent on the mimic system and metal species.

3.2 Single-Reference and Multireference Methods

The first consideration after geometry optimization is determining an appropriate benchmark

level of theory with which to compare various approximate methods. Each system was in-

vestigated with common single-reference (RHF, MP2, and RCCSD(T)) and multireference

(CASSCF, CASPT2, NEVPT2, MRCISD) methods in the aDZ basis. The active space in all

multireference calculations included the 3d and 4s orbitals of the metals. For the three smallest

mimic systems, the importance of active space size was tested for the multireference methods

and a second active space added the metal 4p orbitals. For the paddlewheel systems, the active

space is (2n, 12), where n is the number of d-electrons on one metal center. The other systems

are (n, 6) in the smaller space and (n, 9) in the larger one.

Regarding single-reference or multireference treatment and active space sizes, the natural

orbital occupation numbers (NOONs) for each model system were calculated at the CASSCF/aDZ

level and are found in Tables 6-9 of Appx. C. These NOONs show how the occupations of the

active orbitals differ from the restricted occupation numbers (2, 1, or 0) and provide an indi-

cation of the multireference character of the system. The results here show that the systems
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are not considerably multireference, with even the largest deviations being still quite close to

the restricted expectations. The Mn2+ results are to be expected, with no change in the smaller

active space and a small change in the larger one. Co2+ and Zn2+ deviate similar to each other

in both active spaces, with Co2+ generally displaying more significant changes. Based on these

results, the systems should be sufficiently single-reference for RCCSD(T) to be considered the

benchmark (RCCSD for the Zn2+-BDC system due to a suspect (T) value). The multireference

methods will also be compared to these results for evaluation.

The results of these wavefunction methods are found in Tables 2-5 in Appx. C. The fea-

tures of these tables that stand out most immediately are the MRCISD values in the ECP
int

columns. These values are completely incongruous with the other values and arise from the

size inconsistency of the method. These values prompted the use of Eq. (1.26) to produce more

reasonable MRCI results. The ECP∗
int values are defined according to Eq. (1.26), but with the

addition of ghost atoms near the infinitely separated monomers to provide the desired counter-

poise correction. This reference is visualized in Fig. 3 of Appx. C. Quick inspection of these

tables show that ECP
int and ECP∗

int are usually in near perfect agreement for all methods besides

MRCISD, where the ECP∗
int values are more reasonable. In the cases where the two references

differ considerably, the ECP∗
int is deemed the more trustworthy result.

Comparing with the CC results, CASPT2 provides satisfactory results and outperforms

NEVPT2 for the diformate systems, but did not provide meaningful results for the other systems

and was omitted. Additionally, NEVPT2 produced wildly inconsistent results for many of

the systems and is not very useful in a predictive capacity. Of the multireference methods,

only MRCISD proved to be a reliably predictive method (under the ECP∗
int definition) and was

insensitive to the active space selection, as well. With that said, MP2 is consistently in similar

or better agreement with the RCCSD(T) results, and is considerably cheaper to calculate than

MRCISD.

Th relative strength of interaction for the different mimics is reasonable. The BDC and

FDC models have much stronger interactions than the diformate and paddlewheel due to their

obvious dipole moments. The character of these interactions will be discussed more in the next

section. In terms of metal preference for each model, the interaction energies for each of the
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models follow one of two trends. The diformate and paddlewheel systems show a trend of

Mn2+ > Zn2+ > Co2+, implying CO2 binds most strongly with the Mn2+ version and least

strongly with the Co2+ version. The FDC and BDC systems have a trend of Zn2+ > Mn2+ >

Co2+.

3.3 SAPT Decomposition

SAPT analysis was applied to each model to provide insight into the way each mimic interacts

with CO2. The SAPT0 level of theory was applied to all mimic-metal combinations, in both the

aDZ and aTZ basis to test for basis set completeness. The Zn2+ results utilized the RHF-based

SAPT,38 while the Mn2+ and Co2+ results were obtained from ROHF-based SAPT.42 The Mn2+

calculations were also performed with UHF-based SAPT for comparison.43, 44 SAPT2+3/aDZ41

results were calculated for the Zn2+ systems to observe the changes to the interaction energy

at higher levels of SAPT. For the Co2+-FDC model, only the SAPT0/aTZ was obtained due

to convergence issues in the aDZ set. For similar reasons, neither result was obtained for the

Co2+-BDC model.

The results for the Zn2+ containing systems are found in Table 11 of Appx C. Comparison

of the SAPT0/aDZ and SAPT2+3/aDZ results shows that the most consistent change between

these levels of theory is in the exchange term. Exchange increases significantly for each model

while the induction and dispersion terms decrease more slightly. Electrostatics either increases

slightly or remains roughly the same. The net result is that the total interaction energy decreases

with the increase in the SAPT level. For comparison of UHF- and ROHF-based SAPT, Tables

12 and 13 of Appx. C present the Mn2+ results for these two methods. The differences between

these two sets of data are minimal and mostly isolated to the dispersion terms, which become

more negative for the UHF-based results. Lastly, Table 14 of Appx. C, containing the available

Co2+ results, is introduced so that the role of basis set size can be discussed. As with the UHF

vs. ROHF comparison, the SAPT0/aDZ and SAPT0/aTZ results differ only a small amount

for all cases. The changes in the total energies are almost entirely due to the changes in the

dispersion terms. This occurrence is very reasonable as dispersion is the only correlated term
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Figure 3.1: SAPT0/aTZ interaction decomposition results (kcal/mol) for the various model
systems with each metal. The Zn2+ results come from RHF-based SAPT, while the Mn2+ and
Co2+ results are ROHF-based SAPT.

and therefore will be slower to converge with the basis set, as opposed to the other terms which

are all derived from a HF level treatment of the systems.

The most complete set of SAPT data (the SAPT0/aTZ results) is gathered in Figure 3.1 for

comparison between the metals and models. The SAPT results qualitatively show the correct

trend of interaction strength between the different models, with BDC being the most strongly

interacting followed closely by FDC and then the paddlewheel and diformate. Quantitatively,

the SAPT0 results persistently overestimate the interaction strength and produce more negative

interaction energies than the CC results. SAPT gets the metal trend of the diformate and pad-

dlewheel models correct, though for diformate it produces a much smaller difference between

the Mn2+ and Zn2+ interactions than RCCSD(T). While lacking a Co2+ result for BDC, SAPT

does get the order for the Mn2+ and Zn2+ interactions correct. The FDC model is the only case

where SAPT shows a different metal trend than RCCSD(T), showing CO2 interacting more

strongly with Co2+ than Mn2+. This discrepancy is of little consequence since the CC results

for these two systems are quite close to begin with.
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Comparing the SAPT components, it is obvious that the BDC and FDC are strongly in-

duction bound. Again, this result is logical due to the dipole moments of these systems, the

results for which can be found in Table 15 of Appx. C. The diformate and paddlewheel models

have a more mixed character. This is especially true of the paddlewheel, where the induction

and dispersion contributions are almost identical for each metal. For diformate, dispersion is a

greater contribution than induction. Overall, dispersion is required for an adequate description

of the interaction of each model system with CO2. Regarding metal selection in each model,

the components of the Co2+ systems generally have smaller magnitude than the other two met-

als, resulting in a net lower total interaction. The exception to this is the FDC models, where

the induction and dispersion terms of the Co2+ model are close in value to the Mn2+ and lead

to the change in metal preference mentioned above.

3.4 Density Functional Methods

The last set of methods tested were a selection of common density functionals. These included

the previously mentioned B3LYP functional, along with the BLYP,86 PBE,87 PBE0,88, 89 M05-

2X,90 and M06-2X91 functionals. PBE and BLYP are generalized gradient approximations

(GGAs) that utilize the electron density and its gradient as parameters for the calculation of the

KS energy. B3LYP and PBE0 are hybrid-GGAs and use a fraction of the SCF exchange energy

to improve on the previous methods. The M05-2X and M06-2X functionals are referred to as

interaction-optimized functionals and are heavily parameterized against various datasets. Given

the importance of dispersion for these systems pointed out by the SAPT results, Grimme’s em-

pirical dispersion corrections for these functionals were checked with the original and updated

parameters. These functionals were paired with the aDZ, aTZ, and aQZ basis sets, though basis

set completeness proved to have little effect on these methods. The aTZ results are included

only to illustrate this point and the aQZ results have been omitted entirely.
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Figures 3.2-3.5 compare the DFT results, with and without the empirical dispersion cor-

rections, to the RCCSD(T) benchmarks for each set of model systems. The black lines bisecting

the DFT bars indicate the value of that method in the aTZ basis set. As mentioned above, these

results differ minimally from the aDZ results. The only notable exception is for B3LYP and the

Co2+-FDC model, where the aTZ results improve over the aDZ results by about 2 kcal/mol.

Another general trend is the unsurprising improvement seen with the addition of the disper-

sion corrections. The effects of these corrections correlate well with the SAPT analysis, with

the diformate and paddlewheel systems being most dependent on dispersion to produce results

near RCCSD(T). Though inclusion of dispersion is important for all of the mimics, the specific

version of the dispersion correction is less important. The D3 corrections are better than the

older D2, but no particular parameterization of D3 stands out as the best.

Regarding functional selection, BLYP is consistently in poor agreement with the CC re-

sults. This functional actually predicts a repulsive interaction between CO2 and the Co2+ and

Zn2+ diformate models. In some cases the addition of dispersion brings it quite close to the

benchmark, but it underperforms most of the other functionals. PBE and B3LYP perform very

similarly for many systems, though the B3LYP results are better for the FDC systems. With the

addition of the dispersion corrections, B3LYP outperforms PBE slightly for those cases where

they are close. The dispersion corrections were not necessary for the Minnesota functionals,

M05-2X and M06-2X, as these two overestimate the benchmark interaction energy in all cases,

sometimes quite severely. PBE0, with any dispersion correction, is the best performing func-

tional tested here.

3.5 Summary

The model systems studied here proved sufficiently single-reference for an accurate treatment

with CCSD(T). Of the multireference methods tested, only MRCISD provides any kind of re-

liably accurate results, and only from the ECP∗
int reference. Additionally, the computationally

less expensive MP2 provides comparable results. The SAPT decomposition of the interaction
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energies emphasizes the importance of dispersion for all models, which is echoed by the im-

provement of the DFT results by the addition of the empirical dispersion corrections. Of the

density functionals, the hybrids are the top performers, with PBE0 being better than B3LYP.
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Chapter 4

Developments in Symmetry-Adapted Perturbation Theory

As mentioned in subsection 1.2.4, the exchange corrections for SAPT are commonly calcu-

lated within the single-exchange approximation to simplify the somewhat complicated process

of antisymmetrizing the dimer wavefunction. From 1976 until very recently, the only SAPT

exchange correction whose complete form was known was the first-order correction. Two re-

cent works by Schäffer and Jansen92, 93 derived the complete forms of the two second-order

exchange corrections, the second-order exchange-induction and exchange-dispersion correc-

tions. An example implementation of the MO forms of these corrections was incorporated

into the PSI4NUMPY framework by this dissertation’s author.94 Furthermore, an AO trans-

formation of the second-order exchange-induction correction and a mixed AO/Density-fitting

(DF) transformation of the second-order exchange-dispersion correction were contributed to

the PSI4 quantum chemistry software package.95

On a different but convergent topic, conventional SAPT calculations involving two high-

spin open-shell molecules are restricted to the highest spin state of the dimer complex. The

splitting between different spin states derives exclusively from the exchange energy of the

states, while the RS corrections are the same. The recently developed spin-flip SAPT (SF-

SAPT) introduced a method of treating arbitrary spin states of the complex through coupled

spin-flipping of the monomers,96 but this new first-order SF-SAPT exchange energy was de-

rived within the single-exchange approximation. The work presented in Appendix D describes

the re-derivation of the first-order SF-SAPT exchange term that replaces the single-exchange

approximation with the new single-spin-flip approximation (1-flip), that is based on the com-

plete exchange techniques of Refs. 92 and 93.
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This chapter summarizes the work in Appendix D, as well as the author’s contributions to

the PSI4NUMPY project and the PSI4 quantum chemistry software package.

4.1 Second-Order Complete Exchange

The second-order SRS energy correction is

E
(20)
SRS =

〈ΨAΨB|(V − E(10)
SRS)A|Ψ(10)〉

〈ΨAΨB|A|ΨAΨB〉 , (4.1)

where Ψ(10) is the first-order RS wavefunction correction. The first-order wavefunction correc-

tion splits into the following terms

Ψ(10) = Ψ
(10)
Ind,A + Ψ

(10)
Ind,B + Ψ

(10)
Disp, (4.2)

where Ψ
(10)
Ind,A and Ψ

(10)
Ind,B are the first-order induction wavefunctions and Ψ

(10)
Disp is the first-order

dispersion wavefunction. These corrections have the following forms:

Ψ
(10)
Ind,A =

∑
ia

siaΨ
A
i→aΨ

B, (4.3)

Ψ
(10)
Ind,B =

∑
jb

sjbΨ
AΨB

j→b, (4.4)

Ψ
(10)
Disp =

∑
ijab

tabij ΨA
i→aΨ

B
j→b, (4.5)

where i and a are the occupied and virtual spinorbitals of monomer A, j and b are the occupied

and virtual spinorbitals of monomer B, sia and sjb are the first-order induction amplitudes,

tabij are the dispersion amplitudes, and the subscripts on ΨA and ΨB imply an excitation of an

electron from an occupied spinorbital to a virtual spinorbital. Based on the last four equations,

the second-order SRS energy correction can be rewritten as

E
(20)
SRS = E

(20)
Ind + E

(20)
Disp, (4.6)
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where

E
(20)
Ind =

∑
ia

sia
〈ΨAΨB|(V − E(10)

SRS)A|ΨA
i→aΨ

B〉
〈ΨAΨB|A|ΨAΨB〉

+
∑
jb

sjb
〈ΨAΨB|(V − E(10)

SRS)A|ΨAΨB
j→b〉

〈ΨAΨB|A|ΨAΨB〉 ,

(4.7)

and

E
(20)
Disp =

∑
ijab

tabij
〈ΨAΨB|(V − E(10)

SRS)A|ΨA
i→aΨ

B
j→b〉

〈ΨAΨB|A|ΨAΨB〉 . (4.8)

The denominator in these terms is defined in Eq. (1.37) and the numerators were determined

by Schäffer and Jansen.92, 93 Taking advantage of Cramer’s rule and the relationships between

various determinants (outlined explicitly in Eqs. (13)-(18) of Appx D.), the complete second-

order induction energy E(20)
Ind is92

E
(20)
Ind = E

(20)
ind + E

(20)
exch−ind =

∑
ia

siaΩia +
∑
jb

sjbΩjb, (4.9)

where

Ωia =
∑
i′

(Bi′a −
∑
rj

Bi′rDrjSja)Dii′ +
∑
j

(Aja −
∑
rj′

AjrDrj′Sj′a)Dij

+
∑
i′js

(〈i′j||as〉 −
∑
rj′

〈i′j||rs〉Drj′Sj′a)(Dii′Dsj −DijDsi′)

(4.10)

and Ωjb is similarly defined by selective replacement of some of the indices corresponding to

monomers A and B. Furthermore, the complete dispersion energy E(20)
Disp is93

E
(20)
Disp = E

(20)
disp + E

(20)
exch−disp =

∑
ijab

tabij Γia,jb, (4.11)
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where

Γia,jb = Ωjb(
∑
j′

Dij′Sj′a)− Ωja(
∑
i′

Dii′Si′b) + Ωia(
∑
i′

Dji′Si′b)

− Ωib(
∑
j′

Djj′Sj′a) +
∑
i′j′

(
〈i′j′||ab〉+

∑
rsi′′j′′

〈i′j′||rs〉Drj′′Sj′′aDsi′′Si′′b

−
∑
ri′′

〈i′j′||ar〉Dri′′Si′′b −
∑
rj′′

〈i′j′||rb〉Drj′′Sj′′a
)
(Dii′Djj′ −Dij′Dji′),

(4.12)

and the forms of Ωib and Ωja can be inferred from Eq. (4.10). Eqs (4.10) and (4.12) can be

made more compact by introducing the following T terms,

Tra =
∑
j′

Drj′Sj′a

Trb =
∑
i′

Dri′Si′b

(4.13)

and the modified virtual orbitals,

χã = χa −
∑
r

χrTra,

χb̃ = χb −
∑
r

χrTrb.

(4.14)

Using the above equations, the compacted definitions for Ωia and Γia,jb are

Ωia =
∑
i′

Bi′ãDii′ +
∑
j

AjãDij +
∑
i′js

〈i′j||ãs〉 (Dii′Dsj −DijDsi′) (4.15)

and

Γia,jb = ΩjbTia − ΩjaTib + ΩiaTjb − ΩibTja +
∑
i′j′

〈i′j′||ãb̃〉 (Dii′Djj′ −Dij′Dji′). (4.16)

The complete second-order exchange-induction energy E(20)
exch−ind and exchange-dispersion en-

ergy E(20)
exch−disp are obtained be the subtraction of the corresponding RS corrections from the

appropriate complete SRS correction.
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The last step necessary to arrive at implementable versions of these terms is to simplify

them from spinorbital to orbital form via spin-integration. Taking into account that D and T

are spin-diagonal, the Ω terms integrate to

Ωia = 2
∑
i′

Bi′ãDii′ + 2
∑
j

AjãDij

+ 4
∑
i′js

〈i′j|ãs〉Dii′Dsj − 2
∑
i′js

〈i′j|ãs〉DijDsi′

− 2
∑
i′js

〈i′j|sã〉Dii′Dsj + 4
∑
i′js

〈i′j|sã〉DijDsi′ ,

(4.17)

where the indices will now index the orbitals instead of the spinorbitals (and will do so through-

out the remainder of this section). Likewise, Γ integrates to the following form,

Γia,jb = 2ΩjbTia − ΩjaTib + 2ΩiaTjb − ΩibTja

+ 4
∑
i′j′

〈i′j′|ãb̃〉Dii′Djj′ − 2
∑
i′j′

〈i′j′|ãb̃〉Dij′Dji′

− 2
∑
i′j′

〈i′j′|b̃ã〉Dii′Djj′ + 4
∑
i′j′

〈i′j′|b̃ã〉Dij′Dji′ .

(4.18)

These orbital forms are presented in a reference implementation prepared by this author as part

of the PSI4NUMPY project.

4.1.1 AO Formulation of the Complete E(20)
exch−ind

The MO formulation of the terms in Eqs. (4.17) and (4.18) is restrictive for their practical

application to large systems, since the transformation of the two-electron integrals scales like

O(N5). One way to relieve some of the cost is to circumvent the integral transformations by

recasting the equations into their AO forms. This recast is accomplished by taking advantage

of the fact that the one and two-electron integrals can be represented as

Aij =
∑
KL

CiKCjLAKL, (4.19)
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Bij =
∑
KL

CiKCjLBKL, (4.20)

〈ij|ab〉 =
∑

KLMN

CiKCjMCaLCbN 〈KM |LN〉 , (4.21)

where the capital Roman letters index the atomic orbitals and AKL, BKL, and 〈KM |LN〉 are

the one and two-electron integrals in the AO basis. In doing so, the two-electron integrals can

be handled as generalized Coulomb and exchange matrices, defined as

J[X]KL =
∑
MN

〈KM |LN〉XMN K[X]KL =
∑
MN

〈KN |ML〉XMN , (4.22)

where XMN is some suitable matrix in the AO basis. The overlap matrix is similarly decom-

posable into the HF coefficients and SKL, the AO overlap matrix. Another way of cutting down

the cost of transforming the two-electron integrals is by the process of density-fitting.44 This

process approximates the AO two-electron integrals as

〈KM |LN〉 ≈
∑
X

bKLX bMN
X , (4.23)

where

bKLX =
∑
Y

∫ ∫
φK(r1)φL(r1)

1

r12
ηY (r2)dr1dr2(J

− 1
2 )XY , (4.24)

JXY =

∫ ∫
ηX(r1)

1

r12
ηY (r2)dr1dr2, (4.25)

and {η} is an auxiliary basis set indexed by X and Y . Density-fitting can be paired with

the computation of the generalized Coulomb and exchange matrices, and both methods have

efficient implementations in PSI4.

The second-order exchange-induction energy is amenable to a purely AO reformulation.

Starting from Eq. (4.17), expanding the modified virtual orbitals and T ’s, and breaking r into i
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and j, the orbital formula for the term in Eq. (4.9) containing sia is rewritten as

siaΩia = 2sia

[∑
i′

(
Bi′a −

∑
i′i′′j

Bi′i′′Di′′jSja −
∑
i′jj′

Bi′jDjj′Sj′a
)
Dii′

+
∑
j

(
Aja −

∑
i′jj′

Aji′Di′j′Sj′a −
∑
jj′j′′

Ajj′Dj′j′′Sj′′a
)
Dij

+ 2
∑
i′i′′j

(
〈i′j|ai′′〉 −

∑
i′′′j′

〈i′j|i′′′i′′〉Di′′′j′Sj′a −
∑
j′j′′

〈i′j|j′i′′〉Dj′j′′Sj′′a
)
Dii′Di′′j

+ 2
∑
i′jj′

(
〈i′j|aj′〉 −

∑
i′′j′′

〈i′j|i′′j′〉Di′′j′′Sj′′a −
∑
j′′j′′′

〈i′j|j′′j′〉Dj′′j′′′Sj′′′a
)
Dii′Dj′j

+ 2
∑
i′i′′j

(
〈i′j|i′′a〉 −

∑
i′′′j′

〈i′j|i′′i′′′〉Di′′′j′Sj′a −
∑
j′j′′

〈i′j|i′′j′〉Dj′j′′Sj′′a
)
DijDi′′i′

+ 2
∑
i′jj′

(
〈i′j|j′a〉 −

∑
i′′j′′

〈i′j|j′i′′〉Di′′j′′Sj′′a −
∑
j′′j′′′

〈i′j|j′j′′〉Dj′′j′′′Sj′′′a
)
DijDj′i′

−
∑
i′i′′j

(
〈i′j|ai′′〉+

∑
i′′′j′

〈i′j|i′′′i′′〉Di′′′j′Sj′a +
∑
j′j′′

〈i′j|j′i′′〉Dj′j′′Sj′′a
)
DijDi′′i′

−
∑
i′jj′

(
〈i′j|aj′〉+

∑
i′′j′′

〈i′j|i′′j′〉Di′′j′′Sj′′a +
∑
j′′j′′′

〈i′j|j′′j′〉Dj′′j′′′Sj′′′a
)
DijDj′i′

−
∑
i′i′′j

(
〈i′j|i′′a〉+

∑
i′′′j′

〈i′j|i′′i′′′〉Di′′′j′Sj′a +
∑
j′j′′

〈i′j|i′′j′〉Dj′j′′Sj′′a
)
Dii′Di′′j

−
∑
i′jj′

(
〈i′j|j′a〉+

∑
i′′j′′

〈i′j|j′i′′〉Di′′j′′Sj′′a +
∑
j′′j′′′

〈i′j|j′j′′〉Dj′′j′′′Sj′′′a
)
Dii′Dj′j

]
.

(4.26)

The systematic decomposition of the integrals and overlap terms into their AO forms provides

the coefficients necessary to “back-transform” the induction amplitudes and D terms in the

following ways,

(Dij)KL =
∑
ij

CiKCjLDij, (4.27)

and

(sDij)KL =
∑
ija

CaKCjLsiaDij, (4.28)

where the subscripts inside the parentheses specify which block of the D matrix was included

in the transformation (e.g. Dii′ , Dij , or Djj′). With these definitions, the AO form of Eq. (4.26)
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is

siaΩia = 2(sDii′) ·
[
B− SDT

ijB− SDjj′B

+ 2J[Dij]− 2SDT
ijJ[Dij]− 2SDjj′J[Dij]

+ 2J[Djj′ ]− 2SDT
ijJ[Djj′ ]− 2SDjj′J[Djj′ ]

−KT [Dij] + SDT
ijK

T [Dij] + SDjj′K
T [Dij]

−K[Djj′ ] + SDT
ijK[Djj′ ] + SDjj′K[Djj′ ]

]
+ 2(sDij) ·

[
A− SDT

ijA− SDjj′A

+ 2J[Dii′ ]− 2SDT
ijJ[Dii′ ]− 2SDjj′J[Dii′ ]

+ 2J[Dij]− 2SDT
ijJ[Dij]− 2SDjj′J[Dij]

−K[Dii′ ] + SDT
ijK[Dii′ ] + SDjj′K[Dii′ ]

−K[Dij] + SDT
ijK[Dij] + SDjj′K[Dij]

]
,

(4.29)

where all multiplication operations inside the square brackets are matrix multiplication, and the

dots outside of the brackets imply the scalar product of (sDii′) or (sDij) and the sum of the

bracketed terms. As before, an equivalent series of steps can be performed to arrive at the AO

form for sjbΩjb.

4.1.2 AO/DF Formulation of the Complete E(20)
exch−disp

As seen in the above reformulation, the Ω terms appearing in Eq. (4.18) can be calculated

entirely in an AO fashion. However, the two-electron integrals in that equation can not be

expressed as generalized two-electron matrices and must be treated in a DF fashion to gain any

amount of speed-up. As an initial step toward the AO/DF form of Eq. (4.18), the modified

virtual orbitals χ̃a and χ̃b will be used to define the modified virtual coefficients C̃aK and C̃bK

that satisfy

χ̃a =
∑
K

C̃aKφK ,

χ̃b =
∑
K

C̃bKφK .

(4.30)
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Expanding the T ’s in Eq. (4.14) and decomposing the MOs and overlap terms provides

∑
K

C̃aKφK =
∑
K

CaKφK −
∑
KL

(DrjS)KLCaLφK ,

∑
K

C̃bKφK =
∑
K

CbKφK −
∑
KL

(DriS)KLCbLφK ,

(4.31)

from which the definitions of C̃aK and C̃bK can be inferred. Utilizing these modified coeffi-

cients, the two-electron terms in Eq. (4.18) decompose to

4
∑

i′j′KLMN

Ci′KCj′M C̃aLC̃bN 〈KM |LN〉Dii′Djj′

− 2
∑

i′j′KLMN

Ci′KCj′M C̃aLC̃bN 〈KM |LN〉Dij′Dji′

− 2
∑

i′j′KLMN

Ci′KCj′M C̃aN C̃bL 〈KM |LN〉Dii′Djj′

+ 4
∑

i′j′KLMN

Ci′KCj′M C̃aN C̃bL 〈KM |LN〉Dij′Dji′ .

(4.32)

Introducing the DF approximation of Eq. (4.23), the terms in Eq. (4.32) can be rewritten as

4
∑
i′j′X

bi
′ã
X b

j′b̃
X Dii′Djj′ − 2

∑
i′j′X

bi
′ã
X b

j′b̃
X Dij′Dji′

− 2
∑
i′j′X

bi
′b̃
X b

j′ã
X Dii′Djj′ + 4

∑
i′j′X

bi
′b̃
X b

j′ã
X Dij′Dji′ ,

(4.33)

where the dual-basis b tensors are defined as

bi
′ã
X =

∑
KL

bKLX Ci′KC̃aL, bi
′b̃
X =

∑
KL

bKLX Ci′KC̃bL,

bj
′ã
X =

∑
KL

bKLX Cj′KC̃aL, bj
′b̃
X =

∑
KL

bKLX Cj′KC̃bL.

(4.34)

Furthermore, it is possible to construct an alternative AO form for the Ω terms using these

modified coefficients. Beginning with Eq. (4.17) and decomposing the integrals into their AO
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Table 4.1: Average timings (s) for the calculation of the two second-order exchange corrections
of the A24 dataset in either the MO or AO form. The column labeled AO1 refers to the initial
AO formulation for E(20)

exch−ind, while AO2 refers to the form based on the use of the modified
HF coefficients.

Term MO AO1 AO2

E
(20)
exch−ind 12.648 0.064 0.057

E
(20)
exch−disp 48.333 9.553

forms leads to

Ωia =2
(∑
i′KL

Dii′Ci′K(B + 2J[Drj′ ]−K[Drj′ ])KLC̃aL

+
∑
j′KL

Dij′Cj′K(A + 2J[Dri′ ]−K[Dri′ ])KLC̃aL
)
,

(4.35)

and similar results for the other Ω terms. This version of the Ω terms is equivalent to the previ-

ous one, but is more preferable when the exchange-dispersion is also expected to be calculated

as it utilizes many of the same intermediate terms as the two-electron parts of Γia,jb.

The first AO algorithm for the second-order exchange-induction term was implemented

into the public version of PSI4 in Python, while the AO/DF algorithm for the second-order

exchange-dispersion term was implemented in C++. Both the MO and AO algorithms were

tested in the PSI4NUMPY framework to provide a fair comparison of the timings. All pertinent

algorithms were tested on a subset of the A24 dataset97 with the two Argon containing systems

removed (due to basis set availability). Additionally, the equilibrium separations for the Ne

and He dimers were added. Both E(20)
exch−ind and E(20)

exch−disp were calculated for the resulting

24 systems at both the minimum geometries and at 0.8 times their minimum intermolecular

separation. Table 4.1 shows the average time to calculate these quantities for the 48 geometries.

The two AO algorithms for the exchange-induction term are both around 200x faster than the

MO version, with the algorithm based on the modified virtual coefficients being slightly faster

on average. The speed-up of the exchange-dispersion term is more limited at around 5x.

57



Table 4.2: Signed relative errors (%) of the single-exchange approximation for the two second-
order exchange corrections for the A24 dataset. The values presented are for the minimum
intermolecular separation R0 and 0.8R0. Repeated pairs of molecules represent different geo-
metric configurations.97

System E
(20)
exch−ind E

(20)
exch−disp

R/R0 0.8 1.0 0.8 1.0
H2O · · · NH3 15.15 2.95 -6.54 -0.44
H2O · · · H2O 10.55 1.81 -4.86 -0.40
HCN · · · HCN 24.27 1.75 -8.10 0.24
HF · · · HF 6.99 1.15 -4.88 -0.48
NH3 · · · NH3 8.27 1.12 -2.30 -0.17
CH4 · · · HF 5.14 0.70 -1.33 -0.02
NH3 · · · CH4 5.64 0.59 -0.22 0.08
CH4 · · · H2O 3.98 0.35 -0.15 0.05
CH2O · · · CH2O 7.45 1.34 -4.08 -0.61
C2H4 · · · H2O 7.28 1.32 -2.19 -0.17
C2H4 · · · CH2O 4.46 0.71 -1.39 -0.07
C2H2 · · · C2H2 10.82 1.01 0.01 0.18
C2H4 · · · NH3 6.24 0.93 -0.56 0.05
C2H4 · · · C2H4 5.28 0.83 -0.19 0.12
C2H4 · · · CH4 4.44 0.50 0.28 0.09
CH4 · · · BH3 6.17 1.11 -2.77 -0.23
CH4 · · · C2H6 2.90 0.33 0.00 0.00
C2H6 · · · CH4 3.76 0.24 0.00 0.00
CH4 · · · CH4 2.29 0.23 -0.20 0.02
C2H4 · · · C2H2 7.15 1.35 -0.23 0.08
C2H4 · · · C2H4 8.08 1.64 -0.18 0.13
C2H2 · · · C2H2 6.28 1.10 -0.59 0.01
He · · · He 0.63 0.00 0.00 0.00
Ne · · · Ne 0.16 0.00 -0.46 -0.03

For the 48 geometries described above, the signed relative errors (SREs) of the single-

exchange approximation relative to the complete exchange values for both second-order cor-

rections were calculated as

SRE(E
(20)
exch−X) =

E
(20)
exch−X(S∞)− E(20)

exch−X(S2)

E
(20)
exch−X(S∞)

· 100% (4.36)

and are presented in Table 4.2. These relative errors clearly show the breakdown of the S2

approximation at shorter separations, as well as the variable severity of the breakdown. The
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SREs for the exchange-induction values are generally larger in magnitude than the exchange-

dispersion values. Furthermore, the error in the exchange-induction S2 results can be quite

considerable, e.g. the HCN dimer where E(20)
exch−ind(S

2) recovers only 75% of E(20)
exch−ind(S

∞)

at 0.8R0. The exchange-induction SREs are also always positive, showing that the single-

exchange approximation always underestimatesE(20)
exch−ind. The exchange-dispersion results are

seen to be positive or negative, though they trend toward negative for the shorter separations.

4.2 First-Order SF-SAPT Complete Exchange

While SAPT is a useful tool for the examination of interactions between molecules, it does

have limitations to its applications. Until recently, one such limitation was the inability to

treat arbitrary spin states of complexes containing multiple open-shell molecules. Even when

the interacting molecules are specifically in their individual high-spin states, the complex can

have a range of different spin states. Given that molecules A and B have corresponding spin

quantum numbers SA and SB, the complex can have a spin quantum number ranging from

|SA − SB| to SA + SB. The interaction energies of these various spin states differ only in the

exchange terms derived from the SRS corrections, while the RS corrections are the same for

all spin states. To calculate the SRS correction for a given spin state of the complex, the dimer

wavefunction needs to either be a pure spin function or to be projected onto the subspace that

corresponds to a particular spin.98, 99 The conventional formalism takes advantage of the fact

that the dimer function Ψ(0) is a pure spin function when all unpaired electrons in ΨA and ΨB

have the same spin. This formulation means that the spin projection is not necessary, but also

limits the complex to its highest spin state.

If the SRS corrections for a lower spin state are desired, the antisymmetrizer A is ac-

companied by the spin projection operator PSMS
that projects the dimer wavefunction onto a

particular spin state. In the case of the first-order SRS correction, this leads to

E
(10)
SRS =

〈Ψ(0)|VAPSMS
|Ψ(0)〉

〈Ψ(0)|APSMS
|Ψ(0)〉 . (4.37)
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If Ψ(0) is the product of ΨA and ΨB, which are ROHF wavefunctions where all unpaired elec-

trons on A are spin up and all unpaired electrons on B are spin down, the action of PSMS
on

Ψ(0) is represented as

PSMS
ΨAΨB = c0ΨAΨB + c1Ψ

↓
AΨ↑B + c2Ψ

↓↓
A Ψ↑↑B + . . . , (4.38)

where cn are the Clebsch-Gordan coefficients

c0 = 〈S(SA − SB)|SASASB(−SB)〉 , (4.39)

c1 = 〈S(SA − SB)|SA(SA − 1)SB(−SB + 1)〉 , (4.40)

c2 = 〈S(SA − SB)|SA(SA − 2)SB(−SB + 2)〉 , (4.41)

and the wavefunctions with the arrows are spin-flipped wavefunctions.96 The spin-flipped

wavefunctions are normalized linear combinations of all wavefunctions where a number of

unpaired electrons, equal to the number of arrows, has had their spins flipped. As the unpaired

electrons in A are all spin up and the unpaired electrons in B are all spin down, the electrons in

ΨA can only be flipped down and the electrons in ΨB can only be flipped up. The terms aris-

ing from the action of PSMS
on the dimer wavefunction are therefore the result of a particular

number of intermolecular spin-flips, giving rise to the name spin-flip SAPT (SF-SAPT).

From Eqs. (4.37) and (4.38), Patkowski et al. derived the first-order ROHF-based SF-

SAPT exchange correction within the S2 approximation.96 The resulting formulas express the

first-order exchange energy of the different spin states of the complex as the sum of a diagonal

term and a spin-flip term, which is scaled using the appropriate Clebsch-Gordan coefficients

based on the desired spin state. A result of the S2 approximation is that all terms containing

wavefunctions with more than a single spin-flip reduce to zero, limiting the formalism to only

one spin-flip. While the resulting formalism provides the opportunity for the calculation of

spin splittings between various complex spin states, the use of the S2 approximation engenders

the same issues as in the conventional SAPT formalism. As such, the first-order SF-SAPT

exchange correction was re-derived without the S2 approximation.
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The new derivation of the SF-SAPT exchange correction also begins with Eqs. (4.37) and

(4.38), but obviously forgoes the introduction of the approximate antisymmetrizer. Therefore,

Eqs. (4.37) is expanded as

E
(10)
SRS =

c0 〈ΨAΨB|VA|ΨAΨB〉+ c1 〈ΨAΨB|VA|Ψ↓AΨ↑B〉+ . . .

c0 〈ΨAΨB|A|ΨAΨB〉+ c1 〈ΨAΨB|A|Ψ↓AΨ↑B〉+ . . .
. (4.42)

While the S2 approximation reduced all terms with more than a single spin-flip to zero, these

terms do not necessarily vanish when the complete antisymmetrizer is used. Instead, the deci-

sion is made to ignore all terms with more than a single spin-flip (i.e. all terms not explicitly

present in Eq. (4.42)), giving rise to the single-spin-flip approximation (1-flip). The leading

terms in the numerator and denominator are effectively the same ones required for the calcula-

tion of the conventional first-order exchange correction. The second terms can be considered

as a particular subset of the double excitations appearing in Eq. (4.8), where only the unpaired

electrons are promoted to the virtual orbitals with the same spatial part but opposite spin.100

The application of the techniques used by Schäffer and Jansen for the complete E(20)
exch−disp to

the derivation of these new spin-flip terms is detailed in Appx. D, as well as the reformulation

of the newly derived MO terms into their AO forms.

The resulting equations are similar to the S2 variant, in that the numerator and denominator

are both sums of a diagonal part, that is common to all spin states, and a spin-flipped part that

is scaled by the function in Eq. (37) of Appx D to select for a specific spin state. This function

is the same as the one that appears in the S2 terms and is derived from the Clebsch-Gordan

coefficients and the normalization of the spin-flipped wavefunctions. The 1-flip approximation

is formally exact for any complex where one of the interacting molecules is a doublet, as this

limits the number of possible spin-flips to only one. The effect of the 1-flip approximation

on systems where both molecules have spin states higher than a doublet was investigated on

several smaller systems, along with a comparison of the new approximation versus the previous

S2 approximation.
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4.2.1 Small Test Systems

The first test system considered was the interaction of Li and H. As both Li and H are doublets,

the 1-flip approximation is not actually an approximation for this complex, as stated above.

Additionally, the singular electron on H means that the single-exchange approximation appears

to be complete for this test case. Both approximate values of E(10)
exch for the singlet and triplet

states at various intermolecular separations are presented in Table I of Appx. D, alongside the

FCI-based SAPT results101 (i.e. the HF wavefunctions are replaced with FCI wavefunctions

in the calculation of the SAPT corrections). Though both approximations are expected to be

the same, they begin to deviate from each other around 10.0 bohr. An investigation into the

difference between the two approximations led to the realization that, even for systems where

one molecule has only one electron, the common implementation of the S2 approximation is

never formally exact. The S2 approximation can be described as two parts. The first is the

replacement of the antisymmetrizer with its approximate form containing the single-exchange

operator. The second part is the elimination of all terms that contain overlap terms higher than

S2. It is this second part that renders the S2 approximation inexact for all cases (for more detail,

see the text around Eq. (58) in Appx. D).

For Li· · ·Li and Li· · ·N, the 1-flip approximation is still exact due to Li’s doublet state.

The comparisons of the S2 and 1-flip E(10)
exch values for these two systems are shown in Figs. 1

and 2 of Appx. D, respectively. In the Li dimer case, it can be seen that the S2 results for the

singlet and triplet states cross at short distance, while the behavior at the shortest distance for

Li· · ·N suggests that the same thing will happen at shorter separations. These results contrast

the 1-flip ones, where the correct ordering of the spin states is observed throughout the entire

presented range.

The N dimer is a case where neither approximation is formally exact, and provides a

chance to juxtapose the S2 and 1-flip results. The first-order exchange correction for the highest

spin state, the septet, can be calculated exactly in the conventional formalism,44 and is presented

together with both SF-SAPT results in Fig. 3 of Appx. D. The 1-flip approximation is observed

to be considerably milder than the S2 one, with its deviation from the exact result being smaller
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and beginning at a shorter distance. Similar results are seen for the Mn dimer in Table II of

that appendix, though it is important to note the similarity of the energy differences between

the highest and lowest spin states produced by both approximations. The adequacy of the S2

spin state splittings is also seen for the different orientations of the O2 dimer in Fig. 4 of Appx

D. In the presented range, only the shortest separations of the linear configuration of this dimer

show any noticeable difference between the approximations.

4.2.2 Pancake Bonded Systems

As a more interesting application of first-order SF-SAPT, the spin splittings between the highest

and lowest spin states of a selection of pancake bonded systems were calculated.102–105 Pan-

cake bonded systems consist of interacting doublet radicals, where the singly-occupied orbitals

are highly delocalized over the molecule. The resulting interactions are different from typical

π-stacking interactions and have strengths intermediate between covalent and van der Waals

complexes. Additionally, the orientation of these systems prefers a direct alignment of the

atoms of the molecules, as opposed to the typically ”slipped” orientations of noncovalently in-

teracting systems. This direct alignment can be seen for one of the test systems, the phenalenyl

(PLY) dimer, in Fig. 4.1. Along with the PLY dimer, four dimers of PLY derivative and the

trioxotriangulene (TOT) dimer were studied. The structures of these systems can be seen in

Fig. 5 of Appx. D. For PLY and its derivatives, only the staggered conformations was studied.

Both the staggered and eclipsed conformations of the TOT dimer were considered.

The singlet-triplet splittings for PLY2 calculated with both SF-SAPT variations are pre-

sented in Fig. 6 of Appx. D, alongside CASSCF, M05-2X, and multireference averaged

quadratic coupled cluster (MR-AQCC) results for comparison.106, 107 SF-SAPT has the worst

agreement with the CC based reference, which is reasonable given that the method is still only

first-order. The more interesting feature of this figure is the lack of difference between the S2

and 1-flip splitting results. As is to be expected, the S2 curve does show some deviation as

the intermolecular separation decreases, but overall the inclusion of complete exchange does

little to improve the splitting estimates. Fig. 7 of Appx. D shows a similar trend for the PLY
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Figure 4.1: The staggered conformation of the phenalenyl radical dimer, with carbon atoms
colored gray and hydrogen atoms white. Sideview on left and topdown on right.

derivative dimers, though the S2 approximation actually overestimates the splitting values at

the shorter separations presented.

Appendix D’s Table III presents the splittings for both conformations of the TOT dimer

and provides some explanation for the surprisingly good S2 based splitting values. In the

smaller systems, it can be observed that the S2 approximation deteriorates earlier for the highest

spin state than for the lowest. However, in the Mn and TOT dimers, it is observed that the S2

approximation begins to break down at around the same distance for the highest and lowest

spin states. The net effect is that the difference between the E(10)
exch values remains relatively

unchanged even as the individual results begin to deviate from the 1-flip ones.
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Chapter 5

Conclusions

Toward the calculation of new, high-accuracy estimates of the most important thermophysical

properties for the krypton gas, both a new potential energy curve and the interaction-induced

isotropic pair polarizability for the Kr dimer were calculated. To ensure the desired level of

accuracy in the properties calculated from these quantities, considerable effort was taken to go

beyond the state-of-the-art CCSD(T)/CBS level of theory. At the frozen core level, the basis

space was fully saturated using a combination of midbond functions, basis set extrapolation,

and explicit correlation. The importance of higher orders of coupled cluster theory, relativistics,

and core-core and core-valence correlation were all considered to insure spectroscopic accuracy

around the minimum separation. Analytic functions were fitted to the ab initio results for

use in the calculation of the viscosity, thermal conductivity, self-diffusion coefficient, thermal

diffusion factor, and the second pressure, acoustic, and dielectric virial coefficients of dilute

krypton gas. The resulting property values are among the most accurate available.

The interactions of CO2 with representative models of MOFs were studied with high-

accuracy ab initio methods, DFT, and SAPT. The models included metal species with a vary-

ing number of d-electrons to investigate the importance of a multireference treatment of such

systems. The tested systems proved to be sufficiently single-reference for evaluation with

CCSD(T), with MP2 generally outperforming MRCISD. SAPT decomposition of the inter-

actions showed the persistent importance of dispersion, even for those systems that were pre-

dominately induction bound. The CC results were used to test a selection of density functionals,

where the necessity of empirical dispersion echoed the SAPT results. PBE0 proved the most

accurate functional of those considered.
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The second-order SAPT exchange corrections without the single exchange approximation,

E
(20)
exch−ind and E(20)

exch−disp, were implemented in the public version of PSI4, after being reformu-

lated into AO and combined AO/DF forms, respectively. In addition, the first-order SF-SAPT

exchange correction was derived without the S2 approximation, instead introducing the 1-flip

approximation. The new approximation is shown to be considerably milder than the S2 one,

and is formally exact for any complex containing a doublet. Both approximations are applied

to the calculation of the spin state splittings for a number of pancake bonded systems, where

the 1-flip approximation shows little improvement over the previous S2 results. The splittings

resulting from the S2 approximation are similar to the 1-flip results due to an even deviation of

the individual E(10)
exch values of the highest and lowest spin states of the complexes.

5.1 Future and Outlook

In the case of the MOF models, the work presented here is reasonably only a start. The models

studied are a minuscule subset of such structures, with a wide variety of organics and metal

species in different configurations to consider. Additionally, while the models studied were not

especially multireference, this does not lead to the conclusion that a multireference treatment

is never required. The application of SAPT to systems like these is still non-trivial, but the

benefits provided by SAPT analysis outweigh the difficulty. Furthermore, a wider selection of

density functionals could be considered.

There remain a number of directions to continue the development of the SAPT formalism.

The third order exchange correction has been derived within the single-exchange approxima-

tion,108 but the corresponding complete exchange forms have not yet been derived. Beyond that,

ever higher orders of SAPT corrections are also feasible. The same can be said for SF-SAPT,

where the obvious next step is to move on to the second-order exchange corrections.
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A new highly accurate potential energy curve for the krypton dimer was constructed using coupled-
cluster calculations up to the singles, doubles, triples, and perturbative quadruples level, including
corrections for core-core and core-valence correlation and for relativistic effects. The ab initio data
points were fitted to an analytic potential which was used to compute the most important transport
properties of the krypton gas. The viscosity, thermal conductivity, self-diffusion coefficient, and
thermal diffusion factor were calculated by the kinetic theory at low density and temperatures from
116 to 5000 K. The comparisons with literature experimental data as well as with values from other
pair potentials indicate that our new potential is superior to all previous ones. The transport property
values computed in this work are recommended as standard values over the complete temperature
range. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921623]

I. INTRODUCTION

Thanks to algorithmic improvements and a steady increase
in computing power, it has recently become possible to com-
pute noncovalent interaction energies between atoms and/or
small molecules to unprecedented accuracy. The newly devel-
oped, highly accurate ab initio interaction potentials have
had significant impact on both theory and experiment; their
recent successes include the determination1,2 of helium pair
potential to a millikelvin accuracy necessary (and sufficient)
to devise improved, helium-based pressure and temperature
standards,3 the resolution of a long-standing disagreement
between theory and experiment for the binding energy of
the beryllium dimer,4–10 and the assignment of the extremely
complicated infrared spectrum of the ortho-H2–CO van der
Waals complex.11,12 These successes would not have been
possible without both an accurate determination of the com-
plete basis set (CBS) limit of the leading interaction energy
contribution, computed by the coupled-cluster approach with
singles, doubles, and perturbative triples (CCSD(T)), and a
reliable account of all important interaction energy corrections
past the frozen-core (FC) CCSD(T) level, including a correc-
tion for core-core and core-valence correlation, for coupled-
cluster excitations beyond CCSD(T), and for relativistic ef-
fects.

In the field of thermophysical properties, the progress on
ab initio potentials has also improved the accuracy of transport
property data for monatomic gases. Cencek et al.1 evaluated
the zero-density viscosity and thermal conductivity of helium
from the state-of-the-art potential of Przybytek et al.2 The
relative uncertainties of the ab initio values are only 2 × 10−5

a)J. M. Waldrop and B. Song contributed equally to this work.
b)E-mail: patkowsk@auburn.edu
c)E-mail: wangxp@mail.xjtu.edu.cn

for temperatures above 50 K and increase to 5 × 10−4 at low
temperatures. This level of uncertainty is significantly smaller
than that of the corresponding measurements of the viscosity
and thermal conductivity. Bich et al.13,14 determined a pair
potential for neon by first-principles calculations and further
derived the viscosity and thermal conductivity of neon from
their high-quality potential. The estimated uncertainties of the
two properties are about ±0.1% for the complete tempera-
ture range of the calculations except at the lowest tempera-
tures. Vogel et al.15 and Song et al.16 independently computed
the transport properties of argon from two different ab initio
potentials, that is, the ones of Jäger et al.17,18 and Patkowski
and Szalewicz,19 respectively. The calculated transport prop-
erty values are as accurate as the best experimental measure-
ments at room temperature. For temperatures above and below
ambient temperature, the theoretical values are expected to be
more reliable than the available experimental data.

The ab initio values of viscosity are becoming increas-
ingly important for the calibration of high-precision viscom-
eters. Vogel20 based their measurements on the theoretical
viscosity of argon at 298.15 K15 and reduced the measurement
uncertainties to 0.2% at temperatures up to 700 K. Berg and
Moldover21 determined recommended viscosities of ten com-
mon gases at 25 ◦C by re-evaluating the literature viscosity
data with a new helium result calculated ab initio.1 Their work
established a scale for gas viscosities that is more accurate than
most of the reported values. Another potential application of
ab initio results is their use in the development of wide-ranging
correlations for transport properties. Roder et al.22 showed in
their measurements on argon that the relative uncertainty of
the thermal conductivity data increased from 0.3% at higher
densities to 1% or even 2% at lower densities. In a historical
review on the thermal conductivity,23 it was suggested that
the experimental data seemed to deviate systematically from
expectations in the low-pressure region. As a result, Assael

0021-9606/2015/142(20)/204307/10/$30.00 142, 204307-1 © 2015 AIP Publishing LLC
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et al.24 utilized theoretical values instead of critically assessed
experimental data to develop the correlation for the thermal
conductivity of hydrogen in the dilute-gas limit. The thermal
conductivity is well represented by the new correlation over
the extended temperature range between the triple point and
1000 K.

Since ab initio values of transport properties are of inter-
est in many fields, the study here is aimed at their accurate
determination for the krypton gas. In this work, we develop a
new potential energy curve for the krypton dimer by high-level
ab initio calculations. The interatomic interaction energies
from high-level coupled-cluster calculations (including core
and relativistic corrections) are fitted to an analytical repre-
sentation which is applied in this work to investigate transport
properties of krypton at low density. The viscosity, thermal
conductivity, self-diffusion coefficient, and thermal diffusion
factor are computed by the classical kinetic theory of dilute
gases over a wide range of temperatures from 116 K (the triple-
point temperature of krypton) to 5000 K.

II. THE AB INITIO DATA POINTS

The potential energy curve for the krypton dimer was
calculated using the coupled-cluster method up to perturbative
quadruple excitations (CCSDT(Q)).25,26 All CCSD(T), explic-
itly correlated CCSD(T) (CCSD(T)–F12), and relativistic re-
sults were calculated using the MOLPRO code.27 The CCSDT
and CCSDT(Q) corrections28–30 were calculated using the
MRCC code.31 Basis sets used in these calculations include
aug-cc-pVXZ (aVXZ), aug-cc-pCVXZ (aCVXZ), and aug-
cc-pwCVXZ (awCVXZ).32–34 Some calculations used mid-
bond functions (denoted by, e.g., aVXZM), which were hy-
drogenic functions from the same basis as for the krypton
atoms. These functions were placed halfway between the
krypton atoms. The counterpoise correction was utilized in all
calculations to counter the basis set superposition error.35

An extensive examination of a near van der Waals min-
imum point (R = 4.0 Å,1 Å = 10−10 m) was performed to

determine the basis sets and levels of theory required to pro-
duce the desired level of accuracy. The interaction energy was
calculated as

Eint = ECCSD(T )/FC
int + ∆ECCSD(T )/AE−FC

int

+∆E(Q)−(T )/FC
int + ∆Erel

int . (1)

The subscript int implies the counterpoise corrected interac-
tion energy. The first term represents the FC approximation at
the CCSD(T) level. The second term is the correction to the
FC calculation for the core-core and core-valence correlation.
The next term is the correction from the CCSD(T) level to
the CCSDT(Q) level and the last term accounts for relativistic
effects. The correlation energies were extrapolated to the CBS
limit using the X−3 scheme. The notation method/(set1,set2)
indicates the theory level and basis sets used in the extrap-
olation. The SCF energy, which converges faster, was not
extrapolated, but taken from the larger of the two basis sets.

The interaction energies at the near van der Waals min-
imum distance computed at the CCSD(T)/FC level can be
found in Table I. The use of midbond functions obviously
increases the rate of convergence, as does the extrapolation.
For further comparison, explicitly correlated CCSD(T)-F12
calculations were performed using midbond functions.36,37

The CCSD(T)-F12a and CCSD(T)-F12b triples energies were
scaled proportionally to the ratio of the MP2-F12 and MP2
correlation energies,38,39

E(T∗∗)−F12
int = E(T )

int ·
EMP2−F12

corr

EMP2
corr

. (2)

The use of a double asterisk denotes that the scaling fac-
tor for the dimer was also employed for the counterpoise-
corrected monomer calculations.40,41 It should be noted that
the CCSD(T)-F12 results were extrapolated using the same
X−3 scheme despite their faster formal convergence. The
comparison of the extrapolated scaled and unscaled CCSD(T)-
F12a and CCSD(T)-F12b values shows high consistency for
the largest basis set. The uncertainty for the extrapolated ener-
gies is taken as the difference between the extrapolated value

TABLE I. Frozen-core CCSD(T) interaction energies (cm−1) at the near van der Waals minimum separation
(R = 4.0 Å). The rows marked “ext.” show the CBS-extrapolated results where the values for “X” are obtained
from the (X −1, X ) extrapolation. The letter M in the basis set symbol stands for the hydrogenic set of midbond
functions from the same aVXZ basis.

X =

Method D T Q 5

E
CCSD(T )/FC
int /aVXZ −17.459 −82.369 −113.474 −123.924

ext. −112.000 −136.369 −134.764
E

CCSD(T )/FC
int /aVXZM −69.585 −122.362 −129.610 −131.625

ext. −144.339 −134.868 −133.726
E

CCSD(T )−F12a/FC
int /aVXZM −104.767 −130.423 −132.275 −132.899

ext. −141.938 −133.697 −133.549
E

CCSD(T ∗∗)−F12a/FC
int /aVXZM −117.101 −136.819 −135.130 −134.365

ext. −145.346 −133.909 −133.558
E

CCSD(T )−F12b/FC
int /aVXZM −95.504 −126.021 −129.366 −131.346

ext. −139.095 −131.817 −133.421
E

CCSD(T ∗∗)−F12b/FC
int /aVXZM −107.839 −132.417 −132.221 −132.812

ext. −141.450 −132.088 −133.429
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TABLE II. Interaction energy corrections (cm−1) at the near van der Waals minimum separation (R = 4.0 Å). The
rows marked “ext.” show the CBS-extrapolated results where the values for “X” are obtained from the (X −1, X )
extrapolation. The letter M in the basis set symbol stands for the hydrogenic set of midbond functions from the
same aCVXZ/awCVXZ basis.

X =

Method D T Q 5

∆E
CCSD(T )/AE−FC
int /aCVXZ −2.288 −4.695 −4.613 −4.275

ext. −5.708 −4.554 −3.921
∆E

CCSD(T )/AE−FC
int /aCVXZM −2.330 −4.254 −4.300

ext. −5.064 −4.334
∆E

CCSD(T )/AE−FC
int /awCVXZ −4.119 −5.057 −4.545 −4.216

ext. −5.452 −4.171 −3.872
∆E

CCSD(T )/AE−FC
int /awCVXZM −3.814 −4.826 −4.201

ext. −5.252 −3.745

∆E
T−(T )/FC
int /aVXZ 0.155 1.530 1.853

ext. 2.109 2.088
∆E

(Q)−T /FC
int /aVXZ −0.814 −1.259 −1.745

ext. −1.447 −2.099
∆E

(Q)−(T )/FC
int /aVXZ −0.659 0.271 0.108

ext. 0.662 −0.011

∆Erel
int/decontracted aVXZ −5.582 −4.507 −3.566 −3.196

ext. −3.955 −2.894 −2.812

and the result in the larger basis set used for extrapolation.
The CCSD(T**)-F12b/(aVQZM,aV5ZM) result exhibits the
lowest uncertainty, yielding a value of −133.43 ± 0.62 cm−1

(1 cm−1 ≈ 1.986 45 × 10−23 J).
Table II provides the values for the post-CCSD(T)/FC

corrections at R = 4.0 Å. The core and relativistic terms are
shown to be significant at the CBS limit, with values of
−3.87 cm−1 and−2.81 cm−1, respectively. The coupled-cluster
contributions beyond CCSD(T) are accidentally very small for
this system (due to a nearly perfect cancellation between the
CCSDT–CCSD(T) and CCSDT(Q)–CCSDT contributions);
however, we still included them as they become somewhat
more important at short range. The second-order Douglas-
Kroll-Hess Hamiltonian42,43 was used with the CCSD(T)/AE
method and decontracted aVXZ basis sets to calculate the rela-
tivistic effects. Additionally, the contributions to the relativistic
correction from the two-electron Breit-Pauli terms44 were
investigated (at R = 4.06 Å). Their contributions to the total
interaction energy were found to be insignificant and we did
not consider these terms any further. The relativistic correction
to the SCF energy is not fully converged at large values of R,
which is taken into consideration in the uncertainty estimation.
The uncertainty of the relativistic terms is determined in the
same manner as for the other terms, but with an addition of
the difference between the SCF energies in the basis sets used
in the extrapolation. The best correction estimates were added
to the CCSD(T**)-F12b/(aVQZM,aV5ZM) value to provide
the best estimate of the near-minimum interaction energy,
−140.12 ± 0.82 cm−1. The uncertainty of this estimate was
determined by the quadratic addition of the uncertainties of
the individual terms.

Using the best level of theory determined above, the
ab initio calculations were performed at 25 distances R: 2.6,
2.8, 3.0, 3.2, 3.4, 3.6, 3.7, 3.8, 3.9, 4.0, 4.06, 4.1, 4.2, 4.3,

4.4, 4.6, 4.8, 5.0, 5.5, 6.0, 7.0, 8.0, 9.0, 10.0, and 12.0 Å.
We observed that at the largest R, the CCSD(T**)-F12b
interaction energy is not as well converged as the conven-
tional CCSD(T) one. This behavior has been observed before
and is likely due to both auxiliary basis set incompleteness
and the residual inaccuracies of the approximate CCSD(T)-
F12b approach.45 As a result, we employed the conventional
CCSD(T)/(aVQZM,aV5ZM) values for R ≥ 8.0 Å. Table III
contains the total interaction energy, total uncertainty, and
interaction energy contributions at all values of R.

III. THE ANALYTIC KRYPTON-KRYPTON POTENTIAL

The ab initio data points obtained in Sec. II were fitted
using a weighted least-squares routine to a function of the form

V (R) =
(
A + BR +

C
R

)
e−αR −

4

n=3
f2n(βR)C2n

R2n , (3)

where A,B,C,α, β,C6, and C8 are fit parameters and f2n(x) are
the Tang-Toennies damping functions,46

f2n (x) = 1 − e−x
2n

k=0

xk

k!
. (4)

For each R, the inverse of the squared uncertainty was
used as the weight during fitting. The long-range terms C6 and
C8 were fitted to points with R ≥ 8.0 Å without any damping
and then frozen for the rest of the fit. The parameter values
obtained in the fitting process are shown in Table IV (one
should note that these parameters are expressed in atomic
units). Using the parameters provided, the potential passes
through the [E −U(E),E +U(E)] uncertainty range for each
ab initio data point, deviating from the computed values by
0.16 U(E) on the average. One should note that since only the
two leading asymptotic terms are included in Eq. (3), the fitted
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TABLE III. Contributions to the ab initio krypton dimer interaction energy, the total interaction energy, and the total uncertainty U (Eint) in cm−1. The column
marked “Efit” shows the values for the analytical potential fitted to the ab initio data.

R (Å) E
CCSD(T )/FC
int

a ∆E
CCSD(T )/AE−FC
int

b ∆E
(Q)−(T )/FC
int

c ∆Erel
int

d Eint U (Eint) e Efit

2.60 10 593.159 −328.707 6.708 −468.592 9802.568 36.642 9798.985
2.80 5 199.108 −192.796 4.046 −259.852 4750.507 21.518 4755.736
3.00 2 396.447 −109.840 2.208 −139.063 2149.751 12.221 2149.689
3.20 989.473 −60.805 1.067 −71.849 857.886 6.869 856.318
3.40 315.487 −32.638 0.438 −35.682 247.605 3.861 246.681
3.60 15.182 −16.900 0.137 −16.846 −18.427 2.221 −18.612
3.70 −58.545 −11.965 0.063 −11.280 −81.727 1.675 −81.704
3.80 −101.762 −8.360 0.019 −7.375 −117.478 1.296 −117.349
3.90 −124.393 −5.747 −0.003 −4.666 −134.809 1.019 −134.654
4.00 −133.429 −3.872 −0.011 −2.812 −140.124 0.815 −139.999
4.06 −134.431 −3.016 −0.012 −2.002 −139.461 0.720 −139.366
4.10 −133.765 −2.538 −0.011 −1.562 −137.876 0.666 −137.802
4.20 −128.764 −1.603 −0.006 −0.737 −131.110 0.553 −131.093
4.30 −120.718 −0.954 0.001 −0.207 −121.878 0.467 −121.910
4.40 −111.157 −0.514 0.009 0.121 −111.542 0.398 −111.604
4.60 −91.093 −0.029 0.023 0.415 −90.684 0.298 −90.763
4.80 −72.746 0.161 0.033 0.464 −72.089 0.226 −72.153
5.00 −57.418 0.210 0.039 0.419 −56.751 0.174 −56.777
5.50 −31.587 0.159 0.041 0.245 −31.142 0.096 −31.112
6.00 −17.899 0.089 0.033 0.131 −17.646 0.059 −17.610
7.00 −6.547 0.027 0.018 0.040 −6.461 0.025 −6.458
8.00 −2.791 0.009 0.009 0.015 −2.757 0.018 −2.757
9.00 −1.329 0.004 0.005 0.007 −1.314 0.009 −1.315
10.00 −0.689 0.002 0.003 0.003 −0.682 0.004 −0.682
12.00 −0.224 0.000 0.001 0.001 −0.221 0.001 −0.221

aCCSD(T**)-F12b/(aVQZM,aV5ZM) for R < 8.0 Å. CCSD(T)/(aVQZM,aV5ZM) for R ≥ 8.0Å.
bExtrapolated from the awCVQZ and awCV5Z basis sets.
cExtrapolated from the aVTZ and aVQZ basis sets.
dExtrapolated from CCSD(T)/AE (decontrated aVQZ, decontrated aV5Z) computed using second-order DKH Hamiltonian.
eObtained by quadratically adding the uncertainties of the contributions.

parameters C6 and C8 should be viewed as effective constants
that include some contribution from C10 and higher terms. In
particular, our parameter C6 = 126.79 a.u. is likely less accu-
rate than the value 129.6 a.u. obtained from the experimental
dipole oscillator strength distributions by Kumar and Meath.47

Without enforcing any particular short-range form, there
is no guarantee that V (R) will exhibit reasonable behavior at
distances shorter than 2.6 Å (the lowest-R data point). Indeed,
it turns out that the fitted V (R) function behaves reasonably
down to about 1.8 Å but becomes negative for still shorter R. To

TABLE IV. Parameters of the analytical krypton dimer potential V (R) in
atomic units of energy and length (1 hartree≈ 4.359 74×10−18 J, 1 bohr
≈ 5.291 772×10−11 m).

Parameter Value Unit

A 467.771 557 hartree
B −43.111 875 hartree·bohrs−1

C −509.601 417 hartree·bohrs
α 1.566 575 bohrs−1

β 4.083 794 bohrs−1

C6 126.790 499 hartree·bohrs6

C8 5268.109 217 hartree·bohrs8

Ash 1296.0 hartree·bohrs
αsh 3.067 950 bohrs−1

βsh 0.324 071 4 bohrs−2

eliminate this unphysical behavior, we decided to replace V (R)
by a simpler, well-behaving function Vsh(R) for R < 1.8 Å,

Vsh (R) =
(

Ash

R

)
e−αshR+βshR

2
, (5)

where the parameter Ash = (36 × 36) hartree×bohrs = 1.5052
× 108 cm−1 Å enforces the correct R → 0 asymptotics, and the
parameters αsh and βsh are chosen such that the potential and its
first derivative are continuous at the splicing point R = 1.8 Å.
The values of the short-range parameters are also included in
Table IV.

The analytical potential has a minimum at 4.01 Å where
the interaction energy is −140.06 cm−1. This estimate of the
minimum interaction energy agrees very well with the value
of −139.9 cm−1 for the empirical potential of Dham et al.,48

while the previous ab initio studies of Haley and Cybulski49

(−132.8 cm−1) and Slavíček et al.50 (−135.1 cm−1) predicted
a somewhat shallower van der Waals well. The comparison of
the potential energy functions of Refs. 48–50 with the function
developed in this work is presented in Figure 1. The values
shown are percent deviations of the literature potentials rela-
tive to the V (R) of Eq. (3) (thus, the deviations are naturally
very large around 3.58 Å where V (R) crosses zero). To esti-
mate the uncertainties of the potential and of the computed
quantities, we have constructed the lower- and upper-limit
potentials V− (R) and V+ (R) by fitting the same functional
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FIG. 1. Percent differences between the literature krypton-krypton poten-
tials48–50 and the potential developed in this work. The dotted black lines
pertain to the lower- and upper-limit potentials V−(R) and V+(R).

form as Eq. (3) to Eint −U(Eint) and Eint +U(Eint), respectively.
The deviations between these two potentials and V (R) are also
included in Figure 1. This figure shows that while the potentials
of Haley and Cybulski49 and Slavíček et al.50 are quite far from
our potential, the HFD-B2 function of Dham et al.48 is either
within or just outside our uncertainty range in the entire van der
Waals minimum region. At shorter distances, all the literature
potentials deviate from V (R) by close to 10%.

As a first test of our analytic potential, we have calcu-
lated the vibrational transition frequencies for the most abun-
dant 84Kr2 isotopomer using a one-dimensional Schrödinger
equation solver by Wolniewicz.51 The potential supports 16
bound vibrational levels and the frequencies of transitions
between the first 10 of them are presented in Table V. The
uncertainty of each transition frequency was taken as the larger
of the absolute differences between the results computed using
(V (R) ,V+ (R)) and (V (R) ,V− (R)). For comparison, Table V
also lists the vibrational frequencies obtained by Dham et al.48

(the HFD-B2 potential), Slaviček et al.50 (their most accurate
results, obtained with a relativistic effective core potential),
and two experiments.52,53 Our results are in a virtually per-
fect agreement with the empirical potential of Dham et al.,
while the frequencies from the Slaviček et al. potential are

somewhat underestimated. Our results are also within the
(fairly wide) experimental error bars of Tanaka et al.52 for all
transitions except for the 5 → 4 one. The absolute agreement
of our values with the two frequencies very precisely measured
(for a different, 86Kr2 isotopomer) by LaRocque et al.53 is
very good; both experimental values are within the theoretical
uncertainty range. We conclude from Table V that our analytic
potential gives vibrational transitions that are on par with the
empirical potential by Dham et al.48 and more accurate than
the previous ab initio potential by Slaviček et al.50

IV. THE CALCULATION OF TRANSPORT PROPERTIES

The potential function fitted in Sec. III was used to com-
pute the low-density transport properties of krypton in the
classical kinetic theory by the following procedure.

A. Cross sections

First, a large number of cross sections Q(l) for collisions
between two atoms are classically evaluated over a wide range
of the collision energy E,54

Q(l) (E) = 2π

1 − 1 + (−1)l

2 (1 + l)


−1  ∞

0

�
1 − coslθ

�
b db, (6)

where l is the weighting parameter for molecular collisions
and b the impact factor. The deflection angle θ is related to
the potential energy function V (R) and can be expressed as
follows:

θ (E,b) = π − 2b
 ∞

R0

dR/R2
1 − b2/R2 − V (R) /E

(7)

in which R0 represents the classical distance of closest ap-
proach during a collision and is determined from the formula

1 − b2/R2
0 − V (R0) /E = 0. (8)

B. Collision integrals

Next, the cross section Q(l) is integrated with respect to
the collision energy E to derive the collision integral Ω(l,s) as

TABLE V. Frequencies of vibrational transitions (in cm−1) for the 84Kr2 complex computed using the potential
developed in this work compared to literature values.

Transition This work Empirical48 Ab initio50,a Expt.52 Expt.53,b

1→ 0 21.466 ± 0.081 21.41 21.02 21.56 ± 0.54 21.175 ± 0.010
2→ 1 19.307 ± 0.077 19.30 18.86 19.09 ± 0.57 19.093 ± 0.020
3→ 2 17.166 ± 0.073 17.20 16.73 16.76 ± 0.60
4→ 3 15.053 ± 0.069 15.11 14.62 14.76 ± 0.75
5→ 4 12.980 ± 0.065 13.02 12.56 12.23 ± 0.51
6→ 5 10.963 ± 0.062 10.97 10.56 10.49 ± 0.50
7→ 6 9.026 ± 0.060 9.01 8.65 8.92 ± 0.44
8→ 7 7.199 ± 0.063 7.17 6.86 6.92 ± 0.63
9→ 8 5.517 ± 0.064 5.49 5.19 5.54 ± 0.30

aThe ECP+aug-cc-pVQZ+spdfg frequencies computed using the average atomic weight of krypton at its natural isotopic
composition.
bThe transition frequency measured for the 86Kr2 isotopomer. Our calculations for this isotopomer give 21.240 ± 0.080 and
19.131±0.076 cm−1 for the 1→ 0 and 2→ 1 transitions, respectively.
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a function of the temperature T ,

Ω(l,s) (T) = (s + 1)!(kT)s+2
−1

 ∞

0
Q(l) (E) e−E/kTEs+1dE,

(9)

where s is also the weighting parameter and k the Boltzmann
constant (1.380 658 × 10−23 J K−1).

C. Transport properties

Finally, the transport properties for pure gases at low
density are given by55

η =
5

16
(πmkT)1/2 fη

Ω(2,2) , (10)

λ =
75
64

�
πk3T/m

�1/2 fλ
Ω(2,2) , (11)

D =
3
8
�
πk3T3/m

�1/2 fD
PΩ(1,1) , (12)

αT =
15
2

(6C∗ − 5) (2A∗ + 5)
A∗ (16A∗ − 12B∗ + 55) (1 + κ0) , (13)

where η represents the viscosity, λ the thermal conductivity, D
the self-diffusion coefficient, αT the thermal diffusion factor, m
the atomic mass, and P the standard atmosphere (101.3 kPa).
fη and fλ are the fifth-order approximations to the viscosity
and thermal conductivity, respectively, which are given in
detail in the Appendix of Viehland et al.56 fD and κ0 denote the
second-order corrections to the self-diffusion coefficient and
thermal diffusion factor, respectively,55

fD = 1 +
1
8
(6C∗ − 5)2(2A∗ + 5)−1, (14)

κ0 =
1
9
(7 − 8E∗)


2A∗

35/4 + 7A∗ + 4F∗


H∗ +

[A∗ (7 − 8E∗) − 7 (6C∗ − 5)] (35/8 + 28A∗ − 6F∗)
42A∗ (2A∗ + 5)


− 5

7


H∗ +

7 (6C∗ − 5)
5 (2A∗ + 5) −

3
10

(7 − 8E∗)


. (15)

The quantities A∗–H∗ are derived by combining different colli-
sion integrals Ω(l,s),

A∗ = Ω(2,2)/Ω(1,1), (16)

B∗ =
(
5Ω(1,2) − 4Ω(1,3)) /Ω(1,1), (17)

C∗ = Ω(1,2)/Ω(1,1), (18)

E∗ = Ω(2,3)/Ω(2,2), (19)

F∗ = Ω(3,3)/Ω(1,1), (20)
H∗ = (3B∗ + 6C∗ − 35/4) / (6C∗ − 5) . (21)

V. RESULTS AND DISCUSSION

The transport properties of krypton were calculated over
the temperature range between 116 and 5000 K. In this work,
the classical calculations are valid because the ratio of the ther-
mal de Broglie wavelength h/

√
2πmkT to the atomic diameter

σ(∼4 Å) is much less than 1 for the complete temperature
range. It should also be noted that 83.798 was used as the
relative atomic mass for krypton. The uncertainty in a given
transport property was estimated as half the absolute differ-
ence of properties computed with the lower- and upper-limit
potentials, V− (R) and V+ (R).

The experimental data from the literature were employed
to check the quality of the ab initio values of transport prop-
erties. Since the data for the thermal diffusion factor have a
comparably large uncertainty, the comparison for this property
was not investigated in the present work. We also examined the
performance of the empirical potential by Dham et al.48 and the
older ab initio potential by Slavíček et al.50 for the transport

properties, comparing them with the theoretical values from
our new potential. It should be noted here that most measure-
ments at low density were performed at or near to atmospheric
pressure, whereas the viscosity and thermal conductivity were
computed in the limit of zero density. At the temperatures near
the normal boiling point of krypton, the effect of the change in
density is 2%–3%, which has to be taken into account in the
comparisons. Therefore, according to the Rainwater-Friend
theory,57,58 the data at zero density X0 were derived from the
density virial expansion of the low-density experimental data
X in the first order,

X0 =
X

1 + BX ρ
, (22)

BX = NAσ
3B∗X, (23)

B∗X =
n

i=0
ai

(√
T∗

)−i
(24)

in which X = η, λ, T∗ = T/ (ε/k), ρ is the mass density, and
NA is the Avogadro constant (6.022 141 29 × 1023 mol−1). In
Ref. 58, which used a Lennard-Jones description for the inter-
atomic potential, the atomic diameter σ and the well depth ε/k
were given in Table 5.2, whereas the resulting coefficients ai

were listed in Table 5.3.

A. Viscosity

A large body of experimental data for the viscosity of
krypton can be found in the literature with different levels
of accuracy. Here, we considered the data59–63 recommended
by Table I of Bich et al.64 as well as some data65–67 reported
after 2000. The data were corrected using the Rainwater-Friend
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FIG. 2. Relative deviations of the literature viscosity data, ηlit, from the
values calculated in this work, ηcal, for krypton. Data sources: (black filled
square) Dawe and Smith;59 (red filled circle) Goldblatt et al.;60 (blue open
triangle) Kestin et al.;61 (black open square) Gough et al.;62 (red open circle)
Vogel;63 and (blue filled triangle) Wilhelm and Vogel.65

theory except the zero-density data by Wilhelm and Vogel65

as well as Berg and Burton.67 Figure 2 reveals substantial
disagreement between the viscosity data sets by relative mea-
surements59–63,65 and the theoretical values of this work. Thus,
40 from 66 data points deviate by more than ±0.4% from the
calculated values. At room temperature, the differences fall
into the interval of 0.3% to 0.7% and increase to −1.3% for
temperatures up to 2000 K. Most of the viscosity data are not
suitable for a reasonable comparison to judge the quality of the
calculated values.

On the other hand, the recent data by Berg and Bur-
ton67 based on a calibration with one ab initio helium value
agree perfectly with the present theoretical result. The relative
deviation at 25 ◦C gives the value of only 0.02% which is
distinctly smaller than those for other relative measurements.
The viscometers59–63,65 were calibrated on older viscosity data
which are characterized by larger uncertainties than those of
recent ab initio results. Consequently, we re-evaluated the
viscosity data of krypton to better accuracy by the following
procedure. First, the ratio ηkr (T) /ηref (T) was calculated for
the viscosity of krypton and one reference gas from the same
paper. Next, the new value for the reference gas ηab initio (T)
was interpolated from the ab initio results by Cencek et al.1

for helium, Mehl68 for argon, or Hellmann69 for nitrogen.
Finally, the new viscosity data for krypton were determined
by the expression ηab initio

(
ηkr
ηref

)
. It should be stressed that this

recalibration of the literature viscosity data includes no input
from the present work (and no ab initio krypton data in general)
and is simply an attempt to correct a known deficiency of
the older experimental data, which has been eliminated in the
newer ones.67

In Figure 3, the re-evaluated data give considerably better
agreement with the theoretical results than the original data.
The viscosity data by Dawe and Smith59 are characterized by
deviations of ±(0%–0.3%) over a wide temperature range be-
tween 290 and 1500 K. The measurements by Goldblatt et al.60

at high temperatures result in deviations from+0.7% at 1100 K
down to −0.8% at 2000 K. The measurement by Kestin et al.61

FIG. 3. Relative deviations of the literature viscosity data, ηlit, from the
values calculated in this work, ηcal, for krypton. Data sources: (black filled
square) Dawe and Smith,59 re-evaluated data; (red filled circle) Goldblatt
et al.,60 re-evaluated data; (blue filled triangle) Kestin et al.,61 re-evaluated
data; (black open square) Gough et al.62 re-evaluated data; (red open cir-
cle) Vogel,63 re-evaluated data; (blue open triangle) Wilhelm and Vogel,65

re-evaluated data; (magenta unfilled inverted triangle) Evers et al.;66 (magenta
filled inverted triangle) Berg and Burton;67 (red dashed line) calculated using
the potential by Dham et al.;48 (blue dotted line) calculated using the potential
by Slavíček et al.;50 and (solid line) uncertainty of ηcal.

at 25 ◦C differs by +0.2% from the value calculated using the
potential developed in this work. For the data recommended
by Kestin et al. above the ambient temperature, the differences
decrease with increasing temperature from +0.9% at 100 ◦C
to −0.1% at 700 ◦C. The low-temperature measurements by
Gough et al.62 lead to results which agree within about ±0.3%
over all temperatures apart from the lowest one. In the group
of Vogel, measurements on krypton were carried out by means
of oscillating-disk and vibrating-wire viscometers. The data
by Vogel63 in 1984 deviate by +(0.1%–0.7%), whereas that by
Wilhelm and Vogel65 in 2000 are only 0.04% and 0.07% higher
than the theoretical values at 25 ◦C and 75 ◦C, respectively.
Evers et al.66 performed absolute measurements based on the
rotating-cylinder method and obtained results which deviate
by +0.3% at 298 K and +0.2% at 348 K.

Figure 3 additionally includes the comparison between
the values computed from the potentials by Dham et al.48 and
Slavíček et al.50 and the theoretical results of this work. The
values for the two literature potentials show in most cases
larger deviations than those for the experimental data, espe-
cially for temperatures above and below ambient tempera-
ture. The differences demonstrate that the interatomic potential
developed in this work is more accurate than the empirical
potential by Dham et al. and the older ab initio potential by
Slavíček et al.

B. Thermal conductivity

As in the case of the viscosity, there is a large amount of
experimental thermal conductivity data available in the litera-
ture for krypton. Figure 4 contains the percentage deviations
of the data70–72 collected in Table II of Bich et al.64 as well
as by two other sources73,74 from the values calculated using
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FIG. 4. Relative deviations of the literature thermal conductivity data, λlit,
from the values calculated in this work, λcal, for krypton. Data sources:
(black open square) Haarman;70 (black filled square) Kestin et al.;71 (red open
circle) Assael et al.;72 (red filled circle) Hemminger;73 (blue open triangle)
Le Neindre et al.;74 (red dashed line) calculated using the potential by Dham
et al.;48 (blue dotted line) calculated using the potential by Slavíček et al.;50

and (solid line) uncertainty of λcal.

the potential constructed in this work. The corrections for the
density effect were applied to three data sets,70,73,74 while the
data by Kestin et al.71 and Assael et al.72 were presented at
zero density. The transient hot-wire technique was employed
in the experimental studies by Haarman,70 Kestin et al.71 and
Assael et al.72 The data by Haarman between 328 and 468 K
are characterized by deviations of ±(0%–0.2%). At ambient
temperature, the differences are +0.2% and +0.3% from the
calculated values for the data by Kestin et al. and Assael et al.,
respectively. The data by Hemminger73 differ by −0.9% at
30 ◦C and the deviations decrease to −0.2% at 190 ◦C, whereas
the data by Le Neindre et al.74 at 25 ◦C are consistent with the
theoretical value within −0.5%.

C. Self-diffusion coefficient

In Figure 5, the self-diffusion coefficient data by Groth
and Harteck75 differ from the present calculated values by
up to −5% around room temperature. The experimental re-
sults by Schäfer and Schuhmann76 show deviations between
+0.2% at 200 K and −8% at 470 K. The two-bulb method
was employed by different researchers77–82 to measure the self-
diffusion coefficient of krypton. For the temperature range
from 20 to 35 ◦C, the data in three papers77–79 deviate from the
calculated values by −(3%–5%), whereas a good agreement
within +0.5% is found for the result by Saran and Singh.80

Annis et al.81 reported two values at the same temperature of
295 K which are characterized by deviations of +0.9% and
−6%, respectively. Weissman and DuBro82 obtained a total of
25 data covering a wide temperature range from about 200 to
1000 K with differences of±(0.2%–9%) from the theoretically
calculated values.

It should be noted that the thermal conductivity and self-
diffusion coefficient usually have larger uncertainties than the
viscosity. As mentioned above, the careful measurements by

FIG. 5. Relative deviations of the literature self-diffusion coefficient data,
Dlit, from the values calculated in this work, Dcal, for krypton. Data sources:
(black filled square) Groth and Harteck;75 (black open square) Schäfer and
Schuhmann;76 (red open circle) Durbin and Kobayashi;77 (blue open triangle)
Miller and Carman;78 (red filled circle) Watts;79 (blue filled triangle) Saran
and Singh;80 (magenta filled inverted triangle) Annis et al.;81 (magenta un-
filled inverted triangle) Weissman and DuBro;82 (red dashed line) calculated
using the potential by Dham et al.;48 and (blue dotted line) calculated using
the potential by Slavíček et al.50 The small uncertainty of Dcal was omitted
for clarity of the figure.

Roder et al.22 indicated that the accuracy reached the level
of 1%–2% for the low-density thermal conductivity of argon
around room temperature. In a critical review by Marrero and
Mason,83 the uncertainty of the experimental self-diffusion
coefficient for dilute krypton was estimated to be 1% at room
temperature and increase to 5% at 1000 K. It is obvious that
the comparably large deviations for the experimental data in
Figures 4 and 5 do not allow one to distinguish between
the empirical potential by Dham et al.,48 the older ab initio
potential by Slavíček et al.,50 and our new ab initio potential.

VI. CONCLUSIONS

We have developed a new potential energy curve for
the krypton dimer in a form of an analytical function, fitted
to 25 ab initio data points, that exhibits quantitatively cor-
rect behavior in the limit R → ∞ and qualitatively correct
behavior for R → 0. The ab initio interaction energies were
obtained from explicitly correlated coupled-cluster calcula-
tions employing basis sets as large as aV5ZM (augmented
correlation-consistent quintuple zeta with midbond functions)
and extrapolated to the CBS limit. Moreover, the frozen-core
CCSD(T)-level values were supplemented by corrections for
core-core and core-valence correlation, higher-order coupled-
cluster excitations up to CCSDT(Q), and relativistic effects.
The total interaction energy at a near-minimum interatomic
distance of 4.0 Å amounts to −140.12 ± 0.82 cm−1.

The new krypton-krypton potential was subsequently
used to compute several transport properties of krypton using
the classical kinetic theory of dilute gases. The viscosity,
thermal conductivity, self-diffusion coefficient, and thermal
diffusion factor were studied in this work at low density over
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TABLE VI. Low-density transport properties of krypton and their estimated uncertainties.

T /K η/µPa s λ/mW m−1 K−1 D (101.3 kPa)/cm2 s−1 αT

115.78 10.188(19) 3.7916(71) 0.015 453(36) 0.062 346(1314)
150 13.067(24) 4.8624(91) 0.025 753(53) 0.043 669(2083)
200 17.313(28) 6.4420(105) 0.045 376(75) 0.072 753(2845)
209.48 18.110(28) 6.7385(106) 0.049 677(78) 0.081 697(2938)
250 21.455(28) 7.9838(104) 0.070 029(89) 0.124 17(319)
273.15 23.314(26) 8.6763(99) 0.083 027(92) 0.149 31(325)
273.16 23.315(26) 8.6766(99) 0.083 033(92) 0.149 32(325)
293.15 24.887(25) 9.2623(94) 0.095 021(93) 0.170 64(327)
298.15 25.275(25) 9.4070(92) 0.098 127(93) 0.175 88(327)
300 25.419(24) 9.4604(92) 0.099 287(93) 0.177 80(327)
350 29.186(19) 10.865(7) 0.132 79(9) 0.226 97(320)
400 32.764(13) 12.200(5) 0.170 24(7) 0.269 90(305)
450 36.167(7) 13.471(3) 0.211 40(5) 0.306 65(287)
500 39.415(8) 14.684(3) 0.256 08(5) 0.337 84(267)
600 45.509(12) 16.963(4) 0.355 36(7) 0.386 66(230)
700 51.166(24) 19.079(9) 0.467 11(17) 0.421 89(197)
800 56.476(35) 21.066(13) 0.590 57(30) 0.447 62(169)
900 61.504(45) 22.947(16) 0.725 20(45) 0.466 65(146)
1000 66.300(54) 24.742(20) 0.870 54(61) 0.480 88(127)
1500 87.860(91) 32.806(34) 1.746 8(16) 0.514 16(73)
2000 106.85(12) 39.905(44) 2.852 4(30) 0.521 51(53)
2500 124.27(14) 46.412(53) 4.169 4(47) 0.520 59(46)
3000 140.59(16) 52.508(60) 5.685 7(66) 0.516 58(46)
3500 156.09(18) 58.294(68) 7.392 3(90) 0.511 36(49)
4000 170.94(20) 63.837(75) 9.282 2(116) 0.505 69(54)
4500 185.26(22) 69.181(82) 11.350(15) 0.499 91(59)
5000 199.14(24) 74.359(89) 13.590(18) 0.494 20(65)

the temperature range between 116 and 5000 K. The experi-
mental data in the literature and the values computed by other
krypton-krypton potentials were compared with the present
theoretical values for the different transport properties. The
experimental viscosity data re-evaluated using new ab initio
reference values as well as the data of Berg and Burton67 make
it evident that the new ab initio potential developed in this work
should be more accurate than the empirical potential by Dham
et al.48 and the older ab initio potential by Slavíček et al.50

However, the comparably large uncertainties for the thermal
conductivity and self-diffusion coefficient in the low-pressure
region indicate that the two properties are not suitable to judge
the quality of the different potentials. The careful analysis
shows that the calculated values for the transport properties
considered (Table VI) could be applied as standard values over
the complete temperature range of the calculations.
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We have developed a new krypton–krypton interaction-induced isotropic dipole polarizability curve
based on high-level ab initio methods. The determination was carried out using the coupled-cluster
singles and doubles plus perturbative triples method with very large basis sets up to augmented
correlation-consistent sextuple zeta as well as the corrections for core-core and core-valence corre-
lation and relativistic effects. The analytical function of polarizability and our recently constructed
reference interatomic potential [J. M. Waldrop et al., J. Chem. Phys. 142, 204307 (2015)] were used
to predict the thermophysical and electromagnetic properties of krypton gas. The second pressure,
acoustic, and dielectric virial coefficients were computed for the temperature range of 116 K–5000 K
using classical statistical mechanics supplemented with high-order quantum corrections. The virial
coefficients calculated were compared with the generally less precise available experimental data as
well as with values computed from other potentials in the literature {in particular, the recent highly
accurate potential of Jäger et al. [J. Chem. Phys. 144, 114304 (2016)]}. The detailed examination
in this work suggests that the present theoretical prediction can be applied as reference values in
disciplines involving thermophysical and electromagnetic properties of krypton gas. Published by
AIP Publishing. https://doi.org/10.1063/1.5006970

I. INTRODUCTION

The macroscopic properties of fluids depend on the micro-
scopic interactions between molecules and in principle they
can be calculated from them.1–4 In this way, with the help of
modern computational techniques, it is now possible to obtain
thermophysical properties of gases to high accuracy purely
from theory.5–12 This process involves two lengthy computa-
tions. At first, the potential energy curve V (R), where R is
the interatomic distance, is computed from first principles.
Then, V (R) is employed in expressions based on statistical
mechanics and kinetic theory of dilute gases to yield thermo-
physical properties. The best known example is the theoretical
results for helium9 which have uncertainties that are signifi-
cantly smaller (sometimes by nearly two orders of magnitude)
than those of the corresponding measured quantities. Standard
theoretical values of thermophysical properties are becom-
ing important for two areas: instrument calibration13–15 and
metrology.16–18 Other studies such as the development of ther-
modynamic and transport equations could also benefit from
more accurate thermophysical data (e.g., Refs. 19–21).

We have recently constructed a new pair potential for
krypton using coupled-cluster calculations up to the singles,
doubles, triples, and perturbative quadruples level, including
the corrections for core-core and core-valence correlation as
well as relativistic effects.10 Comparisons with the literature

a)B. Song and J. M. Waldrop contributed equally to this work.
b)E-mail: song.bo@xjtu.edu.cn
c)E-mail: patkowsk@auburn.edu

indicated that this potential is more accurate than any curve
published previously. In this work, we have used the new
potential together with classical statistical mechanics with
quantum corrections to compute some thermophysical prop-
erties of krypton gas: the second pressure virial coefficient B
and the second acoustic virial coefficient βa for the range of
115.78 K (the triple-point temperature of naturally abundant
krypton22) to 5000 K. The range of temperatures investigated
is wide enough for most scientific and engineering purposes.
In addition to thermophysical properties, the electromagnetic
properties of simple gases are also valuable for pressure and
temperature metrology.23 For these reasons, we have also cal-
culated the second dielectric virial coefficient Bε of krypton
using a semi-classical method for the same aforementioned
temperature range. The calculations of Bε require not only the
pair potential but also the interaction-induced isotropic dipole
polarizability ∆αave(R) of the weakly bound dimer.

The rest of the article is structured as follows. We present
in Sec. II the determination of the krypton–krypton interaction-
induced polarizability as well as its analytical representation
∆αfit

ave (R) and the expressions for the lower- and upper-limits
of its values. In Sec. III, our recent interatomic potential of
the weakly bound krypton dimer10 is briefly described for the
sake of completeness. Section IV provides the detailed for-
mulations for the computation of virial coefficients of krypton
gas and the procedure to evaluate the uncertainty of theoreti-
cally calculated values. Section V contains a comparison of the
experimental data and the values from some literature poten-
tials with the present calculated values for the virial coefficients
of krypton to assess carefully the performance of this work. It

0021-9606/2018/148(2)/024306/10/$30.00 148, 024306-1 Published by AIP Publishing.
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should be noted that, very recently, the Rostock group reported
their fourth reference potential for pure noble gas molecules,
namely, one for krypton,12 following ones for helium,6 neon,7

and argon.8 Jäger et al. used the best ab initio methods suitable
for krypton to develop the potential energy curve for the two-
body as well as the three-body interaction between krypton
atoms. In Sec. V, considerable attention is paid to the agree-
ment between the new ab initio potentials of Jäger et al.12 and
our work for the virial coefficients of krypton gas. Finally, we
summarize in Sec. VI the main conclusions and give some
perspectives of this work.

II. DEVELOPMENT OF INTERACTION-INDUCED
POLARIZABILITY

The interaction-induced isotropic pair polarizability (the
trace of the interaction-induced polarizability tensor)∆αave (R)
and its anisotropy ∆αaniso (R) of the krypton dimer were cal-
culated for the same interatomic distances as those used in
the development of our high-accuracy Kr–Kr potential energy
curve.10 All calculations employed the counterpoise correction
for the basis set superposition error.24 Specifically, ∆αave (R)
and ∆αaniso (R) are defined by

∆αave (R) =
1
3

[
∆α ‖ (R) + 2∆α⊥ (R)

]
, (1)

∆αaniso (R) =
[
∆α ‖ (R) − ∆α⊥ (R)

]
, (2)

∆α ‖ (R) = αdimer
‖

(R) − 2αmonomer
‖

(R) , (3)

∆α⊥ (R) = αdimer
⊥ (R) − 2αmonomer

⊥ (R) , (4)

where αdimer
‖

(R) and αdimer
⊥ (R) are the components of the

dimer polarizability that are parallel and perpendicular, respec-
tively, to the internuclear axis at a given interatomic dis-
tance R and αmonomer

‖
(R) and αmonomer

⊥ (R) are the corre-
sponding monomer components of polarizability calculated
in the dimer basis.8 All polarizabilities were calculated at the
coupled-cluster singles and doubles plus perturbative triples
[CCSD(T)] level and include corrections for core-core and
core-valence correlation (∆αAE−FC

ave ,∆αAE−FC
aniso ) and relativistic

effects (∆αrel
ave, ∆αrel

aniso) so that

∆αave = ∆α
CCSD(T)/FC
ave + ∆αAE−FC

ave + ∆αrel
ave, (5)

∆αaniso = ∆α
CCSD(T)/FC
aniso + ∆αAE−FC

aniso + ∆αrel
aniso. (6)

Calculations were performed using the CFOUR and MOL-
PRO codes.25–27 Augmented correlation-consistent Dun-
ning basis sets with X = D, T, Q, 5, 6 were used in all
calculations: they included the polarized valence series,

TABLE I. Frozen-core CCSD(T) components of the interaction-induced pair polarizability and all-electron and
relativistic corrections (a3

0) for the krypton dimer near van der Waals minimum (R = 4.0 Å), computed in augmented
Dunning basis sets aVXZ/aCVXZ/. . . as indicated.

X =

Component D T Q 5 6

α
CCSD(T)/FC
‖

/aVXZ 1.9897 2.5673 2.6037 2.6195 2.6246

α
CCSD(T)/FC
⊥ /aVXZ �0.9923 �1.2590 �1.2445 �1.2380 �1.2374

α
CCSD(T)/FC
‖

/aCVXZ 2.0051 2.5805 2.6031 2.6192

α
CCSD(T)/FC
⊥ /aCVXZ �0.9991 �1.2611 �1.2440 �1.2377

α
CCSD(T)/FC
‖

/awCVXZ 2.0440 2.5689 2.5998 2.6177

α
CCSD(T)/FC
⊥ /awCVXZ �1.0144 �1.2564 �1.2421 �1.2369

αAE−FC
‖

/aVXZ �0.0030 �0.0183 �0.0246 �0.0410

αAE−FC
⊥ /aVXZ 0.0015 0.0091 0.0121 0.0193

αAE−FC
‖

/aCVXZ �0.0077 �0.0357 �0.0472 �0.0559

αAE−FC
⊥ /aCVXZ 0.0042 0.0185 0.0240 0.0277

αAE−FC
‖

/awCVXZ �0.0237 �0.0439 �0.0541 �0.0596

αAE−FC
⊥ /awCVXZ 0.0120 0.0227 0.0272 0.0294

αRel
‖

/aVXZ �0.0469 �0.0167 �0.0160 �0.0165

αRel
⊥ /aVXZ 0.0251 0.0128 0.0143 0.0127

αRel
‖

/aCVXZ �0.0040 �0.0178 0.0066

αRel
⊥ /aCVXZ 0.0089 0.0137 0.0040

αRel
‖

/aCVXZ-DK 0.0237 0.0148 0.0117

αRel
⊥ /aCVXZ-DK �0.0030 0.0007 0.0014

αRel
‖

/decontracted aVXZ 0.0185 0.0128 0.0103

αRel
⊥ /decontracted aVXZ �0.0008 0.0015 0.0020
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aug-cc-pVXZ (aVXZ), polarized core and valence, aug-cc-
pCVXZ (aCVXZ), weighted core-valence, aug-cc-pwCVXZ
(awCVXZ), and aug-cc-pCVXZ recontracted for relativistic
calculations, aug-cc-pCVXZ-DK (aCVXZ-DK).12,28–32

An initial assessment of the basis sets and correc-
tions was performed on the same near van der Waals min-
imum distance as examined for the potential energy curve
(R = 4.0 Å). The results of this examination can be seen
in Table I. The uncertainty of a value in a particular basis
is defined as the difference between that value and the
corresponding result in the preceding basis. As such, the
frozen-core results converge well in the aV6Z basis with
values of 2.6246 ± 0.0051 a3

0 in the parallel component
and �1.2374 ± 0.0006 a3

0 in the perpendicular component.
Likewise, the core-core and core-valence correlation cor-
rection beyond the frozen-core approximation is reason-
ably well converged in the awCVQZ basis with values of
�0.0541 ± 0.0102 and 0.0272 ± 0.0045 a3

0 for the paral-
lel and perpendicular components, respectively. It was deter-
mined that a basis set increase to awCV5Z was unneces-
sary given the minor improvement and the overall small
size of the AE-FC correction. We have also checked if
higher-order coupled-cluster excitations are important for the
interaction-induced polarizability by performing a frozen-core
CCSDT calculation in the aVDZ basis set (using the ana-
lytical implementation in CFOUR). At R = 4.0 Å, the dif-
ference between the CCSDT and CCSD(T) results is 0.0023
a3

0 for the parallel component and �0.0003 a3
0 for the per-

pendicular component. Thus, the full triples correction to the
isotropic interaction-induced polarizability is just 0.0005 a3

0
at this distance and we did not consider this correction any
further.

The relativistic corrections were calculated analytically
using the exact two-component (X2C) method.33 This method
is available in CFOUR,34 though commented out in the pub-
lic release due to the lack of picture change effects on the
dipole moment operator. To validate the results obtained from
the analytical code with a slightly incomplete treatment of

FIG. 1. The parallel component of the interaction-induced pair polarizabil-
ity, ∆α‖ , as a function of electric field strength, E. AE denotes calculations
including core-core and core-valence correlation and no relativistic correction.
X2C and DKH denote calculations using the respective relativistic correction,
while FF denotes calculations using a finite field method. All calculations for
this test were performed in the decontracted aVTZ basis set.

relativity, we performed finite field calculations using the
CFOUR and MOLPRO programs. The α ‖ and α⊥ values
for the monomer and dimer were calculated as numerical
first derivatives of the analytical dipole moment (CFOUR)
and second derivatives of the total energy (MOLPRO) with
respect to a change in a uniform electric field. MOLPRO
calculations of the relativistic effects used the second-order
Douglas-Kroll-Hess (DKH) Hamiltonian, which provides an
alternative to the X2C results.35,36 As can be seen in Fig. 1, the
numerical and analytical results from CFOUR agree extraor-
dinarily well and the MOLPRO results provide satisfactory
agreement given the difference in methods. As a side note, it
was observed in the comparison of αdimer

‖
that the second-

order DKH correction was around twice that of X2C, as
shown in Fig. 2. This difference is small in absolute terms
and cancels out in ∆α ‖ but is difficult to rationalize on its
own. Due to the consistency between methods, the analytical
approach was used to calculate the correction. The decon-
tracted aVXZ results display the fastest basis set convergence,
so we took the decontracted aVQZ values as the preferred
ones, with values of 0.0103 ± 0.0025 a3

0 for the parallel
component and 0.0020 ± 0.0005 a3

0 for the perpendicular
component.

With the selection of the basis sets and levels of theory
defined above, the interaction-induced isotropic pair polariz-
ability ∆αave at the near van der Waals minimum separation
is 0.054 84 ± 0.002 97 a3

0, where the uncertainty is the square
root of the quadratic sum of the uncertainties of the contribut-
ing terms. This best level of theory was used to calculate
∆αave (R) and ∆αaniso (R) at 25 values of R from 2.6 Å to
12.0 Å. The ab initio values for each term and the total ∆αave

can be found in Table II, while the corresponding results for
∆αaniso are presented in Table SI in the supplementary mate-
rial. The near cancellation of ∆α ‖ and ∆α⊥ results in values
of ∆αave very close to zero, as found previously for the argon
dimer.8

Using a weighted least-squares routine,37 the total ∆αave

and ∆αaniso were fitted to functions with forms38–40

FIG. 2. The parallel component of the dimer polarizability,αDimer
‖

, as a func-
tion of electric field strength, E in atomic units. AE denotes calculations
including core-core and core-valence correlation and no relativistic correction.
X2C and DKH denote calculations using the respective relativistic correction,
while FF denotes calculations using a finite field method. All calculations for
this test were performed in the decontracted aVTZ basis set.



024306-4 Song et al. J. Chem. Phys. 148, 024306 (2018)

TABLE II. Contributions to the interaction-induced isotropic polarizability ∆αave for the krypton dimer, the total ∆αave, and the total uncertainty U(∆αave) in
units of a3

0. The column ∆αfit
ave contains the values obtained from the fitted expression in Eq. (7).

R (Å) ∆α
CCSD(T)/FC
ave ∆αAE−FC

ave ∆αRel
ave ∆αave U(∆αave) ∆αfit

ave

2.60 �0.175 174 733 �0.020 902 900 �0.018 060 067 �0.214 137 700 0.013 476 933 �0.215 636 912
2.80 �0.312 638 567 �0.005 541 267 �0.000 928 067 �0.319 107 900 0.009 993 667 �0.315 336 594
3.00 �0.281 941 933 0.001 092 167 0.007 473 133 �0.273 376 633 0.008 011 233 �0.275 332 625
3.20 �0.194 681 200 0.003 224 533 0.010 414 167 �0.181 042 500 0.006 781 333 �0.183 014 852
3.40 �0.103 253 400 0.003 155 233 0.010 266 100 �0.089 832 067 0.005 577 233 �0.090 066 202
3.60 �0.029 548 700 0.002 200 600 0.008 675 167 �0.018 672 933 0.004 612 133 �0.017 982 438
3.70 �0.001 491 533 0.001 632 867 0.007 680 067 0.007 821 400 0.004 163 500 0.008 577 516
3.80 0.020 769 433 0.001 080 300 0.006 668 133 0.028 517 867 0.003 739 100 0.029 166 655
3.90 0.037 696 533 0.000 574 767 0.005 693 933 0.043 965 233 0.003 341 767 0.044 415 041
4.00 0.049 917 100 0.000 134 167 0.004 791 967 0.054 843 233 0.002 974 000 0.055 068 809
4.06 0.055 279 367 �0.000 095 467 0.004 293 867 0.059 477 767 0.002 767 800 0.059 576 680
4.10 0.058 127 900 �0.000 233 867 0.003 981 600 0.061 875 633 0.002 636 067 0.061 897 302
4.20 0.063 029 633 �0.000 528 767 0.003 270 300 0.065 771 167 0.002 330 267 0.065 634 625
4.30 0.065 282 433 �0.000 754 633 0.002 658 400 0.067 186 200 0.002 053 967 0.066 946 194
4.40 0.065 480 967 �0.000 918 767 0.002 140 600 0.066 702 800 0.001 806 900 0.066 412 705
4.60 0.061 698 800 �0.001 094 300 0.001 352 633 0.061 957 133 0.001 390 300 0.061 690 744
4.80 0.054 859 900 �0.001 122 400 0.000 829 033 0.054 566 533 0.001 061 133 0.054 412 776
5.00 0.047 011 267 �0.001 061 200 0.000 494 000 0.046 444 067 0.000 805 967 0.046 414 633
5.50 0.029 333 767 �0.000 764 333 0.000 120 933 0.028 690 367 0.000 426 233 0.028 796 038
6.00 0.017 528 567 �0.000 483 733 0.000 025 867 0.017 070 700 0.000 284 100 0.017 116 974
7.00 0.006 518 233 �0.000 181 367 0.000 002 433 0.006 339 300 0.000 160 700 0.006 311 046
8.00 0.002 761 167 �0.000 075 567 0.000 001 467 0.002 687 067 0.000 077 867 0.002 671 768
9.00 0.001 315 300 �0.000 035 533 0.000 000 733 0.001 280 500 0.000 039 433 0.001 277 486
10.00 0.000 684 067 �0.000 018 533 0.000 000 700 0.000 666 233 0.000 019 700 0.000 666 128
12.00 0.000 223 933 �0.000 006 100 0.000 000 233 0.000 218 067 0.000 006 067 0.000 217 420

∆αfit
ave (R) =

(
A(ave)

R
+ B(ave) + C(ave)R + D(ave)R2

)
e−α

(ave)R

+
∑

n=6,8
fn

(
β(ave)R

) C(ave)
n

Rn , (7)

∆αfit
aniso (R) =

(
A(aniso)R + B(aniso)R2

)
e−α

(aniso)R

+
∑

n=3,6,8
fn

(
β(aniso)R

) C(aniso)
n

Rn , (8)

where f n(x) is the Tang-Toennies damping function41

fn (x) = 1 − e−x
∑n

k=0

xk

k!
. (9)

The weight for each ab initio point was the inverse square
of the uncertainty and the fitted functions pass within the
uncertainties of all calculated points. The ∆αfit

ave (R) function

has MUEσ = 0.140 and∆αfit
aniso (R) has MUEσ = 0.216, where

the mean unsigned error with respect to uncertainty (MUEσ)
is defined as

MUEσ =
1

NR

∑
R

|Fit (R) − Calc(R)|
U(Calc (R))

. (10)

In Eq. (10), Fit(R) is either∆αfit
ave (R) or∆αfit

aniso (R) and Calc(R)
is the corresponding ab initio value. The long range Cn terms
were fitted first to the data with R ≥ 8.0 Å assuming no damp-
ing, then frozen throughout the rest of the procedure. The
values of the fit parameters for ∆αfit

ave can be found in Table
III; analogous parameters for the polarizability anisotropy are
given in Table SII in the supplementary material.

Additionally, the upper- and lower-limit functions for
both ∆αfit

ave (R) (∆αfit,+
ave (R) and ∆αfit,−

ave (R)) and ∆αfit
aniso (R)

TABLE III. Parameters of the polarizability functions of ∆αfit
ave (R), ∆αfit,+

ave (R), and ∆αfit,−
ave (R) for the krypton

dimer in Eq. (7).

Parameter ∆αfit
ave(R) ∆αfit,+

ave (R) ∆αfit,−
ave (R) Units

A(ave)
�131 248.569 521 �144 967.965 213 �118 621.208 123 a4

0
B(ave) 80 067.715 588 87 897.681 211 72 838.349 627 a3

0
C(ave)

�15 649.670 075 �17 086.345 415 �14 319.251 185 a2
0

D(ave) 958.404 374 1 040.655 286 882.044 335 a0

α(ave) 1.336 794 1.348 786 1.324 710 a−1
0

β(ave) 0.857 610 0.867 624 0.845 646 a−1
0

C6
(ave) 27 649.313 556 109 817 28 401.128 468 681 782 26 897.498 643 404 404 a9

0
C8

(ave) 992 472.153 870 260 93 1 039 598.256 973 147 2 945 346.050 803 672 29 a11
0
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(∆αfit,+
aniso (R) and ∆αfit,−

aniso (R)) were produced for the measure-
ment of the uncertainty of the corresponding functions and
the quantities derived from them. The functions ∆αfit,+

ave (R)
and ∆αfit,−

ave (R) were fitted to ∆αave + U (∆αave) and ∆αave

− U (∆αave) , respectively, using the same functional form
as ∆αfit

ave (R) , and the equivalent procedure was used for the
production of ∆αfit,+

aniso (R) and ∆αfit,−
aniso (R). The relation

∆αfit,− (R) < ∆αfit (R) < ∆αfit,+(R) (11)

is true for both quantities within the range of the fitted points
but not necessarily outside of this range. The MUEσ val-
ues of the functions ∆αfit,+

ave (R), ∆αfit,−
ave (R), ∆αfit,+

aniso (R), and

∆αfit,−
aniso (R) are 0.163, 0.119, 0.212, and 0.222, respectively.

The parameters for the upper- and lower-limit functions can be
found in Table III for∆αfit

ave and Table SII in the supplementary
material for ∆αfit

aniso.

III. POTENTIAL ENERGY CURVE

In our previous work,10 we developed a new krypton–
krypton interatomic potential based on high-level ab initio
calculations. The analytic potential energy curve, used in this
work in the same form, is given by

V (R) =

(
A + BR +

C
R

)
e−αR −

∑4

n=3
f2n(βR)

C2n

R2n
, (12)

where R ≥ 1.8 Å, A, B, C, α, β, C6, and C8 are the fit param-
eters and f 2n(x) denote the Tang-Toennies damping func-
tions,41 Eq. (9). To avoid unphysical behavior at short distances
(R < 1.8 Å), Eq. (12) is spliced continuously with a simpler
expression

V (R) =

(
Ash

R

)
e−αshR+βshR2

. (13)

In addition, we have constructed potentials V+(R) and
V�(R) by fitting the same expression as V (R) to E + U(E)
and E � U(E), respectively. Here, the uncertainty U(E) of
the potential energy E was inferred by a careful examination
of basis set convergence patterns.10 The potential of Ref. 10
was computed within the Born-Oppenheimer approximation
(which works extremely well for nuclei as heavy as krypton)
and is exactly the same for all isotopologues of the krypton
dimer. All fitted parameters in the analytical representations
of V (R), V+(R), and V�(R) are listed in Table IV.

TABLE IV. Parameters of the potential energy functions V (R), V+(R), and
V�(R) for the krypton dimer in Eqs. (12) and (13).

Parameter V (R) V+(R) V�(R) Unit

A 467.771 557 511.688 596.938 Eh

B �43.111 875 �45.622 �56.519 Eh · a0
�1

C �509.601 417 �787.134 �997.849 Eh · a0

α 1.566 575 1.558 1.572 a0
�1

β 4.083 794 1.832 1.285 a0
�1

C6 126.790 499 126.498 127.083 Eh · a0
6

C8 5268.109 217 5096.285 5439.933 Eh · a0
8

Ash 1296.0 1296.0 1296.0 Eh · a0

αsh 3.067 950 2.744 2.900 a0
�1

βsh 0.324 0714 0.239 0.280 a0
�2

IV. THEORETICAL EVALUATION OF VIRIAL
COEFFICIENTS

In this section, we calculate the second pressure, acous-
tic, and dielectric virial coefficients and estimate their
uncertainties.

A. Second pressure virial coefficient

We employ the classical statistical-mechanics formulas
with second-order or third-order quantum corrections to com-
pute the virial coefficients of krypton. The calculations of the
second pressure virial coefficient B by statistical mechanics
have been studied extensively and the explicit expressions
are presented in a large number of scientific publications (for
example, in Ref. 42). For the convenience of the reader, we
still list the details of the formulations necessary to compute
B up to the third-order quantum corrections,

B = Bcl + λBqm,1 + λ2Bqm,2 + λ3Bqm,3, (14)

where λ = ~2 β/12m, ~ = h/2π, and β = 1/kBT . m is the
relative molecular mass (83.798 for krypton in this work), h is
the Planck constant, kB is the Boltzmann constant,43 and T is
the temperature. In the case of a completely isotropic poten-
tial V (R) (no angular dependence), the classical and quantum
contributions can be written as follows:

Bcl = −2πNA

∫ ∞
0

[
exp (−βV ) − 1

]
R2dR, (15)

Bqm,1 = 2πNA

∫ ∞
0

(
βV ′

)2exp (−βV ) R2dR, (16)

Bqm,2 = −2πNA

∫ ∞
0

[
6
5
(
βV ′′

)2 +
12

5R2

(
βV ′

)2 +
4

3R
(
βV ′

)3
−

1
6
(
βV ′

)4
]
exp (−βV ) R2dR, (17)

Bqm,3 = 2πNA

∫ ∞
0

[
36
35

(
βV ′′′

)2 +
216

35R2

(
βV ′′

)2 +
24
21

(
βV ′′

)3 +
24
5R

(
βV ′

) (
βV ′′

)2 +
288

315R3

(
βV ′

)3

−
6
5
(
βV ′

)2 (βV ′′
)2
−

2

15R2

(
βV ′

)4
−

2
5R

(
βV ′

)5 +
1

30
(
βV ′

)6
]

exp (−βV ) R2dR, (18)
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in which NA denotes the Avogadro constant and V ′ = dV/dR,
V ′′ = d2V/dR2, and V ′′′ = d3V/dR3.

B. Second acoustic virial coefficient

The expressions for the second acoustic virial coeffi-
cient βa are related to those for the second pressure virial

coefficient B and its first and second temperature derivatives
B′ and B′′. The semi-classical expansion of the second acoustic
virial coefficient in powers of λ is8

βa = βa,cl + λ βa,qm,1 + λ2 βa,qm,2, (19)

where the individual terms are formulated as

βa,cl = 4πNA

∫ ∞
0

[
1 − exp (−βV )

(
1 +

2
5
βV +

2
15

(βV )2
)]

R2dR, (20)

βa,qm,1 = 4πNA

∫ ∞
0

[
3
5
−

2
5
βV +

2
15

(βV )2
] (
βV ′

)2exp (−βV ) R2dR, (21)

βa,qm,2 = 4πNA

∫ ∞
0

{ [
−

6
5
(
βV ′′

)2
−

12

5R2

(
βV ′

)2
−

20
9R

(
βV ′

)3 +
13
30

(
βV ′

)4
]

+

[
4
5
(
βV ′′

)2 +
8

5R2

(
βV ′

)2 +
56

45R
(
βV ′

)3
−

1
5
(
βV ′

)4
]
βV

+

[
−

4
25

(
βV ′′

)2
−

8

25R2

(
βV ′

)2
−

8
45R

(
βV ′

)3 +
1
45

(
βV ′

)4
]

(βV )2
}

exp (−βV ) R2dR. (22)

C. Second dielectric virial coefficient

The formulas for the dielectric virial coefficients can be
derived from the expansion of the Clausius-Mossotti function.
The second dielectric virial coefficient can again be approxi-
mated as the sum of a classical term and of quantum corrections
up to second order40

Bε = Bε,cl + λBε,qm,1 + λ2Bε,qm,2, (23)

where

Bε,cl =
8π2N2

A

3

∫ ∞
0
∆αaveexp (−βV ) R2dR, (24)

Bε,qm,1 = −
8π2N2

A

3

∫ ∞
0

[
∆αave

(
βV ′

)2
− 2∆α′ave βV ′

]

× exp (−βV ) R2dR, (25)

Bε,qm,2 =
16π2N2

A

5

∫ ∞
0

(∆αavef + g) exp (−βV ) R2dR, (26)

f =
(
βV ′′

)2 +
2

R2

(
βV ′

)2 +
10
9R

(
βV ′

)3
−

5
36

(
βV ′

)4, (27)

g = ∆α′ave

[
−

4

R2
βV ′ −

10
3R

(
βV ′

)2 +
5
9
(
βV ′

)3
]

− 2∆α′′ave βV ′′. (28)

Here,

∆α′ave = d∆αave/dR, (29)

∆α′′ave = d2
∆αave/dR2. (30)

D. Uncertainty

There are several possible sources of uncertainty in the
present calculation. First, quantum effects become important
at low temperatures depending on the molecule in question.

The lower-limit temperature for the calculations considered in
this work is 115.78 K, the triple-point temperature of kryp-
ton. At this temperature, the corresponding ratio of the ther-
mal de Broglie wavelength to the atomic diameter is much
smaller than one, i.e.,

(
h/
√

2πmkBT
)
/σ = 0.05 � 1. This

guarantees that we can use classical statistical-mechanics for-
mulae with second-order or third-order quantum corrections to
compute the different virials of krypton for the whole temper-
ature range.

In addition, Moszynski et al.44 suggested that the use
of Padé approximants could better represent full quantum-
mechanical results at lower temperatures. Our earlier unpub-
lished work on the second dielectric virial coefficient of neon at
116 K showed that the Padé approximant of order [1/1] repro-
duced the semi-classical value up to five digits of precision.
This agreement further justifies the correctness of classical
treatments supplemented by quantum expansions in powers
of λ.

The other major contribution to the uncertainty of
our calculated values is attributed to the uncertainty of
the potential and polarizability of the krypton dimer. As
mentioned above, we generated V+(R), V�(R), ∆αfit,+

ave (R),
and ∆αfit,−

ave (R) expressions that account for the correspond-
ing lower- and upper-limit ranges of potential energies
and interaction-induced polarizabilities. Following the work
of Hurly et al.,45,46 we attempted to estimate the uncer-
tainty U of the present theoretical results in the following
manner:

U (X) =
|XV+ − XV− |

2
, (31)

where X denotes virial coefficients calculated from V+ and V�.
The calculation of Cencek et al.38 suggested that the influence
of the uncertainties in V (R) on the values of Bε was negli-
gible. Hence, for the second dielectric virial coefficient, the
uncertainty of the theoretical values was estimated as
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U (Bε) =

���Bε,∆αfit,+
ave
− B

ε,∆αfit,−
ave

���
2

. (32)

V. COMPARISON WITH VIRIAL COEFFICIENT
VALUES FROM THE LITERATURE

Here we compare the results of our calculations with val-
ues published elsewhere for the second pressure, acoustic, and
dielectric virial coefficients.

A. Second pressure virial coefficient

Very recently, Jäger et al.12 reported the calculation of the
second pressure virial coefficient of krypton from their new
potential. Figure 3 of the present article illustrates that the
ab initio pressure virial values of Jäger et al. are perfectly
consistent with our theoretical values over a wide tempera-
ture range. The difference between the two ab initio values
decreases from 1 cm3·mol�1 at 150 K down to 0.3 cm3·mol�1

at room temperature and further down to below 0.1 cm3·mol�1

above 2000 K. Figure 3 also shows the uncertainty of our cal-
culated values, which was evaluated from the potentials V+(R)
and V�(R) by the procedure discussed above. It is clear that
the differences between the second virial coefficient of Jäger
et al. and the results of this work never exceed the theoretically
estimated uncertainty for the complete temperature range.

There is a large number of experimental data for the sec-
ond virial coefficient of krypton, published more than 30 years
ago. The information on the sources of literature was sum-
marized in the compilation of Dymond et al.47 It should be
noted that an experimental determination of a strictly two-
body quantity such as B(T ) requires caution to eliminate three-
and higher-body effects even at low densities of the gas.48 In
their Fig. 1, Jäger et al.12 compared their computed values
with measured data sets for the second pressure virial coeffi-
cient. Because of the excellent agreement between the values
of Jäger et al. and this work, the same pattern could be drawn
for the comparison of the experimental data with our computed
values. In many cases, a deviation of more than ±1 cm3·mol�1

FIG. 3. Absolute deviations of the literature second pressure virial coefficient
data, Blit, from the values calculated in this work, Bcal, for krypton as a function
of temperature. Data sources: (red dashed line) calculated from the potential
by Jäger et al.12 The shaded area corresponds to the uncertainty of Bcal.

could be observed between the theory and measurements for
the second pressure virial coefficient, the maximum deviation
being�16 cm3·mol�1 at the low temperature of 120 K. Aziz and
Slaman49 did not consider the second pressure virial coefficient
of krypton as primary data in the development of their empir-
ical potentials due to the inconsistency of experimental data,
which is partly supported by the rather large disagreements in
Fig. 1 of Jäger et al.12 Moreover, considering the fact that the
uncertainty of theoretical values for krypton is normally lower
than that of the experimental data,47 we conclude that both the
present results and those of Jäger et al. may be employed as
recommended values for the second pressure virial coefficient
of this gas.

B. Second acoustic virial coefficient

To the best of our knowledge, only one publication with
measurements of the second acoustic virial coefficient of kryp-
ton is to be found in the literature. Ewing et al.50 built a cylin-
drical interferometer to measure the speed of sound of gases.
Values of the second acoustic virial coefficient of krypton were
reported for 285 K, 305 K, and 320 K, with a reported standard
uncertainty of around ±1 cm3·mol�1. Figure 4 shows that the
experimental data of Ewing et al. are in close agreement of
±(0.5–1.0) cm3·mol�1 with the theoretically calculated values
of this work.

Figure 4 also presents the differences between values com-
puted in this work and those from several krypton potentials
in the literature, namely, the well-recognized empirical poten-
tial of Dham et al.,51 the old ab initio potential of Slavı́ček
et al.,52 and the new, high-accuracy potential of Jäger et al.12

The second acoustic virial coefficient from the potential of
Dham et al. agrees with the theoretically calculated values
of this work at T ≤ 500 K. However, the absolute deviation
begins to exceed the estimated uncertainty of our theoretical
values at higher temperatures. The computed values from the

FIG. 4. Absolute deviations of the literature second acoustic virial coefficient
data, βa,lit, from the values calculated in this work, βa,cal, for krypton as a
function of temperature. Data sources: (black open squares) Ewing et al.;50

(blue dotted line) calculated from the potential by Dham et al.;51 (magenta
dot line) calculated from the potential by Slavı́ček et al.;52 (red dashed line)
calculated from the potential by Jäger et al.12 The shaded area corresponds to
the uncertainty of βa,cal.
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FIG. 5. Absolute deviations of the literature second dielectric virial coeffi-
cient data, Bε,lit, from the values calculated in this work, Bε,cal, for krypton
as a function of temperature. Data sources: (black filled square) Orcutt and
Cole;53 (red open circle) Vidal and Lallemand;54 (blue filled triangles) Huot
and Bose.55 The shaded area corresponds to the uncertainty of Bε,cal.

potential of Slavı́ček et al. exhibit a relatively large disagree-
ment with those of this work: the differences are larger than
the corresponding uncertainties of our theoretical values over
the whole temperature range. On the other hand, one can see

in Fig. 4 that there is good agreement for the second acoustic
virial coefficient between the new ab initio potential of Jäger
et al. and that of this work. The absolute difference lies within
the uncertainty range of our theoretical calculation for tem-
peratures up to 5000 K. We suggest that the present computed
values can be used with confidence in different fields wherever
values of the second acoustic virial coefficient of krypton are
required.

C. Second dielectric virial coefficient

Three sets of experimental data are available in the lit-
erature for the second dielectric virial coefficient of kryp-
ton.53–55 Figure 5 shows a comparison of the experimental data
with the values calculated here. Orcutt and Cole53 reported
one data point at ambient temperature, where the difference
slightly exceeds our theoretical uncertainty. The data point
by Vidal and Lallemand54 at 25 ◦C shows a disagreement
of �1.3 cm6·mol�2, which is six times larger than the esti-
mated uncertainty of our calculated value. A larger scatter of
±(2–4) cm6·mol�2 can be observed for the deviation of the
data by Huot and Bose55 with respect to the values calcu-
lated here. The inconsistency of measurements from different
laboratories implies that the prediction of this work may be
applied as reference values for the second dielectric virial
coefficient.

TABLE V. Virial coefficients of krypton and their estimated uncertainties as a function of temperature. The
temperatures 115.78 K and 209.48 K correspond, respectively, to the triple- and critical-point temperatures of
krypton. The virial coefficient values at other temperatures are available upon request for the range between
115.78 K and 5000 K.

T B U(B) βa U(βa) Bε U(Bε)
(K) (cm3 ·mol�1) (cm3 ·mol�1) (cm3 ·mol�1) (cm3 ·mol�1) (cm6 ·mol�2) (cm6 ·mol�2)

115.78 �321.30 4.44 �347.47 6.11 10.923 0.384
150 �198.04 2.68 �191.03 3.39 8.7080 0.2976
200 �116.34 1.68 �94.934 2.071 7.2778 0.2447
209.48 �106.55 1.57 �83.747 1.934 7.1080 0.2386
250 �75.164 1.23 �48.270 1.52 6.5637 0.2199
273.15 �62.372 1.09 �33.980 1.37 6.3408 0.2125
273.16 �62.368 1.09 �33.975 1.37 6.3407 0.2125
293.15 �53.306 1.00 �23.911 1.26 6.1817 0.2075
298.15 �51.271 0.98 �21.658 1.23 6.1458 0.2064
300 �50.539 0.98 �20.848 1.22 6.1329 0.2060
350 �34.244 0.82 �2.9210 1.0372 5.8418 0.1973
400 �22.716 0.71 9.6263 0.9079 5.6296 0.1916
450 �14.164 0.62 18.835 0.813 5.4663 0.1876
500 �7.5918 0.56 25.832 0.740 5.3354 0.1847
600 1.7896 0.47 35.644 0.635 5.1354 0.1810
700 8.1039 0.41 42.069 0.561 4.9861 0.1789
800 12.596 0.37 46.498 0.507 4.8676 0.1778
900 15.922 0.34 49.663 0.466 4.7693 0.1772
1000 18.459 0.31 51.983 0.433 4.6851 0.1770
1500 25.184 0.23 57.344 0.333 4.3807 0.1784
2000 27.779 0.19 58.588 0.282 4.1717 0.1811
2500 28.906 0.17 58.517 0.250 4.0089 0.1839
3000 29.382 0.15 57.940 0.228 3.8745 0.1867
3500 29.528 0.14 57.157 0.212 3.7600 0.1894
4000 29.495 0.13 56.297 0.201 3.6604 0.1919
4500 29.360 0.12 55.419 0.191 3.5726 0.1943
5000 29.166 0.11 54.551 0.184 3.4945 0.1965
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VI. CONCLUSIONS

We have developed a new interaction-induced isotropic
polarizability for the krypton dimer and used it together with
our recent interaction potential to calculate the second pres-
sure, acoustic, and dielectric virial coefficients of krypton
gas. The coupled-cluster method at the CCSD(T) level as
well as basis sets up to aV6Z was selected to determine the
interaction-induced isotropic polarizability∆αave(R). The cor-
rections for core-core correlation, core-valence correlation,
and relativistic effects were also included to improve the qual-
ity of ∆αave(R). As a result, values of the interaction-induced
isotropic polarizability were determined with low uncertainty
for the krypton dimer at 25 different interatomic distances R
covering the range of 2.6–12.0 Å. An analytical expression
of ∆αfit

ave (R) was obtained by fitting the individual values in
order to facilitate the calculation of the second dielectric virial
coefficient.

Using the newly developed interaction-induced polar-
izability, together with our highly accurate interatomic
potential,10 we computed the second pressure, acoustic, and
dielectric virial coefficients of krypton gas. Calculations were
performed using classical statistical mechanics supplemented
with quantum corrections up to second or third orders. The
theoretically calculated values of virial coefficients are listed
in Table V for the temperature range of 115.78 K–5000 K.
The corresponding uncertainty given in Table V is estimated
from the difference between the values calculated using V+(R),
V�(R), ∆αfit+

ave (R), and ∆αfit−
ave (R).

Comparisons of the literature data were performed with
the values computed in this work. Some inconsistencies were
found with respect to the relatively small number of experi-
mental data. On the other hand, the two new ab initio potentials,
the one of Jäger et al.12 and the one of this work, exhibit excel-
lent agreement for the calculations of the second pressure and
acoustic virial coefficients. All things considered, we believe
that the present theoretically predicted values can be used as
reference values for the different virial coefficients of krypton
gas. Given the scarcity of reliable experimental data, accurate
measurements of thermophysical and electromagnetic proper-
ties of krypton gas are desirable to further check the validity
of the present predictions.

SUPPLEMENTARY MATERIAL

See supplementary material for the results of the
interaction-induced anisotropy polarizability of the krypton
dimer.
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The interactions between carbon dioxide and model systems of metal-organic frameworks were
studied using a variety of ab initio methods. Three metal species and four organic linkers were
considered in these models as a representation of the tunable nature of metal-organic frameworks
and the potential multireference character of such systems. Common single-reference methods,
such as MP2 and CCSD(T), were compared with multireference methods based on complete ac-
tive space self consistent field theory, going as far as MRCISD. Special consideration is taken
to avoid issues of size inconsistency in the CI results, where an alternate reference is used in
the interaction energy definition. The benchmark values are used to judge the adequacy of a
selection of density functionals for the current systems. Symmetry-adapted perturbation theory
decomposition was performed to elucidate the important effects that comprise the binding inter-
actions. The systems proved to have very limited multireference character, and MP2 values were
closer to the CCSD(T) benchmark than the more difficult MRCISD results. Though the SAPT total
energies prove to be relatively poor approximations to the benchmark interaction energies, the
energy decompositions indicate that the CO2 binding is driven by electrostatics and induction for
the benzenedicarboxylate and furandicarboxylate complexes but has a significant contribution of
dispersion for the diformate and paddlewheel systems.

Introduction
Metal-organic frameworks (MOFs) are crystalline structures
formed by the coordination of organic linker molecules to metal
centers or clusters. The resulting structures are highly porous
and can have open coordination sites on the metal centers that
allow for improved interactions with gas molecules. The inter-
actions of MOFs with various gases are of great interest in the
areas of gas storage, separation, and catalysis due to the tunable
nature of the MOF structures and the effect that this tunablilty
plays on the selectivity of the MOF’s interactions1–3. More specif-
ically, these compounds have garnered interest in areas focused
on the generation of renewable energy and/or green alternatives
and improvements to fossil fuel based energy production. MOFs
have been considered as potential storage media for H2 for usage
as an alternative fuel source4. There has also been interest in us-
ing MOFs as selective gas filters to sequester CO2 from flue and
exhaust gases5–7.

The design of MOFs with a desired level of selectivity for a par-
ticular gas requires a detailed understanding of the interactions

a Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849,
United States. E-mail: patkowsk@auburn.edu
† Electronic Supplementary Information (ESI) available: a detailed explanation of
the algorithm used to determine geometries, Cartesian coordinates for all systems
considered, and additional figures. See DOI: 00.0000/00000000.

between the adsorbent and adsorbate. Computational modeling
can provide insight into these interactions, but requires the bal-
ancing of accuracy to sample size. Given the periodic, bulk na-
ture of MOFs, they are complicated systems to treat accurately
from a computational perspective. Methods that allow for a large
scale treatment of a bulk representative structure, such as peri-
odic density functional theory (DFT), have been found incapable
of accounting for dispersion interactions which are crucial for the
physisorption process8,9. More accurate methods, such as the
wide array of wavefunction based ab initio ones, are capable of a
more complete description of these interactions, but are not triv-
ial to apply to large-scale simulations.

An ideal method to study these systems would be applicable
to large-scale models while also capturing the important com-
ponents of their interactions. This goal requires benchmarking
potential candidates against high accuracy ab initio calculations.
In the process, an adequate treatment of the possible multirefer-
ence character of these systems is of potential key importance.
Transition metal atoms and ions with different d-electron counts
and spin states may require the consideration of several important
electronic configurations, resulting in non-dynamical correlation.

Symmetry-adapted perturbation theory (SAPT)10–12 is a pow-
erful approach for the calculation of the interaction energy be-
tween molecules. SAPT is a perturbative method that directly
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calculates the interaction energy as opposed to the indirect de-
termination of this quantity via the supermolecular method. The
most important advantage of SAPT is that it provides a physi-
cally meaningful breakdown of the interaction energy in terms
of the electrostatic, exchange, induction, and dispersion compo-
nents. An analysis of this decomposition can provide insight on
the selectivity of gas adsorption and can also inform the devel-
opment of more approximate methodologies to accurately model
these systems, such as first principles-based force fields13. Per-
haps even more importantly, the SAPT decomposition provides a
route to a rational design of MOFs and other adsorbent materials
via amplifying or reducing particular interaction energy terms14.

The benchmarking of DFT for interactions involving MOFs has
already been considered by several groups. Grajciar et al. inves-
tigated the suitability of DFT for the calculation of interactions
of water with the uncoordinated sites of a MOF15. In compari-
son to their benchmark coupled-cluster singles and doubles with
perturbative triples calculations at the complete basis set limit
(CCSD(T)/CBS), DFT was found unreliable in the reproduction of
interaction energies. The addition of empirical dispersion was not
sufficient to correct the shortcomings of this method. The authors
determined that the composite DFT/CC method16,17, which adds
an empirical pairwise correction parameterized on CCSD(T) re-
sults to the DFT results in a fashion similar to the empirical disper-
sion corrections18–20, was capable of attaining acceptable agree-
ment with experimental and higher-level theoretical results21.

Taking a different approach, Howe et al. looked at the inter-
actions of several gases with the external surfaces of MOFs22.
Their calculations utilized a number of density functionals and
wavefuction methods up to CCSD(T) to consider different sizes
of model systems of the MOF, taking into account the importance
of periodicity. Their results show good agreement between differ-
ent model sizes and predict greater interactions for the Zn and Co
containing systems over their Cu analogs.

Dzubak et al. produced a method for the development of force
fields for interactions between MOFs with open coordination sites
and gas molecules23. Their methodology uses a decomposition
of second-order Møller-Plesset perturbation theory interactions as
the basis for the terms of a new force field. The newly produced
force field showed a favorable improvement over the universal
force field (UFF) for the simulation of adsorption isotherms of
the systems in question and also proved to be transferable to sys-
tems other than the fitted one. McDaniel and Schmidt13 used
DFT based SAPT (DFT-SAPT) for the decomposition of interac-
tions to produce physically motivated transferable force fields,
and applied these force fields to the calculation of gas adsorption
to MOFs.

In another investigation of the interactions of gas molecules
with MOFs, Goings et al. produced SAPT and DFT-SAPT decom-
positions for the potential energy curves between H2 and a MOF
model containing various metals24. The study considered Mg,
Ca, Sr, Mn, and Zn metal centers for their models. Geometries
and binding energies were produced for all metals, but the SAPT
calculations were restricted to the closed-shell dications of Mg,
Ca, and Zn. In comparison to the CCSD(T) benchmark, the DFT-
SAPT binding energies showed a much greater discrepancy than

the SAPT results due to differences in the exchange contributions.
The SAPT decompositions also show a comparably small, but im-
portant, contribution from dispersion interactions.

Recently, Sladek and Tvaroška studied the interactions between
divalent cations of Mn and Mg with a number of small molecules
representing the components of amino acids that are most likely
to bind with these metals in biomolecules25. The authors use
SAPT decompositions in an attempt to highlight the difference be-
tween the two metals as catalytic components in enzymes, where
Mn can often serve as an acceptable stand-in for Mg while the
reverse is not necessarily true. Their results show that the in-
duction components have a greater magnitude in the interactions
involving Mn2+ and that the preference over Mg2+ in certain sys-
tems may be due to preferential interactions between Mn2+ and
ligands that bind through N or S.

In the current study, the interactions of MOF mimic systems
with CO2 are studied at several levels of ab initio theory including
spin-restricted CCSD(T) (RCCSD(T)), the complete active space
self consistent field (CASSCF), and post-CASSCF levels of theory
to determine appropriate benchmark treatments of metal centers
with different occupations of the d shell. An alternative refer-
ence for the interaction energy is defined to circumvent issues
of size inconsistency in MRCISD calculations. Then, the SAPT de-
compositions for the closed and open-shell systems are performed
to elucidate the importance of different interactions for different
model systems. These results are compared to DFT data to deter-
mine the adequacy of various functionals and dispersion correc-
tions for calculations of interaction energies in systems containing
metal ions with various spin states.

Methodology and Computational Details
The MOLPRO code was used for supermolecular interaction en-
ergy calculations and all geometry optimizations26,27. SAPT cal-
culations were performed with the PSI4 code28. Augmented
correlation-consistent Dunning basis sets were used through-
out and included aug-cc-pVDZ through aug-cc-pVQZ (aXZ)29,30.
Density fitting (DF) was utilized for Hartree-Fock (HF), second
order Møller-Plesset perturbation theory (MP2), and Symmetry
Adapted Perturbation Theory (SAPT)10 calculations, as well as
Density Functional Theory (DFT) calculations in the aQZ basis
set. Due to the limited availability of auxiliary basis sets for
the selected metals, the aXZ/MP2FIT31–33 basis set was used in
place of the aXZ/JKFIT34 basis set and aTZ/MP2FIT was em-
ployed with both aDZ and aTZ orbital bases. The DFT function-
als used in these calculations were BLYP35, B3LYP36,37, PBE38,
PBE039,40, M05-2X41, and M06-2X42. Grimme’s DFT-D3 code
was used to calculate the dispersion corrections18–20, using both
the original and the revised damping parameters43. For the open-
shell SAPT decompositions, both restricted open-shell Hartree-
Fock (ROHF) and unrestricted Hartree-Fock (UHF) based meth-
ods were used44–46.

Model Structures and Geometry Optimization

Four types of systems were utilized as models for MOFs inter-
acting with CO2. The MOF fragment monomers each contain
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one or two metal centers and a number of representative or-
ganic ligands. The overall charge of each system is zero. The
metal species used throughout are the dicationic forms of Mn,
Co, and Zn. The metals were chosen to provide models for com-
pletely filled (Zn2+), halfway filled (Mn2+), and intermediately
filled (Co2+) d shell systems. The first two MOF models contain a
single benzenedicarboxylate (BDC) or furandicarboxylate (FDC)
linker coordinated to a single metal center. These systems were
optimized at the B3LYP/aDZ level. The third model consists of a
single metal center coordinated to two formate (HCOO−) linkers.
This system was first optimized at the same level of theory as the
previously mentioned structures, then additionally reoptimized
at the MP2/aTZ level. The fourth model has four formate anions
coordinated simultaneously to two metal centers, referred to as
a paddlewheel structure24, and was optimized at the MP2/aDZ
level. The representative structures for each complex can be seen
in Figure 1 and several important geometric parameters can be
found in Table 1.

Table 1 Geometric parameters (in Angstrom) of the optimized structures
for each complex. Values in parentheses are the optimized values for the
MOF model without CO2. RLigand−M2+ is defined as the distance between
the metal cation and the closest carbon of the ligand, and RM2+−CO2

is
the distance between the metal anion and the CO2 carbon. For the pad-
dlewheel model, X refers to the center of mass of the MOF model and
RM2+−CO2

is the distance between the CO2 and the nearer of the two
metal centers. The FDC system is the only one where the ligand-M2+-
CO2 angle is not fixed by symmetry.

Parameter Mn2+ Co2+ Zn2+

BDC
RLigand−M2+ 2.35 (2.36) 2.35 (2.29) 2.31 (2.27)
RM2+−CO2

3.32 3.17 3.38

FDC
RLigand−M2+ 2.33 (2.32) 2.30 (2.27) 2.28 (2.26)
RM2+−CO2

3.32 3.35 3.21
ΘLigand−M2+−CO2

179.0◦ 155.7◦ 178.9◦

Diformate
RLigand−M2+ 2.46 (2.45) 2.40 (2.38) 2.35 (2.34)
RM2+−CO2

3.58 3.70 3.59

Paddlewheel
RX−M2+ 1.53 (1.52) 1.48 (1.47) 1.36 (1.34)
RX−Ligand 2.65 (2.64) 2.64 (2.63) 2.56 (2.56)
RM2+−CO2

3.47 3.65 3.36

For systems where the metal is Mn2+ or Zn2+, the dimer struc-
tures were optimized in both a fully unrestricted way as well
as with the monomers restricted to their individually optimized
structures. This latter, rigid configuration was used for scans of
the radial potential energy curve. The full geometry optimizations
were initially not performed for systems containing Co2+ due to
the potentially multireference nature of these systems. Instead,
the corresponding Mn2+ geometry for each system was used as
a starting point for simple scans at the complete active space self
consistent field (CASSCF) level47,48 in the aDZ basis set. The
details of these scans can be found in the supplementary informa-
tion. The scanned geometries were also compared to the results
of a full optimization and were found to be acceptable represen-

tatives.

The BDC-M2+ dimers were found to be of nearly C2v symmetry
and were symmetrized for computational advantage. The FDC-
M2+ structures were of Cs symmetry. The initial unrestricted opti-
mizations of the diformate complex showed notable deformations
from the planar geometries of the MOF mimics. It was deter-
mined that these geometries would not serve as suitable models
for MOFs, given the general rigidity of the larger systems, and the
optimizations were rerun restricting the (HCOO−)2M2+ unit to a
planar orientation.

Two minima were found for the paddlewheel dimers, the key
difference between them being the position of CO2. A visual com-
parison of the structures can be found in Figure 2. The lower
energy geometry, seen in the bottom of Figure 2, has CO2 coordi-
nated to one metal center, while also showing signs of interaction
with two of the formate ligands. The other geometry has CO2

positioned on the axis passing through the two metal centers,
having an overall C4v symmetry. While the lower energy result
is also representative of interactions that can occur between gas
molecules and MOF linkers, the higher energy geometry was cho-
sen for symmetry reasons.

Single Point Calculations and Interaction Energies

The MOF-CO2 interaction energies were calculated in the coun-
terpoise (CP) corrected fashion, that is, the monomer calculations
utilized the full dimer basis set49. This scheme gives an interac-
tion energy defined as

ECP
int = EAB(AB)−EAB(A)−EAB(B) (1)

where the superscript denotes the usage of the dimer basis set
and the letters in parentheses denote the full dimer system or
a monomer subsystem. ECP

int was calculated with the previously
mentioned DFT functionals as well as MP2 and RCCSD(T). Con-
ventional MP2 was used in the case of the paddlewheel cal-
culations, while density fitted MP2 was used with all others.
Additionally, ECP

int was calculated at the CASSCF level of the-
ory along with the following post-CASSCF methods: second-
order multi-reference Rayleigh-Schrödinger perturbation theory
(CASPT2)50,51, second-order n-electron valence state perturba-
tion theory (NEVPT2)52–54, and multi-reference configuration in-
teraction with single and double excitations (MRCISD)55,56 in-
cluding the Davidson correction57,58. All CAS based calculations
used the aDZ basis set. Because of the size inconsistency in the
MRCISD calculations, an alternative form of the interaction en-
ergy was defined as

ECP∗
int = ER(AB)−ER∞(AB) (2)

where the first term is the dimer energy at the optimized in-
termolecular distance and the second is the energy of the com-
plex at an exceedingly large intermolecular distance (R ≈ 1000
Å) approximating the infinite separation of the monomers. Addi-
tionally, ghost molecules are positioned at dimer-optimized inter-
molecular separations near each monomer to maintain the coun-
terpoise correction. A depiction of such a configuration can be
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Fig. 1 A. Terephthalate (benzenedicarboxylate) model. B. Furandicarboxylate model. C. Diformate model. D. Paddlewheel model.

Fig. 2 Top: Axially constrained geometry for the Paddlewheel-CO2 complex. Bottom: Unconstrained geometry.
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seen in Figure 3. The change in the structure of the monomers
in the complex with respect to their individually optimized struc-
tures, called the monomer deformation correction, was calculated
at the same level of theory as the optimized geometries. This cor-
rection has the form

∆E f lex
int = [EA(A)−EA

0 (A)]+ [EB(B)−EB
0 (B)] (3)

where the superscript denotes that the energy was calculated in
the monomer basis set and the subscript 0 denotes that the geom-
etry was the optimized geometry for an isolated monomer.

The 3d, 4s, and 4p orbitals of the metals were considered in the
active space. As such, the active space for the BDC, FDC, and di-
formate models was either (n,6) (without 4p) or (n,9) (with 4p)
where n is the d-electron count of the metal cation. The Mn2+

model is considered a sextet, the Co2+ a quartet, and Zn2+ a sin-
glet. Since the paddlewheel models contain two metal centers,
the active space included orbitals on both metals. This results in
a (2n,12) active space if the 3d and 4s orbitals are considered,
and (2n,18) if 4p are included. The active space including the
4p orbitals was deemed too large for the purposes of this study,
so only the (2n,12) active space was considered for these mod-
els. Only the ferromagnetically coupled paddlewheel configura-
tions were considered for the Mn2+ (an undecaplet) and Co2+ (a
septet) systems, following the reasoning of Grajciar et al.15 that
the interaction between the MOF models and a gas molecule was
not strongly dependent on the spin state. The 1s, 2s, and 2p or-
bitals of the metal centers and the 1s orbitals of the second row
elements were frozen in all post-HF calculations. Due to limita-
tions of the CASPT2 implementation, the 3s and 3p orbitals on
the metals and the 2s orbitals on the second row atoms were also
frozen in the CASPT2 calculations. The point-group representa-
tion for all systems was A1 in the C2v geometries and A′ for the
Cs FDC. Natural orbital occupation numbers (NOONs) were cal-
culated at the CASSCF/aDZ level for all considered active spaces.

Potential Energy Curves
A study of ECP

int as a function of the intermolecular distance
was performed on all systems at the B3LYP/aDZ, MP2/aDZ, and
RCCSD(T)/aDZ levels of theory. The intermolecular distance is
defined here as the distance between the CO2 carbon and the
metal center of the MOF model (the closer of the two metals in
the case of the paddlewheel systems). The intermolecular dis-
tances, R0, for these calculations were determined by optimizing
the separation of the rigid monomer structures, so as to avoid the
monomer deformation effects skewing the curve. For the Co2+

systems, the geometries used were a combination of the scanned
dimer structure and the individually optimized CO2, with the in-
termolecular distance between the monomers allowed to adjust
to the altered CO2. The distances are represented in terms of a
dimensionless parameter z = R/R0, so that z = 1 is the optimized
structure.

SAPT Calculations
Closed-shell SAPT energy decomposition was performed on each
Zn2+ containing system at the level of SAPT0 (the sum of first and

second-order terms including response and the δ(HF) correction
for higher-order induction, but neglecting intramonomer corre-
lation) and SAPT2+3 (including terms up to third-order in the
intermolecular interaction and second order in the intramolec-
ular correlation, omitting δ(MP2))59. The SAPT0 calculations
were done in both aDZ and aTZ basis sets, while the SAPT2+3
calculations were performed with aDZ only. High-spin open-shell
ROHF-based SAPT0 calculations were performed for the systems
containing the other two metals with the aDZ and aTZ bases.
We have also computed UHF-based SAPT for the Mn2+ contain-
ing systems. For the ROHF-based SAPT results, the induction
terms currently implemented in PSI4 are not able to include the
Coupled-Perturbed Hartree-Fock (CPHF) response. CPHF induc-
tion is available for the UHF based SAPT, but was excluded in
this study because of CPHF convergence problems. Both methods
include the δ(HF) correction.

Numerical Results and Discussion
Single Point Calculations and Interaction Energies

Table 2 shows the results for the multireference calculations
on the diformate systems in both active spaces, along with the
RHF/aDZ, MP2/aDZ, and RCCSD(T)/aDZ results for comparison.
These systems provide the opportunity to compare the consis-
tency between ECP

int and ECP∗
int and establish the importance of the

size consistency. Most of the results are in perfect agreement at
the presented accuracy. The differences between ECP

int and ECP∗
int in

these systems are never greater than 0.02 kcal/mol, excluding the
considerable differences of the MRCISD results. The issue of size
inconsistency in the conventional ECP

int result at the MRCISD/aDZ
level leads to results that are incongruous with the other values,
even with the Davidson correction. The results for ECP∗

int are much
more reasonable.

Table 2 Comparison of ECP
int (Eq. (1)) and ECP∗

int (Eq. (2)) for the M2+-
diformate-CO2 model systems (kcal/mol).

Metal Mn2+ Co2+ Zn2+

Method ECP
int ECP∗

int ECP
int ECP∗

int ECP
int ECP∗

int
RHF -3.18 -3.18 -1.53 -1.53 -1.96 -1.96
MP2 -5.32 -5.32 -2.82 -2.82 -3.87 -3.88
RCCSD(T) -5.26 -5.26 -2.66 -2.66 -3.93 -3.93

(n,6) Active Space (3d4s)
CASSCF -3.18 -3.18 -1.44 -1.44 -1.13 -1.13
CASPT2 -5.37 -5.35 -3.03 -3.03 -2.78 -2.78
NEVPT2 -5.13 -5.15 -1.54 -1.54 -2.50 -2.50
MRCISD 37.69 -4.95 42.09 -2.65 43.69 -3.54

(n,9) Active Space (3d4s4p)
CASSCF -2.99 -2.99 -1.05 -1.05 -1.65 -1.65
CASPT2 -5.51 -5.51 -2.61 -2.61 -3.82 -3.82
NEVPT2 -4.74 -4.74 -2.25 -2.25 -3.31 -3.31
MRCISD 37.21 -4.90 42.24 -2.69 43.64 -3.67

The interactions between (HCOO−)2Co2+ and CO2 are slightly
weaker than the (HCOO−)2Zn2+-CO2 interactions, and both are
weaker than the (HCOO−)2Mn2+-CO2 interactions. MP2 is con-
sistently in good agreement with the RCCSD(T) results, differ-
ing by no more than 0.16 kcal/mol. Looking at the multirefer-
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Fig. 3 Visualization of the counterpoise corrected, size-consistent reference (Eq. (2)) for the MRCISD calculations. Unfilled contours denote ghost
atoms.

ence methods in the (n,6) active space, the Mn2+ results show
no change from HF to CASSCF. Likewise, the CASPT2 results are
only 0.03-0.05 kcal/mol different from the MP2 results. The
NEVPT2 results have a slightly larger difference at 0.07-0.09
kcal/mol. The two multireference perturbation methods bookend
the RCCSD(T) results at about 0.1 kcal/mol on either side. The
MRCISD result in this active space is less negative than the values
for RCCSD(T). In the larger (n,9) space, CASSCF and the pertur-
bation theory methods show a greater degree of difference from
the single reference methods than the results in the more limited
active space. The CASPT2 and NEVPT2 results are inconsistent
in the direction of the change from the smaller active space, with
the CASPT2 interaction energy being more attractive in the larger
active space while the NEVPT2 result is less attractive. Gener-
ally, the Mn2+ results in the small active space are closer to the
RCCSD(T) results. The Co2+ results have some similarity with the
Mn2+ results. The effect of active space sizes on CASSCF results
is more pronounced for Co2+ and the step to the larger active
space is beneficial for CASPT2 and NEVPT2. The MRCISD accu-
racy remains about the same in either active space. The Zn2+

system is the most effected by the move from single reference to
multireference for this model. The smaller active space is con-
sistently further away from the CC results than the larger active
space. In the diformate models, MRCISD slightly underestimates
the interaction energy compared to the RCCSD(T) results.

Figure 4 shows DFT results, with and without the -D3(BJ) dis-
persion correction, for the three diformate systems, along with
the HF, MP2, and RCCSD(T) results. Again, the agreement be-
tween RCCSD(T) and MP2 in the aDZ basis set is quite good
for all three metals, with MP2/aTZ resulting in slightly stronger
binding. The DFT results are presented in the aDZ basis: though
aTZ and aQZ results were obtained, the effect of basis set incom-
pleteness on the aDZ results was minimal. In general, the DFT
functionals without the dispersion correction give a poor agree-
ment with the coupled-cluster results, though the hybrid function-
als are better than the generalized gradient approximation based

functionals (GGAs). M05-2X and M06-2X overestimate the inter-
action energy in all three cases. BLYP, B3LYP, PBE, and PBE0 are
improved considerably with the addition of the dispersion correc-
tions. The selection of damping parameters appears to be of little
importance and only the -D3(BJ) results are shown here. The
results for the other damping parameters for these and the fol-
lowing systems can be found in the supplementary information.

For the paddlewheel models, Table 3, it can be seen that some
difficulties were encountered. The ECP

int and ECP∗
int values for

CASSCF for the Mn2+ and Zn2+ systems show the greatest dis-
crepancies here due to difficulties associated with the CASSCF
convergence. Additionally, the NEVPT2 ECP∗

int value for the Co2+

system was not obtained due to difficulty in the calculation of
the infinite reference. The accuracy of the NEVPT2 results, com-
pared to RCCSD(T), fluctuates throughout this work, and CASPT2
proved incapable of any useful predictive capacity past the difor-
mate systems and was discarded. We focus here on the ECP∗

int re-
sults, when available, based on their consistency with the single-
reference results. The results in Table 3 lead to similar con-
clusions as for the diformate systems. The paddlewheel frag-
ment has the same order of preference for the metal cations,
Mn>Zn>Co (implying Mn has the strongest interaction and Co
has the weakest). Again, the transition to multireference meth-
ods has a greater effect for the Zn2+ systems than Co2+ and MP2
is in very good agreement with RCCSD(T). The paddlewheel DFT
results found in Figure 5 show that dispersion is also important
to the accuracy of DFT for these systems. For these models, the
DFT results without -D3 are roughly of HF quality or worse. As
above, the hybrid functionals agree with RCCSD(T) better than
the GGAs and the Minnesota functionals overestimate the inter-
action energies. Their overestimation is quite severe for the Mn2+

case, but less so for the other two metals. The agreement between
the dispersion corrected hybrid functionals and RCCSD(T) is very
good and the selection of damping parameters is less important.

The results for the BDC and FDC models are presented in Ta-
bles 4 and 5, respectively. Interestingly, the RCCSD(T) result for
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Fig. 4 Counterpoise corrected interaction energies (kcal/mol) for diformate MOF model-CO2 systems.
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Fig. 5 Counterpoise corrected interaction energies (kcal/mol) for paddlewheel MOF model-CO2 systems.

the Zn2+-BDC system had to be replaced by RCCSD due to a
highly suspicious result for the triples correction (the discarded
RCCSD(T) interaction energy was −14.97 kcal/mol). The non-CC
results in Tables 4 and 5 generally show varying but reasonable
agreement with the CC results. Figures 6 and 7 show the DFT+D

values of ECP
int for the BDC and FDC systems, which are similar to

the previous systems. The dispersion corrections are very small
and imply that the interactions of these systems are not highly dis-
persion dependent. Given the obvious dipole character of these
MOF models, it would stand to reason that electrostatic and in-

Journal Name, [year], [vol.],1–17 | 7



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E in
t/(

kc
al

/m
ol

)

RCCSD/aDZ
RCCSD(T)/aDZ
MRCISD/aDZ
HF/aDZ
HF/aTZ
MP2/aDZ
MP2/aTZ
BLYP/aDZ
B3LYP/aDZ
PBE/aDZ
PBE0/aDZ
M05-2X/aDZ
M06-2X/aDZ
+D3(BJ)

24

22

20

18

16

14

12

10
Mn2 +

22

20

18

16

14

12

10
Co2 +

22

20

18

16

14

12

10
Zn2 +

Fig. 6 Counterpoise corrected interaction energies (kcal/mol) for benzenedicarboxylate MOF model-CO2 systems.
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Fig. 7 Counterpoise corrected interaction energies (kcal/mol) for furandicarboxylate MOF model-CO2 systems.

duction forces would contribute more to the overall interaction.
We will revisit this issue while discussing the SAPT calculations.
Despite their limited effect, the addition of the atom-pairwise -D3
corrections does improve the agreement of the DFT results with
the benchmark values.

Tables 6–9 present the CASSCF/aDZ natural orbital occupation
numbers of the diformate, BDC, FDC, and paddlewheel systems,
respectively. The results show that these systems have only small
amounts of multireference character, with the greatest deviations
from the expected single reference occupation values (2,1, or 0)
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Table 3 Comparison of ECP
int (Eq. (1)) and ECP∗

int (Eq. (2)) for the M2+-
paddlewheel-CO2 model systems (kcal/mol).

Metal Mn2+ Co2+ Zn2+

Method ECP
int ECP∗

int ECP
int ECP∗

int ECP
int E∗CP

int
RHF -5.58 -5.58 -4.66 -4.66 -4.48 -4.48
MP2 -8.02 -8.02 -5.91 -5.91 -7.57 -7.57
RCCSD(T) -8.00 -5.77 -7.57

(2n,12) Active Space (3d4s)
CASSCF -3.34 -5.58 -4.57 -4.57 -6.69 -6.78
NEVPT2 -12.18 -7.76 -5.74 -19.81 -20.11
MRCISD 67.91 -7.41 72.62 -5.75 75.14 -6.82

being around 0.01. Though the deviations are small, they do cor-
relate well with the observed trends in the multireference calcula-
tions. For the diformate, BDC, and FDC systems, the Co2+ NOONs
show the largest deviations from a single reference character with
the Zn2+ ones following after.

The flexible interaction energies ECP
int +∆E f lex

int (Eq. (3)) in Ta-
ble 10 lead to similar conclusions as the rigid interaction ener-
gies. There are no Co2+ values here because the fully optimized
structures were not considered for this system. The BDC ∆E f lex

int
corrections are the most considerable, especially for the Mn2+

system. The change in the MOF fragment geometry contributes
the majority of these corrections, with CO2 being more limited in
its possibility for deformation. The limited change in RLigand−M2+

for this model in its bound and unbound states also points to
the change in the BDC structure as the largest contributor to this
correction. None of the other ∆E f lex

int results constitute a change
greater than 1 kcal/mol, with the FDC systems exhibiting the
next largest changes. The minuscule diformate and paddlewheel
∆E f lex

int results agree with the smaller ECP
int values for these systems.

These structures are also more rigid in their configuration and
have ligands that have less possibility for deformation. The im-
portant geometric parameters for all systems can be seen in Table
1. The changes in these parameters between the optimized dimer
and monomer systems are generally small, with the exception of
the Co2+-BDC and Co2+-FDC RLigand−M2+ values. The Co2+-FDC
Ligand-M2+-CO2 angle also differs from the corresponding values
for the other metals, which was also seen in the full optimization
that was previously discussed. For the Mn2+-BDC system, the
changes that lead to the value of ∆E f lex

int appear to be the O-C-O
angles of the carboxylate groups. Both angles contract by about
1.5◦ in the dimer structure. A similar occurence is seen in the
Zn2+-BDC system, though the angles expand and only by about
0.5◦.

Potential Energy Curves
The dependence of ECP

int on intermolecular separation can be seen
in Figures 8, 9, and 10 for models containing Mn2+, Co2+, and
Zn2+, respectively. For the BDC and FDC systems, the dispersion-
uncorrected DFT curves give quantitatively similar results to
RCCSD(T) and MP2. As seen in the single point calculations for
these systems, the dispersion corrections lead to a generally small
but beneficial change in the accuracy of the B3LYP fucntional.
The results for the diformate and paddlewheel models are also

similar to each other, with the addition of the empirical disper-
sion to DFT being necessary to obtain near-RCCSD(T) accuracy.
The CASSCF results for the paddlewheel systems, lacking dynam-
ical correlation, do not perform any better than non-D3 DFT. It
is worth restating that the geometries used for these curves are
constructed from rigid monomers and therefore may differ from
the results of the previous subsection, which used the flexible ge-
ometries. Also, z is defined by the rigidly optimized total dimer
energy, not interaction energy, and z=1 does not necessarily cor-
respond to the CP-corrected interaction energy minimum.

SAPT Calculations

The results of the closed-shell SAPT energy decomposition for
each of the Zn2+-containing systems are found in Table 11. As has
been the case for the preceding results, the BDC and FDC models
are similar in their trends. As inferred by the small effect of the
empirical dispersion correction on the DFT results, the decompo-
sition of the interaction energy shows that induction has a much
greater effect on the interactions of these models than dispersion.
Dispersion accounts for around 20% of the interaction energy for
these systems, while induction accounts for approximately 60%.
Electrostatics plays a larger role in the SAPT0 results, where the
exchange term is noticeably smaller in magnitude than its attrac-
tive electrostatic counterpart. With the move to SAPT2+3 and
the accompanying jump in the exchange values, electrostatics is
mostly canceled out in the BDC model and completely canceled
out in the FDC model. The diformate and paddlewheel results
also agree with the role of dispersion noted in analyzing the DFT
data. In these models, dispersion plays a greater role in the in-
teractions, being similar in magnitude to induction in the pad-
dlewheel and greater than induction in the diformate model. To-
gether, induction and dispersion account for nearly 120% of the
total binding energy, overcoming the repulsive first-order contri-
bution as exchange overpowers electrostatics in these models. At
the SAPT2+3 level, exchange is sufficient in magnitude to effec-
tively cancel out electrostatics and induction (or dispersion in the
case of the paddlewheel structure) at the minimum intermolecu-
lar separation.

For the SAPT0 calculations in aDZ and aTZ, the rate of conver-
gence with regard to basis set size can be inferred. The difference
in the total SAPT interaction energies is around 1 kcal/mol in all
cases, with the FDC model having the largest difference in con-
secutive basis sets at 1.21 kcal/mol. Regarding the convergence
of individual components, the exchange contribution shows the
least change. The electrostatics and dispersion generally con-
tribute the most to the overall change, with induction appearing
to be fairly well converged in the smaller basis. The comparison
between the results at the SAPT0 and SAPT2+3 levels shows a
much greater change. The exchange contributions increase con-
siderably in each system with the addition of intramolecular cor-
relation while induction and dispersion decrease only slightly and
electrostatics increases slightly. These changes result in a total en-
ergy that is more positive than at the lower level of theory, though
only by about 1 kcal/mol at most. The SAPT2+3 results are con-
sistently around 2 kcal/mol more negative than the RCCSD(T) or
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Table 4 Comparison of ECP
int (Eq. (1)) and ECP∗

int (Eq. (2)) for the M2+-BDC-CO2 model systems (kcal/mol).

Metal Mn2+ Co2+ Zn2+

Method ECP
int ECP∗

int ECP
int ECP∗

int ECP
int ECP∗

int
RHF -17.86 -17.86 -16.71 -16.71 -21.51 -21.51
MP2 -18.42 -18.42 -17.72 -17.72 -20.45 -20.45
RCCSD(T) -18.65 -17.54 -21.47a

(n,6) Active Space (3d4s)
CASSCF -17.86 -17.86 -17.12 -17.12 -21.31 -21.31
NEVPT2 -18.02 -18.02 -18.35 -18.35 -6.58 -6.58
MRCISD 45.97 -19.17 48.36 -18.52 46.31 -22.07

(n,9) Active Space (3d4s4p)
CASSCF -17.67 -17.67 -16.82 -16.82 -21.01 -21.01
NEVPT2 -14.29 -14.29 -12.18 -12.18 -17.99 -17.99
MRCISD 45.97 -19.18 48.25 -18.62 44.85 -21.92

a RCCSD value replacing the RCCSD(T) one with a suspect triples contribution (see text).

Table 5 Comparison of ECP
int (Eq. (1)) and ECP∗

int (Eq. (2)) for the M2+-FDC-CO2 model systems (kcal/mol).

Metal Mn2+ Co2+ Zn2+

Method ECP
int ECP∗

int ECP
int ECP∗

int ECP
int ECP∗

int
RHF -17.28 -17.28 -18.30 -18.30 -21.73 -21.73
MP2 -17.91 -17.91 -18.24 -18.24 -21.44 -21.44
RCCSD(T) -18.03 -17.78 -20.89

(n,6) Active Space (3d4s)
CASSCF -17.28 -17.28 -18.48 -18.48 -21.50 -21.53
NEVPT2 -17.50 -17.50 -17.87 -17.87 -8.88 -21.02
MRCISD 43.58 -18.61 44.69 -19.29 42.74 -22.95

(n,9) Active Space (3d4s4p)
CASSCF -17.09 -17.09 -18.09 -18.09 -21.21 -21.21
NEVPT2 -13.76 -13.76 -20.62 -20.62 -17.71
MRCISD 43.16 -18.62 44.69 -19.29 41.14 -22.81

MRCISD benchmarks for each system.

Tables 12 and 13 contain the SAPT0 results in aDZ and aTZ
bases for the Mn2+ models based on UHF and ROHF, respec-
tively, while Table 14 contains the ROHF based results for the
Co2+ models. The blanks in Table 14 are due to convergence is-
sues. For Mn2+, the UHF and ROHF results show good agreement
with each other. For a given basis set, the electrostatic, exchange,
and induction terms are almost identical between the two meth-
ods. The only considerable change occurs in the dispersion term,
which is always larger in the ROHF based results. All SAPT com-
ponents for the Mn2+ and Co2+ systems, where applicable, are
again indifferent to the basis set choice.

The trends seen in the SAPT0 results for the Zn2+ systems are
mostly repeated for each model, though there are some changes
associated with the change in metal. The BDC model has a no-
table change in results between Zn2+ and Mn2+. The difference
in the electrostatic contribution between the Zn2+ system and the
Mn2+ one is around 4 kcal/mol, while the difference in the ex-
change terms is close to −9 kcal/mol. The Zn2+-BDC exchange
term at the SAPT0 level is around half that of the Mn2+-BDC
system. The differences between the induction and dispersion
terms, 1.92 and 1.27 kcal/mol respectively, negate some of the
differences between the total interaction energies, leaving the to-

tal interaction energy in the Zn2+ system only 2.19 kcal/mol more
negative than in the Mn2+ one. The differences, as well as the rel-
atively large magnitudes, of the electrostatic and induction terms
are supported by the PBE0/aDZ dipole moments of the MOF frag-
ments that appear in Table 15. The BDC and FDC systems exhibit
large dipole moments, while the diformate and paddlewheel sys-
tems are effectively non-dipolar. For BDC, the slight differences
in the z-component of the dipole in the Zn2+ and Mn2+ systems
support the more negative electrostatic and induction terms of
Mn2+ over Zn2+. In the FDC systems, all of the attractive terms
are slightly more negative for Zn2+ than Mn2+, and the exchange
energy is only slightly more positive. Again, the dipole moments
explain the relative sizes of the electrostatic and induction terms
between these systems. In this case, the relationship between
Co2+ and the other two metals can also be seen in the dipole
moments. The smaller dipole moment of Co2+-containing model
corresponds to less negative electrostatic and induction terms, but
the exchange term is not as positive, adding up to a lower total
interaction energy.

The same kind of lower exchange value seen in Co2+-FDC is
also observed in the Co2+-paddlewheel system, where it compen-
sates for the electrostatic and induction terms being considerably
weaker for this metal than for the other two. In the diformate
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Table 6 CASSCF/aDZ natural orbital occupation numbers for the active space orbitals of M2+-diformate-CO2. Numbers outside of parentheses are for
the (n,9) active space, and numbers in parentheses are for the (n,6) active space. The color of the orbital index cell denotes the dominant character of
the orbital in the following way: green for s, red for p, blue for d.

Orbital Mn2+ Co2+ Zn2+

20.1 0.99678 (1.00000) 1.98903 (1.99990) 1.99153 (1.99999)
21.1 0.99626 (1.00000) 1.98753 (1.99305) 1.99058 (1.99672)
22.1 0.00376 (0.00000) 0.01233 (0.00705) 0.00948 (0.00339)
23.1 0.00321 0.01072 0.00847
12.2 0.99646 (1.00000) 0.99553 (1.00000) 1.99103 (1.99999)
13.2 0.00355 0.00470 0.00902
10.3 0.99643 (1.00000) 0.99544 (1.00000) 1.99099 (1.99993)
11.3 0.00359 0.00479 0.00904
6.4 0.99996 (1.00000) 0.99995 (1.00000) 1.99985 (1.99998)

Table 7 CASSCF/aDZ natural orbital occupation numbers for the active space orbitals of M2+-BDC-CO2. Numbers outside of parentheses are for the
(n,9) active space, and numbers in parentheses are for the (n,6) active space. The color of the orbital index cell denotes the dominant character of the
orbital in the following way: green for s, red for p, blue for d.

Orbital Mn2+ Co2+ Zn2+

34.1 0.99676 (1.00000) 1.98897 (1.99995) 1.99153 (2.00000)
35.1 0.99624 (1.00000) 1.98755 (1.99232) 1.99105 (1.99627)
36.1 0.00378 (0.00000) 0.01231 (0.00773) 0.00900 (0.00386)
37.1 0.00323 0.01080 0.00847
9.2 0.99640 (1.00000) 0.99550 (1.00000) 1.99111 (1.99992)

10.2 0.00362 0.00473 0.00893
20.3 0.99646 (1.00000) 0.99573 (1.00000) 1.99127 (1.99999)
21.3 0.00355 0.00445 0.00878
4.4 0.99996 (1.00000) 0.99996 (1.00000) 1.99985 (1.99997)

systems, the balance between electrostatics and exchange is sim-
ilar for all three metals. The dispersion terms in the diformate
and paddlewheel systems, though weaker for Co2+, are of sim-
ilar magnitude. Between the different metals in the diformate
model, the difference in the electrostatic terms is nearly canceled
out by the difference in the exchange terms, the dispersion dif-
ference is small, and the induction difference consistutes about
66% of the total difference in interaction energy. The total inter-
action energies of the Zn2+-paddlewheel and Mn2+-paddlewheel
systems differ by less than 0.1 kcal/mol because of the interplay
in the differences of the SAPT components. The differences be-
tween the electrostatic and dispersion terms favor Zn2+, but the
exchange difference favors Mn2+. The induction terms are almost
equal. In general, the SAPT results in this work overestimate their
benchmarks by around 2-5 kcal/mol. SAPT does a good job of
replicating the metal preference seen in the RCCSD(T) results for
the diformate and paddlewheel systems. For the FDC systems,
SAPT finds correctly that the interaction of the Zn2+ model with
CO2 is notably more attractive than for the other two metals, but
flips the energetic ordering for Mn2+-FDC and Co2+-FDC.

Conclusions

In this work, ab initio benchmark interaction energy values, in-
cluding RCCSD(T) and MRCISD, were obtained for model frag-
ments of metal-organic frameworks interacting with CO2. These
models contained either Mn2+, Co2+, or Zn2+ as representatives
of systems with half filled, intermediately filled, and completely
filled d shell cations, respectively. The potential importance of

a multireference treatment of these systems was investigated at
the CASSCF and post-CASSCF levels and considered the effects of
active space size. A selection of DFT functionals was compared
to these benchmarks, both with and without the empirical disper-
sion correction. The effect of intermolecular separation was also
considered for selected levels of theory. Last but not least, SAPT
interaction energy decompositions were performed to examine
the importance of individual interaction types for these systems.

The SAPT results obtained on the MOF model systems corrob-
orate the observed importance of the empirical dispersion correc-
tions for the DFT results. These corrections improve the overall
results slightly for BDC and FDC model systems, while providing
considerable improvement to the diformate and paddlewheel sys-
tems. Additionally, the hybrid functionals perform much better
than the GGAs and PBE0 generally outperforms B3LYP. The se-
lection of damping parameters for the dispersion correction was,
in general, less important than the mere addition of this correc-
tion. The M05-2X and M06-2X functionals tend to overestimate
the RCCSD(T) values, sometimes quite considerably.

The consideration of the multireference nature of the mod-
els showed consistently that the Mn2+-containing systems were
the least affected by the switch from HF to CASSCF, while
Co2+-containing systems showed moderate change and Zn2+-
containing ones were the most affected, but still the multirefer-
ence character was small as indicated by the NOONs. For the
paddlewheel-Zn2+ system, the change from HF to CASSCF was
greater than 2 kcal/mol and CASSCF proved to be a good ap-
proximation to MRCISD, though both methods fall short of the
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Table 8 CASSCF/aDZ natural orbital occupation numbers for the active space orbitals of M2+-FDC-CO2. Numbers outside of parentheses are for the
(n,9) active space, and numbers in parentheses are for the (n,6) active space. The color of the orbital index cell denotes the dominant character of the
orbital in the following way: green for s, red for p, blue for d.

Orbital Mn2+ Co2+ Zn2+

50.1 0.99676 (1.00000) 1.98879 (1.99922) 1.99150 (1.99999)
51.1 0.99645 (1.00000) 1.98760 (1.99155) 1.99124 (1.99999)
52.1 0.99624 (1.00000) 0.99574 (1.00077) 1.99099 (1.99618)
53.1 0.00378 (0.00000) 0.01198 (0.00846) 0.00906 (0.00395)
54.1 0.00356 0.01077 0.00881
55.1 0.00324 0.00443 0.00850
12.2 0.99996 (1.00000) 1.00022 (1.00000) 1.99984 (1.99996)
13.2 0.99639 (1.00000) 0.99571 (1.00000) 1.99108 (1.99992)
14.2 0.00362 0.00475 0.00897
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Fig. 8 Interaction energy curves (kcal/mol) for rigid dimer structures containing Mn2+ as a function of the intermolecular separation for DFT, DFT+D,
and selected wavefunction methods. Distances are represented relative to the optimal separation distance R0. The values of R0 for the BDC, FDC,
diformate, and paddlewheel models are 3.312, 3.321, 3.595, and 4.999 angstroms, respectively.

RCCSD(T) result by about 1 kcal/mol. For the MRCISD results,
the interaction energy based on the infinitely separated reference
overcomes the issues of size inconsistency and provides more
meaningful results than the typical supermolecular definition of
the interaction energy while it is still possible to retain the CP
correction for the basis set superposition error. MRCISD showed

results similar to RCCSD(T), but MP2 was consistently closer to
the benchmark RCCSD(T) values.

The SAPT decomposition shows that the binding in the BDC
and FDC systems is induction dominated, as expected from the
dipole character of these systems, while the diformate and pad-
dlewheel systems show a more even mix of induction and disper-
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Fig. 9 Interaction energy curves (kcal/mol) for rigid dimer structures containing Co2+ as a function of the intermolecular separation for DFT, DFT+D,
and selected wavefunction methods. Distances are represented relative to the optimal separation distance R0. The values of R0 for the BDC, FDC,
diformate, and paddlewheel models are 3.182, 2.070, 3.677, and 5.110 angstroms, respectively.

Table 9 CASSCF/aDZ natural orbital occupation numbers for the active
space orbitals of M2+-paddlewheel-CO2 in the (n,12) active space. The
color of the orbital index cell denotes the dominant character of the orbital
in the following way: green for s, blue for d.

Orbital Mn2+ Co2+ Zn2+

38.1 1.00000 1.99353 1.99997
39.1 1.00000 1.99243 1.99996
40.1 1.00000 1.00000 1.99827
41.1 1.00000 1.00000 1.99401
42.1 0.00000 0.00799 0.00567
43.1 0.00000 0.00608 0.00256
19.2 1.00000 1.00000 1.99999
20.2 1.00000 1.00000 1.99980
19.3 1.00000 1.00000 1.99999
20.3 1.00000 1.00000 1.99979
5.4 1.00000 1.99998 2.00000
6.4 1.00000 1.99998 1.99999

Table 10 Monomer relaxation corrections to interaction energy, ∆E f lex
int

(kcal/mol), for the Mn2+ and Zn2+ containing systems. B3LYP/aDZ was
used for the BDC and FDC systems, MP2/aDZ for the paddlewheel sys-
tems, and MP2/aTZ for the diformate systems.

Systems
Metal BDC FDC Diformate Paddlewheel
Mn2+ 4.40 0.55 0.26 0.09
Zn2+ 1.41 0.81 0.08 0.15

sion. For the three systems for which we were able to converge
the Co2+ SAPT0 calculations, the induction and dispersion ener-
gies are less attractive than for the Mn2+ and Zn2+-containing
counterparts, but the total binding energy is only slightly less at-
tractive thanks to the reduction in the exchange repulsion. The
ROHF and UHF-based open-shell SAPT results have good agree-
ment, but the UHF-based variant provides consistently more neg-
ative dispersion values for all systems. The SAPT total energies
overestimate the benchmarks, but the energy decomposition pro-
vides useful insight and replicates the key features of the metal
preference order for each system.Journal Name, [year], [vol.],1–17 | 13



0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
R/R0

5

10

15

20

E in
t(k

ca
l/m

ol
)

B3LYP
B3LYP+D3(BJ)
MP2
RCCSD(T)

(a) BDC-Zn2+ - CO2

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
R/R0

5

10

15

20

E in
t(k

ca
l/m

ol
)

B3LYP
B3LYP+D3(BJ)
MP2
RCCSD(T)

(b) FDC-Zn2+ - CO2

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
R/R0

0

1

2

3

4

E in
t(k

ca
l/m

ol
)

B3LYP
B3LYP+D3(BJ)
MP2
RCCSD(T)

(c) (HCOO−)2Zn2+ - CO2

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
R/R0

0

2

4

6

8

E in
t(k

ca
l/m

ol
)

B3LYP
B3LYP+D3(BJ)
MP2
CASSCF
RCCSD(T)

(d) (HCOO−)4(Zn2+)2 - CO2

Fig. 10 Interaction energy curves (kcal/mol) for rigid dimer structures containing Zn2+ as a function of the intermolecular separation for DFT, DFT+D,
and selected wavefunction methods. Distances are represented relative to the optimal separation distance R0. The values of R0 for the BDC, FDC,
diformate, and paddlewheel models are 3.257, 3.206, 3.600, and 4.714 angstroms, respectively.
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Method Basis Set electrostatics exchange induction dispersion total
BDC

SAPT0 AVDZ -20.21 18.84 -16.49 -4.78 -22.64
AVTZ -20.61 18.87 -16.55 -5.56 -23.85

FDC
SAPT0 AVDZ -19.91 18.63 -16.01 -4.76 -22.05

AVTZ -20.30 18.68 -16.08 -5.54 -23.24

Diformate
SAPT0 AVDZ -8.96 9.92 -4.14 -4.97 -8.14

AVTZ -9.12 9.96 -4.22 -5.50 -8.89

Paddlewheel
SAPT0 AVDZ -11.48 12.05 -6.16 -5.00 -10.58

AVTZ -11.71 12.10 -6.22 -5.55 -11.38

Table 14 ROHF-SAPT decomposition (kcal/mol) for complexes containing Co2+.

Method Basis Set electrostatics exchange induction dispersion total
BDC

SAPT0 AVDZ
AVTZ

FDC
SAPT0 AVDZ

AVTZ -18.82 15.39 -15.26 -4.96 -23.65

Diformate
SAPT0 AVDZ -6.85 7.92 -2.61 -4.28 -5.81

AVTZ -6.94 7.94 -2.66 -4.67 -6.32

Paddlewheel
SAPT0 AVDZ -7.72 6.57 -3.51 -3.66 -8.32

AVTZ -7.83 6.61 -3.53 -3.96 -8.71

Table 15 Components of the PBE0/aDZ dipole moments (a.u.) of the
BDC and FDC models with various metals. The BDC models are ori-
ented so the z-axis is the axis of interaction in the dimer. For the FDC
models, the XZ plane is the mirror plane of the system. The diformate
and paddlewheel models are excluded because they are non-dipolar.

Metal X Y Z
BDC

Mn2+ 0.00 0.00 11.76
Co2+ 0.00 0.00 10.72
Zn2+ 0.00 0.00 11.33

FDC
Mn2+ 2.21 0.00 9.08
Co2+ 3.04 0.00 7.50
Zn2+ 2.34 0.00 9.15
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K. Szalewicz, J. Chem. Phys., 2008, 129, 084101.
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ABSTRACT
The recently proposed spin-flip symmetry-adapted perturbation theory (SF-SAPT) first-order exchange energy [Patkowski et al.,
J. Chem. Phys. 148, 164110 (2018)] enables the standard open-shell SAPT approach to treat arbitrary spin states of the weakly
interacting complex. Here, we further extend first-order SF-SAPT beyond the single-exchange approximation to a complete
treatment of the exchanges of electrons between monomers. This new form of the exchange correction replaces the single-
exchange approximation with a more moderate single-spin-flip approximation. The newly developed expressions are applied
to a number of small test systems to elucidate the quality of both approximations. They are also applied to the singlet-triplet
splittings in pancake bonded dimers. The accuracy of the single-exchange approximation deteriorates at short intermolecular
separations, especially for systems with few electrons and for the high-spin state of the complex. In contrast, the single-spin-flip
approximation is exact for interactions involving a doublet molecule and remains highly accurate for any number of unpaired
electrons. Because the single-exchange approximation affects the high-spin and low-spin states of pancake bonded complexes
evenly, the resulting splitting values are of similar accuracy to those produced by the formally more accurate single-spin-flip
approximation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5086079

I. INTRODUCTION

The interaction of two open-shell molecules in their high-
spin states produces a whole bundle of asymptotically degen-
erate states corresponding to different values of the total spin
quantum number S for the complex. The splittings between
these states arise from the resonance tunneling of electrons
between the two subsystems. Thus, when the intermolecu-
lar interaction is described in terms of symmetry-adapted
perturbation theory (SAPT),1 the splittings can be attributed
exclusively to the exchange terms in the interaction: the
remaining electrostatic, induction, and dispersion terms are
the same for the entire asymptotically degenerate bundle. On
the other hand, a uniform description of all spin states is chal-
lenging for the more conventional supermolecular approach
to interaction energies: while the highest-spin state might
often be well described by a single-reference treatment, all
the remaining, low-spin states are genuinely multireference.

Therefore, in computational studies of open-shell com-
plexes, obtaining sufficiently accurate potential energy sur-
faces (PESs) for low-spin states is nontrivial. For example, for
the interaction of two ground-state (3Σ−g ) O2 molecules, an
accurate PES for the high-spin quintet state could be con-
structed using restricted coupled-cluster theory with singles,
doubles, and perturbative triple excitations (RCCSD(T)).2 On
the other hand, the PESs for the multireference singlet and
triplet states of this complex had to be obtained by com-
bining the RCCSD(T) quintet PES with lower-level (complete
active space second order perturbation theory, CASPT2, or
multireference configuration interaction with single and dou-
ble excitations, MRCI) estimates of the singlet-quintet and
triplet-quintet splittings.3

As long as the noninteracting monomers are amenable
to a single-reference description (in this work, via spin-
restricted high-spin determinants ΨA and ΨB), the evalua-
tion of SAPT corrections does not require constructing a
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multireference wavefunction for the complex. Instead, the
perturbation series is built on top of a zeroth-order func-
tion Ψ0 = ΨAΨB and the corrections are expressed in terms
of single, double, . . . excitations out of the single Ψ0 ref-
erence. However, the established open-shell SAPT formu-
lations, based on either spin-restricted4 on unrestricted5,6

Hartree-Fock (HF) or Kohn-Sham (KS) determinants, suffer
from a different limitation: it is assumed that Ψ0 is a pure
spin state (an eigenfunction of the Ŝ2 operator). This is true
only if the asymptotically degenerate bundle reduces to a
single spin state, that is, when either one of the interacting
molecules is a singlet or the complex is in the high-spin state,
MS = ±S. Thus, the open-shell SAPT approaches of
Refs. 4–6 are only applicable to the high-spin state of the
complex. When the interaction energy in a low-spin state is
needed, these high-spin approaches can provide the elec-
trostatic, induction, and dispersion corrections, but not the
exchange corrections. No estimate of spin splittings can be
extracted from these theories.

As the first step towards extending SAPT beyond the
high-spin state of the complex, we have recently developed7

a new first-order exchange correction valid for an arbitrary
spin state of two interacting high-spin open-shell molecules,
each described by a restricted open-shell HF (ROHF) deter-
minant. The new formalism involves explicitly projecting Ψ0
onto the subspace corresponding to the desired value of the
spin quantum number S. Similarly to nearly all exchange cor-
rections in closed-shell (and high-spin open-shell) SAPT, the
evaluation of matrix elements involving the (NA + NB)-electron
antisymmetrizer is greatly simplified by the use of the single-
exchange approximation, also called the S2 approximation as
it retains terms up to second order in intermolecular over-
lap integrals.1 As shown in Ref. 7, the S2 approximation allows
expressing the first-order exchange energy E(10)

exch for an arbi-
trary spin state as a linear combination of two matrix ele-
ments: a diagonal exchange energy that quantifies the spin-
averaged effect and a spin-flip term responsible for splittings
between multiplets. The coefficients in this linear combination
do not depend on a particular system and arise solely from
the angular momentum algebra. The name “spin-flip term”
reflects the fact that the matrix elements of this term are com-
puted between ΨAΨB and a function Ψ↓AΨ

↑

B where one of the
unpaired spins on one monomer has been lowered and one
of the unpaired spins on the other monomer has been raised
(that is, an intermolecular spin exchange has occurred). Thus,
the new formalism, termed spin-flip SAPT (SF-SAPT), bears
some similarities to the spin-flip electronic structure theories
of Krylov and co-workers:8,9 in both approaches, a multirefer-
ence low-spin state is accessed from a single reference con-
figuration. However, the excitations in the methods of Krylov
et al. alter the total spin of the system (the quantum number
MS is changed). On the other hand, the excitations involved in
spin-flip SAPT do not change the value of MS as a spin raise
on one monomer is always accompanied by a spin lowering on
the other monomer.

The spin-flip electronic structure formalism has been
generalized to multiple spin flips;10 however, a simple and

often adequate approximation11 relies on using the single-
spin-flip approach (accessing the second-highest spin state
from the high-spin one) to determine the coupling parameter
JAB within the Heisenberg spin Hamiltonian model. Within this
scheme, the knowledge of JAB is sufficient to recover the entire
bundle of lower-spin states. As demonstrated in Ref. 7, in the
case of spin-flip SAPT, the same single-parameter Heisen-
berg picture is a direct consequence of the single-exchange
approximation where the value of JAB results from the single-
spin-flip matrix elements (the corresponding elements involv-
ing two or more spin flips vanish within the single-exchange
approximation).

While it would not be fair to expect quantitative accu-
racy from such a (conceptually and computationally) sim-
ple approximation as first-order perturbation theory, the
SF-SAPT approach to E(10)

exch has been shown7 to provide rea-
sonable, qualitatively correct multiplet splittings for a num-
ber of representative complexes. The accuracy of first-order
SF-SAPT is generally similar to the (much more involved)
supermolecular complete active space self-consistent field
(CASSCF) calculation and the method does not break down
at large separations as is the case for size-inconsistent
approaches such as MRCI. However, the accuracy of SF-SAPT
splittings in the region of strong intermolecular overlap is
limited by two issues: the lack of second- and higher-order
exchange effects and the single-exchange approximation.
Addressing the first issue involves deriving and implementing
the SF-SAPT generalizations of the second-order exchange
corrections E(20)

exch−ind and E(20)
exch−disp, which is in progress in

our group and will be described in a separate publication.
In this work, we focus on addressing the second issue by
deriving and implementing an improved expression for E(10)

exch
in SF-SAPT, in which the single-exchange approximation
has been replaced by a much milder single-spin-flip (1-flip)
approximation.

The full nonapproximated E(10)
exch expression in standard

closed-shell SAPT has been introduced a long time ago12 and
this expression, unlike those for higher SAPT exchange cor-
rections, is available in most SAPT implementations includ-
ing the high-spin open-shell ones.4–6 Much more recently,
Schäffer and Jansen derived and implemented nonapproxi-
mated expressions for the second-order exchange correc-
tions E(20)

exch−ind
13 and E(20)

exch−disp.14 We will directly adopt Schäf-
fer and Jansen’s approach, based on the properties of singly
and doubly excited determinants and their cofactors, in our
development of the SF-SAPT E(10)

exch correction (in fact, as we
will see below, the spin-flip excitation is just another kind
of double excitation such as the one in the formulas for
E(20)

exch−disp). It should be mentioned that the nonapproximated
second-order closed-shell SAPT corrections of Refs. 13 and
14 have recently been implemented within the freely available
PSI4NUMPY framework.15

It should be stressed that while the single-exchange
approximation implies the single-spin-flip approximation (the
neglect of matrix elements involving double and higher spin
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flips), the two approximations are not nearly equivalent. For
example, in any interaction involving an ROHF monomer in a
doublet state, there is only one unpaired spin on this monomer
that can be flipped, so the 1-flip approximation is exact. On the
other hand, the single-exchange approximation is not exact
for any spin states of the monomers, even closed-shell sin-
glets. It should be noted that the interaction energy in the
high-spin state of the complex (S = SA + SB) can be obtained
in two fully equivalent ways: using the high-spin formalism
of Refs. 4–6 (which leads to the S, MS = S configuration)
and using the SF-SAPT formalism (which leads to the S, MS
= SA − SB configuration degenerate with the previous one).
As the first-order exchange energy in the high-spin formal-
ism does not need to involve the S2 approximation, we will
be able to verify the importance of both approximations for
the high-spin state of the complex (but not for the low-
spin states) by comparison with the high-spin method imple-
mented, e.g., in the PSI4 package.6,16 In fact, in Ref. 7, the
largest errors due to the S2 approximation in the high-spin
complex occurred for the doublet-doublet Li–Li interaction,
and this approximation might be far from exact for another
doublet-doublet complex tested there, the pancake-bonded
phenalenyl (PLY) dimer. Thus, the replacement of the single-
exchange approximation by the 1-flip one (which is exact for
two interacting doublets) might be expected to significantly
improve the short-range splittings in some of the systems
studied in Ref. 7 and possibly in pancake bonded complexes in
general.17

The structure of the rest of this article is as follows: In
Sec. II, we develop the formalism and derive formulas for
the arbitrary-spin first-order exchange correction in terms
of molecular-orbital (MO) integrals. In Sec. III, we recast the
MO formulas into the atomic-orbital (AO) basis to facilitate
an efficient implementation that does not require integral
transformation and can utilize the benefits of density fit-
ting (DF). Sec. IV contains the results of our new method-
ology for the systems studied in Ref. 7 as well as several
larger pancake-bonded complexes. Finally, Sec. V presents
conclusions.

II. MOLECULAR ORBITAL FORMALISM
Throughout this paper, the indices i and j denote all occu-

pied spinorbitals of monomers A and B, respectively. Further-
more, the index i is split into inactive (k, corresponding to
a doubly occupied orbital) and active (m) spinorbitals of A,
and the index j is split into inactive (l) and active (n) spinor-
bitals of B. The indices r and s are used for arbitrary spinor-
bitals occupied in the zeroth-order wavefunction regardless
of the monomer. We will add an arrow ↑ or ↓ to the spinor-
bital index whenever an explicit specification of the spin is
necessary. ΨA and ΨB are the ground-state wavefunctions for
the individual monomers and are assumed to be ROHF wave-
functions where the unpaired electrons in ΨA have α spin
and the unpaired electrons of ΨB have β spin. The prod-
uct of these two wavefunctions is considered the zeroth-
order dimer wavefunction. As with the previous derivation

of the SF-SAPT first-order exchange correction within the
single-exchange approximation, the current correction is
computed within the symmetrized Rayleigh-Schrödinger
(SRS) formalism.1,18 In the case of low-spin states, the (NA
+ NB)-electron antisymmetrizer A is accompanied by the
spin projector PSMS , which projects the dimer wavefunc-
tion onto the subspace corresponding to the spin quantum
numbers S and MS. As such, the SAPT first-order interac-
tion energy for a desired total spin is obtained from the
expression

E(10)
int =

〈ΨAΨB |VAPSMS |ΨAΨB〉

〈ΨAΨB |APSMS |ΨAΨB〉
, (1)

where V is the perturbation operator that collects the inter-
actions between the monomers. The spin projector acting
on the dimer wavefunction is approximated by its expansion
truncated after a single spin flip

PSMSΨAΨB = c0ΨAΨB + c1Ψ
↓

AΨ
↑

B, (2)

where c0 and c1 are the Clebsch-Gordan coefficients
〈S(SA − SB)|SASASB (−SB)〉 and 〈S(SA − SB)|SA(SA − 1)SB(−SB + 1)〉,
respectively. The arrow superscripts denote a spin-flipped
monomer wavefunction, defined as Ψ↓X = (1/

√
2SX)Ŝ−ΨX or

Ψ
↑

X = (1/
√

2SX)Ŝ+ΨX. Ŝ± are spin-raising and spin-lowering
operators, which act on a wavefunction by applying the
one-electron spin-lowering or raising operators to all elec-
trons in the wavefunction. The result of this operation is
the sum of the wavefunctions where one of the active elec-
trons (and only the active electrons) has had its spin flipped.
The terms in parentheses in the above definitions normal-
ize the functions Ψ↓X and Ψ↑X as required in Eq. (2). Due to
the assumed spins of the active electrons in ΨA and ΨB,
the spin lowering only makes sense for ΨA and spin rais-
ing only makes sense for ΨB. While the application of the
full spin projector produces terms with multiple spin flips,7
the truncation in Eq. (2) to terms with no more than singly
spin-flipped monomers is the essence of the single-spin-flip
approximation.

The combination of Eqs. (1) and (2) produces the following
modified interaction energy equation:

E(10)
int =

〈ΨAΨB |VA |ΨAΨB〉 + c1
c0
〈ΨAΨB |VA |Ψ↓AΨ↑B〉

〈ΨAΨB |A |ΨAΨB〉 + c1
c0
〈ΨAΨB |A |Ψ↓AΨ↑B〉

. (3)

Thus, in order to compute the first-order exchange energy
E(10)

exch within the single-spin-flip approximation, one needs
to evaluate the four matrix elements present in Eq. (3) and
subtract the electrostatic contribution:

E(10)
exch = E(10)

int − E(10)
elst = E(10)

int − 〈ΨAΨB |V |ΨAΨB〉. (4)

The leading terms in the numerator and denominator of
Eq. (3) are the previously derived components of the complete
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SAPT first-order interaction energy12 and have the following
forms:

〈ΨAΨB |A |ΨAΨB〉 =
NA!NB!

N!
S, (5)

〈ΨAΨB |VA |ΨAΨB〉 =
NA!NB!

N!

(
WABS +

∑
ir

BirSir

+
∑

jr

AjrSjr +
1
2

∑
ijrs

〈ij | |rs〉Sij,rs) , (6)

where S is the determinant of the overlap matrix of occupied
spinorbitals of both monomers, S

S =


1 SAB

(SAB)T 1


. (7)

In Eq. (6), Sir is a first cofactor of the determinant S, Sij,rs

is a second cofactor, WAB is the nuclear repulsion between
monomers A and B, Bir and Ajr are elements of the nuclear
attraction matrices for the corresponding monomer, and
〈ij||rs〉 are antisymmetrized two-electron integrals in the
physicists’ notation. The first cofactor Sir of a determinant is
obtained by the deletion of row i and column r from the origi-
nal determinant and multiplying the resulting determinant by
(−1)i+r. The second cofactor Sij,rs is obtained by the deletion of
two rows i, j and two columns r, s from the original determi-
nant and multiplying the resulting determinant by (−1)i+j+r+s.
Furthermore, it is antisymmetric with respect to the order of
deletions: Sji,rs

= −Sij,rs and Sij,sr
= −Sij,rs.

The Cramer’s rule for the relationship between a deter-
minant, its inverse, and its cofactors implies that

Dri =
1
SS

ir, (8)

where Dri are the elements of the inverse of the overlap
matrix, D = S−1. It is instructive to examine the structure of
matrices S and D in more detail. Obviously, S, and thus also D,
is block-diagonal with respect to spin. Now, the spin-up and
spin-down blocks of S are not the same: the spin-up block
contains overlap between orbital types k, m, and l, and the
spin-down block contains overlap between orbital types k, l,
and n. Thus, the spin-up and spin-down blocks of the inverse
matrix D are completely distinct even for the common indices
such as k: Dα

kk′ , Dβ

kk′ . Therefore, in the final orbital formulas
for the SF-SAPT expressions, we will explicitly specify the spin
block of matrix D as Dα

rs or Dβ
rs. Finally, note that the matrix D,

as an inverse of a symmetric matrix S, is also symmetric.
According to Eq. (8) and the relationship between the first

and second cofactors,19 the second cofactors are equivalent to

Sij,rs
= S(DriDsj − DsiDrj). (9)

Note that the second cofactors are indeed antisymmetric with
regard to swapping either i and j or r and s. Using Eqs. (8) and
(9), Eq. (6) can be rewritten in the form making explicit use of

the Dri matrix elements

〈ΨAΨB |VA |ΨAΨB〉 =
NA!NB!

N!
S


WAB +

∑
ir

BirDri +
∑

jr

AjrDrj

+
∑
ijrs

(〈ij |rs〉 − 〈ij |sr〉)DriDsj


, (10)

where we have used the fact that r and s span the same
spinorbital space and are therefore interchangeable.

The other terms in the numerator and denominator of
Eq. (3) contain the spin-flipped wavefunctions where one
active electron from each monomer has had its spin flipped.
These terms are a specific subset of the double excita-
tions needed for the computation of the nonapproximated
second-order SAPT exchange dispersion correction which
was recently derived by Schäffer and Jansen.14 Adopting the
approach of Ref. 14, the second terms in the numerator and
denominator of Eq. (3) are rewritten as

〈ΨAΨB |A |Ψ↓AΨ↑B〉 =
1

2
√

SASB

∑
mn
〈ΨAΨB |A |ΨA,m↑→m↓ΨB,n↓→n↑〉

=
NA!NB!

N!
1

2
√

SASB

∑
mn

Sm↑→m↓,n↓→n↑ (11)

and

〈ΨAΨB |VA |Ψ↓AΨ↑B〉 =
1

2
√

SASB

∑
mn
〈ΨAΨB |VA |ΨA,m↑→m↓ΨB,n↓→n↑〉

=
NA!NB!

N!
1

2
√

SASB

∑
mn

(
WABSm↑→m↓,n↓→n↑

+
∑
ir

Bir̃Sir
m↑→m↓,n↓→n↑ +

∑
jr

Ajr̃Sjr
m↑→m↓,n↓→n↑

+
1
2

∑
ijrs

〈ij | |r̃s̃〉Sij,rs
m↑→m↓,n↓→n↑

+/
-

=
NA!NB!

N!
1

2
√

SASB

∑
mn

(I1 + I2 + I3 + I4), (12)

where Sm↑→m↓,n↓→n↑ is the determinant of the overlap matrix
that results from flipping the spin of m and n in the ket, and
Sir

m↑→m↓,n↓→n↑ and Sij,rs
m↑→m↓,n↓→n↑

are the first and second cofac-
tors of that determinant. The arrows on the indices denote
spin up or spin down. The tilded indices r̃, s̃ in Eq. (12) denote
the contents of the columns r, s in the spin-flipped deter-
minant Sm↑→m↓,n↓→n↑ : thus, when r = m↑, r̃ = m↓, and when
r = n↓, r̃ = n↑ (otherwise, r̃ = r). Note that this mean-
ing of a tilde over an index is completely different from
the notation of Refs. 13 and 14. The four consecutive terms
I1, . . ., I4 in this equation will be analyzed separately—see
below. It is obvious at this point that NA !NB !

N! appears in all terms
in the top and bottom of Eq. (3) and will be canceled out in the
total interaction energy.

It is beneficial at this time to define the relationships
between non-excited, singly excited, and doubly excited
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determinants and their cofactors. The relationship between a
determinant S and a singly excited determinant Si→a is such
that

Si→a =
∑

r
SraS ri

= S
∑

r
DirSra, (13)

where Sra are elements of the overlap matrix. The first and
second cofactors of a singly excited determinant can be
expressed in terms of singly excited determinants and the first
and second cofactors of the non-excited determinant in the
following ways:13

S rs
i→a =




S ri s = i
1
S

(
S rsSi→a − S riSs→a

)
s , i,

(14)

S rs,tu
i→a =




S rs,iu t = i

S rs,ti u = i

1
S

(
S rs,tuSi→a − S rs,iuSt→a − S rs,tiSu→a

)
i < {t, u}.

(15)

The doubly excited determinants can be written in terms of
singly excited determinants as

Si→a,j→b =
1
S (Si→aSj→b − Si→bSj→a). (16)

The first and second cofactors of doubly excited determi-
nants can be expressed in terms of the other components
as14

S rs
i→a,j→b =




S ri
j→b s = i

S rj
i→a s = j

1
S

(
Si→a,j→bS rs

− Ss→a,j→bS ri
− Si→a,s→bS rj) s < {i, j},

(17)

S rs,tu
i→a,j→b =




S rs,ij t = i, u = j

S rs,ji t = j, u = i

S rs,tj
i→a t , i, u = j

S rs,ti
j→b t , j, u = i

S rs,iu
j→b t = i, u , j

S rs,ju
i→a t = j, u , i

1
S

(
Si→a,j→bS rs,tu

− St→a,j→bS rs,iu
− Su→a,j→bS rs,ti

−Si→a,t→bS rs,ju
− Si→a,u→bS rs,tj + St→a,u→bS rs,ij) i, j < {t, u}.

(18)

With the relationships between various determinants and
cofactors now defined, it is possible to express the remaining
parts of Eqs. (11) and (12) in terms of the elements of the D and
S matrices. Starting with the term from the denominator,

〈ΨAΨB |A |Ψ↓AΨ↑B〉
=

NA!NB!
N!

1

2
√

SASB

∑
mn

Sm↑→m↓,n↓→n↑

=
NA!NB!

N!
1

2
√

SASB

∑
mn

(
1
S (Sm↑→m↓Sn↓→n↑ − Sn↓→m↓Sm↑→n↑ )

)

= −
NA!NB!

N!
1

2
√

SASB
S

∑
mn

*.
,

∑
j

Dn↓jSjm↓
+/
-

*
,

∑
i

Dm↑iSin↑
+
-
, (19)

where the cancellation of the Sm↑→m↓Sn↓→n↑ term is due
to the spin-diagonal nature of S and D [cf. Eq. (13)]. A
singly excited determinant with a spin-flipping excitation

requires coupling S and D matrix elements of opposite spin,
resulting in a zero spin integral. This property will be used
repeatedly to simplify the following equations. The new sum-
mations in the last line have been truncated from r since
m↓ is orthogonal to all occupied spinorbitals on A and n↑ is
orthogonal to all occupied spinorbitals on B (note that, e.g.,
the index j covers both the inactive spinorbitals l↑, l↓ and active
spinorbitals n↓). The complete denominator is thus equal to

NA!NB!
N!

S
(
1 −

c1

2c0
√

SASB

∑
mnij

(Dn↓jSjm↓Dm↑iSin↑ )
)
. (20)

For the numerator term, we will analyze the consecu-
tive contributions In to Eq. (12). The first of these terms, I1,
is simply the nuclear repulsion term multiplied by the same
doubly excited determinant that appears in the denominator.
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It is easy to see that the terms in the numerator that contain
the nuclear repulsion are, in fact, equal to the denominator
multiplied by the nuclear repulsion. As such, the total inter-
action energy contains this term exactly once, which is to be
expected.

I2, the term containing the nuclear potential of monomer
B, contains a first cofactor of a doubly excited determinant.
As the summation over r contains both m↑ and n↓, it has to be
broken into three parts accounting for the special cases shown
in Eq. (17). The resulting equation is

I2 =
∑

i

Bim↓Sim↑
n↓→n↑ +

∑
i

Bin↑Sin↓
m↑→m↓ +

∑
ir,r,(m↑,n↓)

Bir̃
1
S

×

(
Sm↑→m↓,n↓→n↑Sir

− Sr→m↓,n↓→n↑Sim↑
− Sm↑→m↓,r→n↑Sin↓

)
.

(21)

We expand the first summation in this term as∑
i

Bim↓Sim↑
n↓→n↑ =

∑
i

Bim↓

(
1
S

(
Sim↑Sn↓→n↑ − Sin↓Sm↑→n↑

))
= −

∑
ii′

SBim↓Dn↓iDm↑i′Si′n↑ , (22)

and the analogous result for the second summation is∑
i

Bin↑Sin↓
m↑→m↓ = −

∑
ij

SBin↑Dm↑iDn↓jSjm↓ . (23)

The third summation in I2 contains the same doubly excited
determinant that was previously described, as well as two
others. Following the same logic as above to eliminate the
singly excited determinants that vanish by spin integration
and expand the remaining determinants, and noting that r̃ = r
for all terms in the restricted summation, this last term is equal
to

∑
ir,r,(m↑,n↓)

SBir
*.
,
−Dri

∑
i′j

Dm↑i′Si′n↑Dn↓jSjm↓

+ Dm↑i

∑
i′j

Dri′Si′n↑Dn↓jSjm↓ + Dn↓i

∑
i′j

Dm↑i′Si′n↑DrjSjm↓
+/
-
. (24)

The restriction in the summation in Eq. (24) to r not equal to
either m↑ or n↓ can be lifted since the result of the additional
r = m↑ and r = n↓ terms is equal to zero in these cases. For
example, when r = m↑, the first two terms in parentheses can-
cel each other and the third term is zero due to spin. A similar
result can be obtained for r = n↓.

With these results in hand, the complete I2 term is

I2 = − S
(∑

ii′
Bim↓Dn↓iDm↑i′Si′n↑ +

∑
ij

Bin↑Dm↑iDn↓jSjm↓

+
∑
ir

Bir
(
Dri

∑
i′j

Dm↑i′Si′n↑Dn↓jSjm↓ − Dm↑i

∑
i′j

Dri′Si′n↑Dn↓jSjm↓

− Dn↓i

∑
i′j

Dm↑i′Si′n↑DrjSjm↓
))

. (25)

An analogous derivation for I3 gives

I3 = − S
(∑

ij

Ajm↓Dn↓jDm↑iSin↑ +
∑
jj′

Ajn↑Dm↑jDn↓j′Sj′m↓

+
∑

jr

Ajr
(
Drj

∑
ij′

Dm↑iSin↑Dn↓j′Sj′m↓ − Dm↑j

∑
ij′

DriSin↑Dn↓j′Sj′m↓

− Dn↓j

∑
ij′

Dm↑iSin↑Drj′Sj′m↓
))

. (26)

The breakdown of the most complicated I4 term in Eq. (12)
involves each of the cases in Eq. (18)

I4 =
1
2

( ∑
ij,r=m↑,s=n↓

〈ij | |m↓n↑〉Sij,m↑n↓ +
∑

ij,r=n↓,s=m↑
〈ij | |n↑m↓〉Sij,n↓m↑

+
∑

ij,r,m↑,s=n↓
〈ij | |rn↑〉Sij,rn↓

m↑→m↓
+

∑
ij,r,n↓,s=m↑

〈ij | |rm↓〉Sij,rm↑

n↓→n↑

+
∑

ij,r=m↑,s,n↓
〈ij | |m↓s〉Sij,m↑s

n↓→n↑
+

∑
ij,r=n↓,s,m↑

〈ij | |n↑s〉Sij,n↓s
m↑→m↓

+
∑

ijrs,(r,s),(m↑,n↓)

〈ij | |r̃s̃〉
1
S

(
Sm↑→m↓,n↓→n↑Sij,rs

− Sr→m↓,n↓→n↑Sij,m↑s

− Ss→m↓,n↓→n↑Sij,rm↑
− Sm↑→m↓,r→n↑Sij,n↓s

− Sm↑→m↓,s→n↑Sij,rn↓ + Sr→m↓,s→n↑Sij,m↑n↓ )) . (27)

Before tackling these summations, we can take advantage of
antisymmetry relations of integrals and cofactors to reduce
the number of terms that need to be expanded in the first line
of Eq. (27)

〈ij | |n↑m↓〉Sij,n↓m↑
= −〈ij | |m↓n↑〉Sij,n↓m↑

= 〈ij | |m↓n↑〉Sij,m↑n↓ . (28)

Therefore, we need to expand only one of these summations

〈ij | |m↓n↑〉Sij,m↑n↓
=

(
〈ij |m↓n↑〉 − 〈ij |n↑m↓〉

)
S

(
Dm↑iDn↓j − Dn↓iDm↑j

)
= −〈ij |n↑m↓〉SDm↑iDn↓j − 〈ij |m

↓n↑〉SDn↓iDm↑j,

(29)

where the two terms that are omitted in the second line are
zero due to spin.

When dealing with the summations in the second and
third line of Eq. (27), it is again possible to equate some terms
to each other using their antisymmetry. Additionally, r and s
can be swapped arbitrarily since they both span the complete
occupied space. Therefore,
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∑
r,m↑

〈ij | |rn↑〉Sij,rn↓

m↑→m↓
=

∑
s,m↑

〈ij | |sn↑〉Sij,sn↓

m↑→m↓
=

∑
s,m↑

〈ij | |n↑s〉Sij,n↓s
m↑→m↓

(30)

and ∑
r,n↓

〈ij | |rm↓〉Sij,rm↑

n↓→n↑
=

∑
s,n↓

〈ij | |sm↓〉Sij,sm↑

n↓→n↑
=

∑
s,n↓

〈ij | |m↓s〉Sij,m↑s
n↓→n↑

. (31)

Now, expanding the term in Eq. (30)

〈ij | |rn↑〉Sij,rn↓

m↑→m↓
=
〈ij | |rn↑〉

S
(
Sm↑→m↓Sij,rn↓

− Sr→m↓Sij,m↑n↓
− Sn↓→m↓Sij,rm↑

)
= − 〈ij |rn↑〉Sr→m↓Dm↑iDn↓j + 〈ij |n↑r〉Sr→m↓Dm↑iDn↓j + 〈ij |rn↑〉Sr→m↓Dn↓iDm↑j

− 〈ij |n↑r〉Sr→m↓Dn↓iDm↑j − 〈ij |rn↑〉Sn↓→m↓DriDm↑j + 〈ij |n↑r〉Sn↓→m↓DriDm↑j

+ 〈ij |rn↑〉Sn↓→m↓Dm↑iDrj − 〈ij |n↑r〉Sn↓→m↓Dm↑iDrj

= S
(
〈ij |n↑r〉Dm↑iDn↓j

∑
j′

(
Drj′Sj′m↓

)
+ 〈ij |rn↑〉Dn↓iDm↑j

∑
j′

(
Drj′Sj′m↓

)
− 〈ij |rn↑〉DriDm↑j

∑
j′

(
Dn↓j′Sj′m↓

)
+ 〈ij |n↑r〉DriDm↑j

∑
j′

(
Dn↓j′Sj′m↓

)
+ 〈ij |rn↑〉Dm↑iDrj

∑
j′

(
Dn↓j′Sj′m↓

)
− 〈ij |n↑r〉Dm↑iDrj

∑
j′

(
Dn↓j′Sj′m↓

))
(32)

with the terms that are removed vanishing due to spin integration. The analogous treatment of the other term containing single
excitations yields

〈ij | |rm↓〉Sij,rm↑

n↓→n↑
= S

(
〈ij |m↓r〉Dn↓iDm↑j

∑
i′

(Dri′Si′n↑ ) + 〈ij |rm↓〉Dm↑iDn↓j

∑
i′

(Dri′Si′n↑ ) − 〈ij |rm↓〉DriDn↓j

∑
i′

(Dm↑i′Si′n↑ )

+ 〈ij |m↓r〉DriDn↓j

∑
i′

(Dm↑i′Si′n↑ ) + 〈ij |rm↓〉Dn↓iDrj

∑
i′

(Dm↑i′Si′n↑ ) − 〈ij |m
↓r〉Dn↓iDrj

∑
i′

(Dm↑i′Si′n↑ )
)
. (33)

The restrictions in Eq. (27) of r , m↑ and r , n↓ for the summations involving Eqs. (32) and (33), respectively, can be lifted since it
can now be seen that these conditions reduce the given term to zero.

For the last summation of I4, we begin by noting that r̃ = r, s̃ = s under the restrictions of this summation. Next, we expand
the doubly excited determinants. The first of them has been handled above and the others expand as follows:

Sr→m↓,n↓→n↑ =
1
S (Sr→m↓Sn↓→n↑ − Sr→n↑Sn↓→m↓ ) = −S

∑
i′j′

(Dri′Si′n↑Dn↓j′Sj′m↓ ),

Ss→m↓,n↓→n↑ =
1
S (Ss→m↓Sn↓→n↑ − Ss→n↑Sn↓→m↓ ) = −S

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ ),

Sm↑→m↓,r→n↑ =
1
S (Sm↑→m↓Sr→n↑ − Sm↑→n↑Sr→m↓ ) = −S

∑
i′j′

(Dm↑i′Si′n↑Drj′Sj′m↓ ),

Sm↑→m↓,s→n↑ =
1
S (Sm↑→m↓Ss→n↑ − Sm↑→n↑Ss→m↓ ) = −S

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ ),

Sr→m↓,s→n↑ =
1
S (Sr→m↓Ss→n↑ − Sr→n↑Ss→m↓ ) = S

(∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ ) −
∑
i′j′

(Dri′Si′n↑Dsj′Sj′m↓ )
)
.

(34)

Now we make the necessary replacements and expand the integrals and second cofactors for the last summation in Eq. (27)
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S
[
− 〈ij |rs〉DriDsj

∑
i′j′

(Dm↑i′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |rs〉DsiDrj

∑
i′j′

(Dm↑i′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |sr〉DriDsj

∑
i′j′

(Dm↑i′Si′n↑Dn↓j′Sj′m↓ )

− 〈ij |sr〉DsiDrj

∑
i′j′

(Dm↑i′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |rs〉Dm↑iDsj

∑
i′j′

(Dri′Si′n↑Dn↓j′Sj′m↓ ) − 〈ij |rs〉DsiDm↑j

∑
i′j′

(Dri′Si′n↑Dn↓j′Sj′m↓ )

− 〈ij |sr〉Dm↑iDsj

∑
i′j′

(Dri′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |sr〉DsiDm↑j

∑
i′j′

(Dri′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |rs〉DriDm↑j

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ )

− 〈ij |rs〉Dm↑iDrj

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ ) − 〈ij |sr〉DriDm↑j

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |sr〉Dm↑iDrj

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ )

+ 〈ij |rs〉Dn↓iDsj

∑
i′j′

(Dm↑i′Si′n↑Drj′Sj′m↓ ) − 〈ij |rs〉DsiDn↓j

∑
i′j′

(Dm↑i′Si′n↑Drj′Sj′m↓ ) − 〈ij |sr〉Dn↓iDsj

∑
i′j′

(Dm↑i′Si′n↑Drj′Sj′m↓ )

+ 〈ij |sr〉DsiDn↓j

∑
i′j′

(Dm↑i′Si′n↑Drj′Sj′m↓ ) + 〈ij |rs〉DriDn↓j

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ ) − 〈ij |rs〉Dn↓iDrj

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ )

− 〈ij |sr〉DriDn↓j

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ ) + 〈ij |sr〉Dn↓iDrj

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ ) + 〈ij |rs〉Dm↑iDn↓j

∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ )

− 〈ij |rs〉Dn↓iDm↑j

∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ ) − 〈ij |sr〉Dm↑iDn↓j

∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ ) + 〈ij |sr〉Dn↓iDm↑j

∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ )

− 〈ij |rs〉Dm↑iDn↓j

∑
i′j′

(Dri′Si′n↑Dsj′Sj′m↓ ) + 〈ij |rs〉Dn↓iDm↑j

∑
i′j′

(Dri′Si′n↑Dsj′Sj′m↓ ) + 〈ij |sr〉Dm↑iDn↓j

∑
i′j′

(Dri′Si′n↑Dsj′Sj′m↓ )

− 〈ij |sr〉Dn↓iDm↑j

∑
i′j′

(Dri′Si′n↑Dsj′Sj′m↓ )
]
. (35)

Inspection of the terms in Eq. (35) shows that four of them vanish upon spin integration. Moreover, upon the summation over r, s,
the remaining 24 terms can be collected into 12 equal pairs when we again take advantage of the fact that r and s can be swapped.
Again, the restrictions (r, s) , (m↑, n↓) on the summation can be lifted because the sum of the terms reduces to zero when either
r or s is equal to m↑ or n↓. The total I4 term can now be rewritten as

I4 = S
(∑

ij

[
− 〈ij |n↑m↓〉Dm↑iDn↓j − 〈ij |m

↓n↑〉Dn↓iDm↑j

]
+
∑
ijr

[
〈ij |n↑r〉Dm↑iDn↓j

∑
j′

(Drj′Sj′m↓ ) + 〈ij |rn↑〉Dn↓iDm↑j

∑
j′

(Drj′Sj′m↓ )

− 〈ij |rn↑〉DriDm↑j

∑
j′

(Dn↓j′Sj′m↓ ) + 〈ij |n↑r〉DriDm↑j

∑
j′

(Dn↓j′Sj′m↓ ) + 〈ij |rn↑〉Dm↑iDrj

∑
j′

(Dn↓j′Sj′m↓ ) − 〈ij |n
↑r〉Dm↑iDrj

∑
j′

(Dn↓j′Sj′m↓ )

+ 〈ij |m↓r〉Dn↓iDm↑j

∑
i′

(Dri′Si′n↑ ) + 〈ij |rm↓〉Dm↑iDn↓j

∑
i′

(Dri′Si′n↑ ) − 〈ij |rm↓〉DriDn↓j

∑
i′

(Dm↑i′Si′n↑ ) + 〈ij |m↓r〉DriDn↓j

∑
i′

(Dm↑i′Si′n↑ )

+ 〈ij |rm↓〉Dn↓iDrj

∑
i′

(Dm↑i′Si′n↑ ) − 〈ij |m
↓r〉Dn↓iDrj

∑
i′

(Dm↑i′Si′n↑ )
]

+
∑
ijrs

[
− 〈ij |rs〉DriDsj

∑
i′j′

(Dm↑i′Si′n↑Dn↓j′Sj′m↓ )

+ 〈ij |rs〉DsiDrj

∑
i′j′

(Dm↑i′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |rs〉DriDm↑j

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ ) − 〈ij |rs〉Dm↑iDrj

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ )

− 〈ij |sr〉DriDm↑j

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |sr〉Dm↑iDrj

∑
i′j′

(Dsi′Si′n↑Dn↓j′Sj′m↓ ) + 〈ij |rs〉DriDn↓j

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ )

− 〈ij |rs〉Dn↓iDrj

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ ) − 〈ij |sr〉DriDn↓j

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ ) + 〈ij |sr〉Dn↓iDrj

∑
i′j′

(Dm↑i′Si′n↑Dsj′Sj′m↓ )

− 〈ij |rs〉Dn↓iDm↑j

∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ ) − 〈ij |sr〉Dm↑iDn↓j

∑
i′j′

(Drj′Sj′m↓Dsi′Si′n↑ )
])

, (36)

where the common S has been factored out and the 1
2 canceled by the factor of 2 from the term pairings.
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With all necessary terms in hand, there remain a few
minor points to consider. First, it can now be seen that S
appears in all terms in the numerator and denominator of
the total energy equation and will cancel out. Second, we
introduce the following function:7

Z(SA, SB, S) =
c1

2c0
√

SASB

=
S(S + 1) + 2SASB − SA(SA + 1) − SB(SB + 1)

4SASB
, (37)

which replaces both the ratio of the Clebsch-Gordan coeffi-
cients and normalization factors from the spin-flipped wave-
functions. Through a proper choice of the factor Z, the desired
spin state is obtained.7 Finally, the equations up to this point
remain in the spinorbital form and spin integration has only
been accounted for as a means of eliminating terms that van-
ish. We will now make the spin integration explicit and spec-
ify the exact spin blocks of the D matrix that give nonzero

contributions in the resulting orbital expressions. This step
is necessary in preparation for the atomic-orbital equivalents
of these expressions (which will be derived in Sec. III), as the
latter would otherwise lose any information about the spin
combinations that result in nonvanishing contributions. In the
resulting expressions below, all sums run over the respective
orbitals and not spinorbitals. However, the spin integration
results in different ranges of summation for orbitals occu-
pied by spin-up and spin-down electrons. These ranges will
be specified by an overbar for spin-up indices and an under-
bar for the spin-down ones: specifically, i, j, and r represent
the occupied orbitals of A, B, or either monomer, respec-
tively, which can be combined with an α spin function, and
i, j, and r denote the corresponding orbital types that can
be combined with a β spin function. In terms of the inac-
tive and active orbitals on both monomers, the summations
over i, j, r, i, j, and r break up into summations over (k, m),
(l), (k, l, m), (k), (l, n), and (k, l, n), respectively. In this nota-
tion, the orbital equivalents of Eqs. (10), (19), (25), (26), and (36)
are

〈ΨAΨB |VA |ΨAΨB〉 =
NA!NB!

N!
S



WAB +
∑
ir

BirDα
ri +

∑
ir

BirDβ

ri +
∑

jr

AjrDα
rj +

∑
jr

AjrDβ

rj +
∑
ijrs

〈ij |rs〉Dα
riD

α
sj +

∑
ijrs

〈ij |rs〉Dα
riD

β

sj +
∑
ijrs

〈ij |rs〉Dβ

riD
α
sj

+
∑
ijrs

〈ij |rs〉Dβ

riD
β

sj −
∑
ijrs

〈ij |sr〉Dα
riD

α
sj −

∑
ijrs

〈ij |sr〉Dβ

riD
β

sj


, (38)

I1 = −SWAB
*..
,

∑
j

Dβ

njSjm
+//
-

*.
,

∑
i

Dα
miSin

+/
-
, (39)

I2 = −S
(∑

ii′

BimDβ

niD
α
mi′Si′n +

∑
ij

BinDα
miD

β

njSjm +
∑
ir

BirDα
ri

∑
i′j

Dα
mi′Si′nDβ

njSjm +
∑
ir

BirDβ

ri

∑
i′j

Dα
mi′Si′nDβ

njSjm

−
∑
ir

BirDα
mi

∑
i′j

Dα
ri′Si′nDβ

njSjm −
∑
ir

BirDβ

ni

∑
i′j

Dα
mi′Si′nDβ

rjSjm

)
, (40)

I3 = −S
(∑

ij

AjmDβ

njD
α
miSin +

∑
jj′

AjnDα
mjD

β

nj′Sj′m +
∑

jr

AjrDα
rj

∑
ij′

Dα
miSinDβ

nj′Sj′m +
∑

jr

AjrDβ

rj

∑
ij′

Dα
miSinDβ

nj′Sj′m

−
∑

jr

AjrDα
mj

∑
ij′

Dα
riSinDβ

nj′Sj′m −
∑

jr

AjrDβ

nj

∑
ij′

Dα
miSinDβ

rj′Sj′m

)
, (41)
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I4 = S
(
−

∑
ij

〈ij |nm〉Dα
miD

β

nj −
∑

ij

〈ij |mn〉Dβ

niD
α
mj +

∑
ijrj′

〈ij |nr〉Dα
miD

β

njD
β

rj′Sj′m +
∑
ijrj′

〈ij |rn〉Dβ

niD
α
mjD

β

rj′Sj′m −
∑
ijrj′

〈ij |rn〉Dα
riD

α
mjD

β

nj′Sj′m

−
∑
ijrj′

〈ij |rn〉Dβ

riD
α
mjD

β

nj′Sj′m +
∑
ijrj′

〈ij |nr〉Dα
riD

α
mjD

β

nj′Sj′m +
∑
ijrj′

〈ij |rn〉Dα
miD

α
rjD

β

nj′Sj′m −
∑
ijrj′

〈ij |nr〉Dα
miD

α
rjD

β

nj′Sj′m

−
∑
ijrj′

〈ij |nr〉Dα
miD

β

rjD
β

nj′Sj′m +
∑
ijri′

〈ij |mr〉Dβ

niD
α
mjD

α
ri′Si′n +

∑
ijri′

〈ij |rm〉Dα
miD

β

njD
α
ri′Si′n −

∑
ijri′

〈ij |rm〉Dα
riD

β

njD
α
mi′Si′n

−
∑
ijri′

〈ij |rm〉Dβ

riD
β

njD
α
mi′Si′n +

∑
ijri′

〈ij |mr〉Dβ

riD
β

njD
α
mi′Si′n +

∑
ijri′

〈ij |rm〉Dβ

niD
β

rjD
α
mi′Si′n −

∑
ijri′

〈ij |mr〉Dβ

niD
α
rjD

α
mi′Si′n

−
∑
ijri′

〈ij |mr〉Dβ

niD
β

rjD
α
mi′Si′n −

∑
ijrsi′j′

〈ij |rs〉Dα
riD

α
sjD

α
mi′Si′nDβ

nj′Sj′m −
∑

ijrsi′j′

〈ij |rs〉Dα
riD

β

sjD
α
mi′Si′nDβ

nj′Sj′m

−
∑

ijrsi′j′

〈ij |rs〉Dβ

riD
α
sjD

α
mi′Si′nDβ

nj′Sj′m −
∑

ijrsi′j′

〈ij |rs〉Dβ

riD
β

sjD
α
mi′Si′nDβ

nj′Sj′m +
∑

ijrsi′j′

〈ij |rs〉Dα
siD

α
rjD

α
mi′Si′nDβ

nj′Sj′m

+
∑

ijrsi′j′

〈ij |rs〉Dβ

siD
β

rjD
α
mi′Si′nDβ

nj′Sj′m +
∑

ijrsi′j′

〈ij |rs〉Dα
riD

α
mjD

α
si′Si′nDβ

nj′Sj′m +
∑

ijrsi′j′

〈ij |rs〉Dβ

riD
α
mjD

α
si′Si′nDβ

nj′Sj′m

−
∑

ijrsi′j′

〈ij |rs〉Dα
miD

α
rjD

α
si′Si′nDβ

nj′Sj′m −
∑

ijrsi′j′

〈ij |sr〉Dα
riD

α
mjD

α
si′Si′nDβ

nj′Sj′m +
∑

ijrsi′j′

〈ij |sr〉Dα
miD

α
rjD

α
si′Si′nDβ

nj′Sj′m

+
∑

ijrsi′j′

〈ij |sr〉Dα
miD

β

rjD
α
si′Si′nDβ

nj′Sj′m +
∑

ijrsi′j′

〈ij |rs〉Dα
riD

β

njD
α
mi′Si′nDβ

sj′Sj′m +
∑

ijrsi′j′

〈ij |rs〉Dβ

riD
β

njD
α
mi′Si′nDβ

sj′Sj′m

−
∑

ijrsi′j′

〈ij |rs〉Dβ

niD
β

rjD
α
mi′Si′nDβ

sj′Sj′m −
∑

ijrsi′j′

〈ij |sr〉Dβ

riD
β

njD
α
mi′Si′nDβ

sj′Sj′m +
∑

ijrsi′j′

〈ij |sr〉Dβ

niD
α
rjD

α
mi′Si′nDβ

sj′Sj′m

+
∑

ijrsi′j′

〈ij |sr〉Dβ

niD
β

rjD
α
mi′Si′nDβ

sj′Sj′m −
∑

ijrsi′j′

〈ij |rs〉Dβ

niD
α
mjD

β

rj′Sj′mDα
si′Si′n −

∑
ijrsi′j′

〈ij |sr〉Dα
miD

β

njD
β

rj′Sj′mDα
si′Si′n

)
. (42)

III. ATOMIC ORBITAL FORMALISM
We now recast the equations derived in Sec. II from

molecular orbitals to atomic orbitals, which provides sig-
nificant computational benefits as integral transformation
is avoided and efficient generalized Coulomb and exchange
matrix codes can be utilized.7,16,20,21 Let us start from the
expression for the spin diagonal component of the numerator
[Eq. (38)]. In the AO form, the leading nuclear repulsion term
stays the same, so we move to the first attractive potential
term ∑

ir

BirDα
ri =

∑
irKL

CiKBKLCrLDα
ri =

∑
irKL

BLKCrLDα
riCiK

=
∑
KL

BLK(DRI
α )LK = B · DRI

α , (43)

where X · Y =
∑

KLXKLYKL is the matrix dot product, the cap-
ital letter indices span the AO set, B is the nuclear poten-
tial matrix of monomer B in the AO basis, CrK are the SCF
coefficients of spinorbital r, and DRI

α , defined by the above
equation, is the representation of Dα

ri in the AO basis. We
use capital letters in the superscript of DRI

α to remind the
reader that R, I are no longer the indices of the matrix but

merely specify the spinorbital spaces over which the contri-
butions have been summed. The second term involving Bir
results in a fully analogous contribution B ·DRI

β , and we can now
define

DRI
αβ = DRI

α + DRI
β , (44)

as the AO representations of the D matrices, unlike the MO
ones, are all the same size and can be added. Breaking the
indices into the inactive and active ones, corresponding to a
further restriction of the summations in the definition of DRI

α

and DRI
β , yields

DRI
α = DKK

α + DLK
α + DMK

α + DKM
α + DLM

α + DMM
α , (45)

DRI
β = DKK

β + DLK
β + DNK

β . (46)

Note that the different D matrices are in general not symmet-
ric. The derivation of the remaining nuclear attraction terms
follows an analogous path, giving∑

jr

AjrDα
rj +

∑
jr

AjrDβ

rj = A · DRJ
αβ . (47)
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The two-electron terms give way to similar transfor-
mations of the D matrices. Some representative spin-block
contributions are∑

ijrs

〈ij |rs〉Dα
riD

α
sj =

∑
KLMN

(DRI
α )KL〈KM |LN〉(DRJ

α )MN

= DRI
α · J[D

RJ
α ], (48)

∑
ijrs

〈ij |sr〉Dα
riD

α
sj =

∑
KLMN

(DRI
α )KL〈KN |ML〉(DRJ

α )MN

= DRI
α · K[DRJ

α ], (49)

where J[X] and K[X] are the generalized Coulomb and
exchange matrices, defined as follows:

J[X]KL =
∑
MN

〈KM |LN〉XMN K[X]KL =
∑
MN

〈KN |ML〉XMN. (50)

The other spin blocks give rise to analogous contributions and
the complete spin diagonal term can now be written in the AO
form as

〈ΨAΨB |VA |ΨAΨB〉 =
NA!NB!

N!
S

[
WAB + B · DRI

αβ + A · DRJ
αβ

+DRI
αβ · J[D

RJ
αβ ]−DRI

α ·K[DRJ
α ]−DRI

β ·K[DRJ
β ]

]
.

(51)

Next, we move to the spin-flipped term of the numerator
[Eq. (12)]. The I1 term in Eq. (12) is the nuclear repulsion part
for the spin-flip term and is explicitly defined in Eq. (39). This
term is transformed into the AO basis as follows:

I1 = −WABS
∑

ijKLMN

Dβ

njCjKSAO
KL CmLDα

miCiMSAO
MNCnN

= −WABS
∑

ijKLMN

(CnNDβ

njCjKSAO
KL ) · (CmLDα

miCiMSAO
MN)

= −WABS
∑
LN

(DNJ
β SAO)NL(DMI

α SAO)LN

= −WABS[(DNJ
β SAO) · (DMI

α SAO)T]. (52)

Note that we used the fact that the orbitals are spin-restricted
so that, for example, Cm↑L = Cm↓L = CmL. The term in the last
line of Eq. (52) also constitutes the spin-flip part of the denom-
inator after dividing by WAB. Using the same methods as above,
the I2 and I3 terms of Eq. (12) transform as

I2 = −S
(
B · (DMI

α SAODNI
β ) + B · (DNJ

β SAODMI
α )

+ (B · DRI
αβ )

(
(DMI

α SAODNJ
β ) · SAO

)
− B · (DRI

α S
AODNJ

β SAODMI
α ) − B · (DRJ

β SAODMI
α SAODNI

β )
)

(53)

and

I3 = −S
(
A · (DMI

α SAODNJ
β ) + A · (DNJ

β SAODMJ
α )

+ (A · DRJ
αβ )

(
(DMI

α SAODNJ
β ) · SAO

)
− A · (DRI

α S
AODNJ

β SAODMJ
α ) − A · (DRJ

β SAODMI
α SAODNJ

β )
)
. (54)

Finally, I4 transforms into the following form:

I4 = S
(
−DMI

α · K[DNJ
β ]T −DNI

β · K[DMJ
α ]T + K[DNJ

β ]T · (DRJ
β SAODMI

α ) + K[DNI
β ]T · (DRJ

β SAODMJ
α ) − J[DRI

αβ ] · (DNJ
β SAODMJ

α )

+ K[DRI
α ]T · (DNJ

β SAODMJ
α ) + K[DRJ

α ]T · (DNJ
β SAODMI

α ) − J[DRJ
αβ ] · (DNJ

β SAODMI
α ) + K[DMJ

α ]T · (DRI
α S

AODNI
β ) + K[DMI

α ]T · (DRI
α S

AODNJ
β )

− J[DRI
αβ ] · (DMI

α SAODNJ
β ) + K[DRI

β ]T · (DMI
α SAODNJ

β ) + K[DRJ
β ]T · (DMI

α SAODNI
β ) − J[DRJ

αβ ] · (DMI
α SAODNI

β )

− (DRI
αβ · J[D

RJ
αβ ])((DMI

α SAODNJ
β ) · SAO) + (DRI

α · K[DRJ
α ]T)((DMI

α SAODNJ
β ) · SAO) + (DRI

β · K[DRJ
β ]T)((DMI

α SAODNJ
β ) · SAO)

+ J[DRI
αβ ] · (DRI

α S
AODNJ

β SAODMJ
α ) − K[DRJ

α ]T · (DRI
α S

AODNJ
β SAODMI

α ) − K[DRI
α ]T · (DRI

α S
AODNJ

β SAODMJ
α )

+ J[DRJ
αβ ] · (DRI

α S
AODNJ

β SAODMI
α ) + J[DRI

αβ ] · (DRJ
β SAODMI

α SAODNJ
β ) − K[DRJ

β ]T · (DRJ
β SAODMI

α SAODNI
β ) − K[DRI

β ]T · (DRJ
β SAODMI

α SAODNJ
β )

+ J[DRJ
αβ ] · (DRJ

β SAODMI
α SAODNI

β ) − (DRJ
β SAODMJ

α ) · K[DRI
α S

AODNI
β ]T − (DRJ

β SAODMI
α ) · K[DRI

α S
AODNJ

β ]T
)
. (55)

Note that the final formula (55) can be written in many
equivalent ways due to the “Hermitian-like” symmetry of the
Coulomb and exchange matrices

X · J[Y] = Y · J[X] X · K[Y] = Y · K[X]. (56)

The form adopted in Eq. (55) minimizes the number of
Coulomb and exchange matrix evaluations necessary.

IV. RESULTS
Both the MO and AO formulas for the newly devel-

oped E(10)
exch correction were implemented using PSI416 and the

PSI4NUMPY framework.15 The agreement between the high-spin
SF-SAPT results and the conventional ROHF-based SAPT in
PSI46 was verified for the test systems where the single-spin-
flip approximation is exact, e.g., the systems containing Li. For
other systems, the 1-flip values are compared with the exact
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high-spin E(10)
exch to determine the adequacy of the proposed

approximation.
The aug-cc-pVTZ basis set22–24 was used for the Li· · · Li,

Li· · ·N, N· · ·N, and Mn· · ·Mn complexes. The results for the
pancake bonded systems were obtained in the aug-cc-pVDZ
basis set.22,23 To allow for comparison with the previous
results, the O2 · · ·O2 calculations were performed in the ANO-
VTZ basis set25,26 and the Li· · ·H calculations were performed
in the basis set of Ref. 27. When the density fitting (DF) approx-
imation was utilized, the def2-QZVPP/JKFIT28 sets were used
for Li and Mn atoms as well as for O2 · · ·O2. All other atoms
used the aug-cc-pVXZ/JKFIT29 sets with X being the same as
for the orbital basis set. Throughout the discussion below, we
will refer to the exchange splitting between the highest and
lowest spin states of the complexes, which is defined as

∆E(10)
exch = E(10)

exch(S = SA + SB) − E(10)
exch(S = |SA − SB |). (57)

For the Mn· · ·Mn complex, difficulties converging the
ROHF iterations in PSI4 led us to use MOLPRO30 for the monomer
calculations. The ROHF orbital energies and vectors were read
from the MOLPRO output and passed into PSI4NUMPY. It should also
be noted that in the initial SF-SAPT work (Ref. 7), the Mn· · ·Mn
results were computed from incorrectly converged monomer
ROHF wavefunctions. Therefore, the corrected SF-SAPT(S2)
results for this system will be presented below.

A. Diatomics and the O2 dimer
The first of the smaller test complexes that we consider is

Li· · ·H, where only one pair of electrons can be exchanged.
As already mentioned, the single-spin-flip approximation is
exact whenever at least one monomer in the complex is a
doublet. The values of E(10)

exch calculated in both approxima-
tions for the singlet and triplet states of the Li· · ·H com-
plex are provided in Table I, along with the ∆E(10)

exch value and
the full configuration interaction (FCI) based SAPT results of
Ref. 27. While the 1-flip results agree remarkably well with the

FCI-based values, confirming that the effects of intramolec-
ular correlation are minuscule for this system as observed
earlier,7 there is a noticeable discrepancy between these val-
ues and the S2 results. While it may come as a surprise, the S2

approximation in the commonly used form is not exact even
in this case. During the derivation of the E(10)

exch correction in
the S2 approximation,31 the following intermediate formula is
reached:

〈V〉〈P〉 + E(10)
exch + E(10)

exch〈P〉 = 〈VP〉, (58)

where P is the single-exchange operator. A related formula is
obtained during the derivation of the E(10)

exch(S2) correction in

SF-SAPT [Eq. (9) of Ref. 7]. At that point, the E(10)
exch〈P〉 term on

the lhs of Eq. (58) is normally neglected because it is at least of
the order S4 [S2 in E(10)

exch and S2 in 〈P〉]. However, this term is
not zero even for systems such as Li· · ·H where only a single
electron exchange is possible. We have verified that the differ-
ences between the S2 and nonapproximated results for Li· · ·H
originate solely from the removal of the E(10)

exch〈P〉 term.

For the Li dimer and the Li· · ·N complex, the single-
spin-flip E(10)

exch result is exact due to the doublet nature of a
lithium atom, meaning there is only one spin to be flipped.
Figure 1 shows how severely the E(10)

exch values for the lithium
dimer are affected by the S2 approximation. The deviation
of the S2 results from exact E(10)

exch is already visible at the
van der Waals minimum of the triplet state (7.9 bohrs), and
is on its way to catastrophic failure at the chemical mini-
mum of the singlet state (5.0 bohrs). At around 4.2 bohrs,
the splitting predicted by E(10)

exch(S2) changes sign, leading to
an unphysical energetic ordering of the two states. It can
also be seen that the S2 value for the singlet deviates from
its complete E(10)

exch counterpart at a slower rate than for the
triplet. Similar results are seen for the Li· · ·N complex in Fig. 2.
The two methods give equivalent results near the 10.2 bohr
van der Waals minimum for the quintet state of this system

TABLE I. Singlet and triplet E(10)
exch values and the∆E(10)

exch splitting (cm−1) in the Li· · ·H complex as a function of interatomic

distance (bohr) from FCI-based SAPT27 and SF-SAPT with and without the single-exchange approximation.

E(10)
exch(S = 0) E(10)

exch(S = 1) ∆E(10)
exch

R FCI S2 1-flip FCI S2 1-flip FCI S2 1-flip

6.00 −1434.15 −1484.93 −1434.71 1562.92 1509.18 1564.05 2997.07 2994.11 2998.76
7.00 −602.08 −611.89 −602.71 624.05 615.34 624.87 1226.13 1227.23 1227.58
8.00 −230.99 −232.81 −231.39 234.31 233.31 234.76 465.30 466.12 466.15
9.00 −83.09 −83.48 −83.28 83.54 83.55 83.75 166.63 167.03 167.03
10.00 −28.39 −28.49 −28.47 28.44 28.50 28.53 56.83 56.99 56.99
11.00 −9.24 −9.27 −9.27 9.25 9.28 9.28 18.49 18.55 18.55
11.50 −5.18 −5.19 −5.19 5.18 5.19 5.19 10.35 10.39 10.39
12.00 −2.86 −2.87 −2.87 2.86 2.87 2.87 5.72 5.74 5.74
12.50 −1.56 −1.56 −1.56 1.55 1.56 1.56 3.11 3.12 3.12
13.00 −0.83 −0.84 −0.84 0.83 0.84 0.84 1.66 1.67 1.67
14.00 −0.23 −0.23 −0.23 0.23 0.23 0.23 0.45 0.45 0.45
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FIG. 1. Singlet and triplet E(10)
exch values (kcal/mol) in

the lithium dimer as a function of interatomic distance
(bohr) from SF-SAPT with and without the single-exchange
approximation.

(excluded from the figure) and the S2 results for the triplet
also deviate slowly from the complete exchange results. At
the chemical minimum of the triplet state (3.5 bohrs), the
S2 approximation diverges considerably from the complete
results, recovering 92% of the exchange energy for the triplet,
88% for the quintet, and 58% of ∆E(10)

exch.
For the Li dimer, we also investigated the significance of

the E(10)
exch〈P〉 term, which can easily be incorporated into the

S2 approximation by solving Eq. (58) for E(10)
exch. Even though

the S2 approximation does not become exact for this system
when the E(10)

exch〈P〉 term is taken into account (one is still miss-
ing the effects of double and triple electron exchanges), the
inclusion of this term resulted in a much improved agreement
with the complete exchange results. Therefore, the inclusion
of E(10)

exch〈P〉 while neglecting all other multiple exchanges was
tested on a number of other small complexes. Unfortunately,
such a treatment was found to drastically overcorrect for the
effects missing in E(10)

exch(S2) so that the resulting values were

FIG. 2. Triplet and quintet E(10)
exch values (kcal/mol) of

Li· · ·N as a function of interatomic distance (bohr) from SF-
SAPT with and without the single-exchange approximation.
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FIG. 3: E(10)
exch values (kcal/mol) of the N· · ·N complex as a

function of interatomic distance (bohr) from exact high-spin
SAPT and SF-SAPT with and without the single-exchange
approximation.

in worse agreement with the complete exchange results than
the S2 data. We suspect that the good performance of the
E(10)

exch〈P〉 inclusion for Li· · · Li is merely a consequence of each
monomer having only one valence electron.

The N· · ·N complex is the first of our test systems where
the exact and single-spin-flip E(10)

exch values are distinct. Both
of these results can be calculated for the high-spin state [the
exact one using the standard high-spin SAPT(ROHF) imple-
mentation4,6]. This provides an opportunity to gauge the rel-
ative accuracy of the 1-flip and S2 approximations, as shown
in Fig. 3. The 1-flip treatment is a much milder approximation
that slightly overestimates the exact E(10)

exch value, as opposed
to the single-exchange approximation which underestimates
it. Figure 3 also shows the low-spin exchange energies, where
again the singlet state is less affected by the S2 approxi-
mation than the highest spin state. In this way, the differ-
ence in the splittings predicted by the two approximations
is primarily driven by the high-spin state error. The range
presented in Fig. 3 falls between the septet van der Waals
minimum of 7.2 bohrs and the singlet chemical minimum of
2.1 bohrs.

Table II provides the SF-SAPT E(10)
exch values for the man-

ganese dimer. For the undecaplet exchange energies, the
single-spin-flip results maintain perfect agreement with the
exact high-spin E(10)

exch throughout nearly the entire range pre-
sented here, while the S2 results begin to deviate at a relatively
long-range distance of 9 bohrs. That said, the energy splittings
from the two approximations are in close agreement due to
the more even deviation of the S2 values from the 1-flip ones
for both the highest and lowest spin states of this system.

The last system that we consider in this section is the first
bimolecular complex, the O2 dimer. This system is interest-
ing due to the large effect that geometry has on the splitting

between the singlet and quintet states. Figure 4 shows the
∆E(10)

exch values for the four representative geometries at several
center-of-mass distances. The spin splitting is much larger in
the L (linear) configuration and much smaller in the X con-
figuration. For the H, T, and X structures, the 1-flip and S2

splittings are virtually indistinguishable, while the two approx-
imations slightly deviate from each other at short range for
the L configuration. We report in the supplementary material
that the 1-flip results show great agreement with the exact
high-spin E(10)

exch values for all four geometries. The very good
recovery of the singlet-quintet splitting by the S2 approxima-
tion, shown in Fig. 4, stems from a cancellation of beyond-S2

effects between the two spin states of the complex.

TABLE II. Singlet and undecaplet E(10)
exch values and ∆E(10)

exch splittings (kcal/mol) for

the manganese dimer as a function of interatomic distance (bohr). The S2 and exact

E(10)
exch values are different than in Ref. 7, as the ROHF convergence issues of the

former calculations have been corrected.

E(10)
exch(S = 0) E(10)

exch(S = 5) ∆E(10)
exch

R S2 1-flip S2 1-flip Exact S2 1-flip

4.50 115.32 157.35 117.51 159.52 159.51 2.19 2.17
5.00 79.10 99.44 79.89 100.23 100.23 0.79 0.79
5.50 52.96 62.39 53.25 62.69 62.69 0.29 0.30
6.00 34.62 38.84 34.73 38.95 38.95 0.11 0.11
6.50 22.16 23.98 22.20 24.02 24.02 0.04 0.04
7.00 13.92 14.68 13.94 14.70 14.70 0.02 0.02
7.50 8.60 8.91 8.61 8.92 8.92 0.01 0.01
8.00 5.25 5.37 5.25 5.37 5.37 0.00 0.00
9.00 1.88 1.90 1.88 1.90 1.90 0.00 0.00
10.00 0.65 0.65 0.65 0.65 0.65 0.00 0.00
11.00 0.22 0.22 0.22 0.22 0.22 0.00 0.00
12.00 0.07 0.07 0.07 0.07 0.07 0.00 0.00
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FIG. 4. The ∆E(10)
exch approximation to the singlet-quintet

splitting (kcal/mol) for different geometries of the O2 dimer
(as illustrated) as a function of the center-of-mass distance
(bohr) from SF-SAPT with the single-exchange approxima-
tion and the single-spin-flip approximation.

B. Pancake bonded systems
An interesting possible application of SF-SAPT, already

initiated in Ref. 7, is the spin-state splittings of pancake
bonded dimers.17 These systems are composed of radicals
with highly delocalized singly occupied orbitals which inter-
act in a fashion that is intermediate between covalent and
noncovalent bonding. The pancake bonded singlet minimum
is separated by a relatively small gap from the van der
Waals-bonded triplet state. SF-SAPT is one of the simplest
approaches to investigate these splittings, and the single-
spin-flip approximation is exact for this doublet-doublet
interaction. We have selected a number of pancake-bonded
complexes to test our method, illustrating the favorable per-
formance of our AO implementation with density-fitted gen-
eralized Coulomb and exchange matrices [Eq. (50)] from PSI4.16

Figure 5 shows the monomers selected for our investiga-
tion. These include the phenalenyl (PLY) radical,32 one of
the prototypical examples of pancake bonding systems, as
well as four of its derivatives33 and the larger trioxotrian-
gulene (TOT) radical.34 The orientations of these systems in
the homodimer prefer a maximum overlap of the delocal-
ized singly occupied orbitals, i.e., the monomers stack directly
on top of one another with their atoms lining up. With the
central carbons of the monomers aligned, these dimers can
have a staggered or eclipsed conformation as illustrated in
Fig. 5. Both conformations of the TOT dimer are considered,
but only the staggered conformation is used for PLY and its
derivatives.

The spin state splitting in the PLY dimer was ana-
lyzed previously within the S2 formulation of first-order
SF-SAPT, together with the (much more demanding) super-
molecular complete active space self consistent field the-
ory (CASSCF).7 Figure 6 presents these results along with

the new nonapproximated ∆E(10)
exch ones, the multireference

averaged quadratic coupled cluster (MR-AQCC)35 benchmark
from Ref. 32, and the density functional theory (DFT) results
obtained with the M05-2X functional.36,37 Similar to the man-
ganese dimer case, the splittings produced by the two versions
of SF-SAPT do not differ greatly within this range. Some devi-
ation can be observed at the shortest ranges in Fig. 6, but
it is not drastic compared to the differences between vari-
ous methods presented. The effect of the S2 approximation
appears to be relatively more consistent between the two spin
states than observed for smaller systems.

The results for the homodimers of the PLY derivatives,
shown in Fig. 7, further indicate that the S2 and 1-flip ∆E(10)

exch
values agree well even at shorter distances. This observa-
tion would seem to support the idea that the removal of
the S2 approximation is less important to the improvement
of the SF-SAPT splittings than the inclusion of higher-order
exchange terms (which is in progress in our group). For com-
parison, we look at the M05-2X splitting values from Ref. 33.
This functional was chosen as the most suitable for pan-
cake bonded systems based on previous benchmarking.37 The
tri(tert-butyl)phenalenyl (TBPLY) dimer has the smallest split-
ting value at the minimum, where the SF-SAPT values for
both approximations agree with each other and represent
about two-thirds of the DFT result. For the other deriva-
tives, the SF-SAPT results are about half the magnitude of the
DFT results at the minimum. Also, for the triaminophenalenyl
(TAPLY), trifluorophenalenyl (TFPLY), and trimethylphenalenyl
(TMPLY) dimers, SF-SAPT shows a different ordering of the
splitting values. The DFT results show the order of the split-
tings as TAPLY > TFPLY > TMPLY, while both SF-SAPT meth-
ods provide the order TMPLY > TAPLY > TFPLY for the
M05-2X-optimized structures.
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FIG. 5. Pancake-bonded radicals considered in this work.
The staggered geometry was used for all dimers, and the
eclipsed geometry was also considered for the trioxotrian-
gulene (TOT) dimer.

FIG. 6. Comparison of the ∆E(10)
exch singlet-triplet splitting

values (kcal/mol) for the staggered phenalenyl dimer as
a function of center-of-mass distance (bohr) with literature
results.7,32,37
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FIG. 7. Singlet-triplet splitting ∆E(10)
exch estimates (kcal/mol)

for the phenalenyl derivative dimers as functions of inter-
planar distance (bohr) compared to the literature M05-2X
results.33 The lines and points are, respectively, the SF-
SAPT results with and without the single-exchange approx-
imation. The plus marks are the M05-2X data.

Finally, we look at the trioxotriangulene dimer in its
staggered and eclipsed conformations in Table III. The SF-
SAPT methods agree with the DFT results on the ordering
of the splittings of the two conformations, showing a larger

TABLE III. Singlet and triplet E(10)
exch values and ∆E(10)

exch splittings (kcal/mol) for the
eclipsed and staggered geometries of the trioxotriangulene dimer as a function of
interatomic distance expressed in units of the M05-2X optimized minimum sepa-

ration (REclipsed
0 = 6.659 bohrs, EM05−2X,Eclipsed

splitting = 3.33 kcal/mol, RStaggered
0

= 5.962 bohrs, EM05−2X,Staggered
splitting = 10.67 kcal/mol).34

E(10)
exch(S = 0) E(10)

exch(S = 1) ∆E(10)
exch

R/R0 S2 1-flip S2 1-flip S2 1-flip

Eclipsed

0.80 225.43 228.41 238.31 241.22 12.88 12.81
0.90 79.48 79.74 84.67 84.89 5.19 5.15
1.00 27.11 27.11 29.05 29.05 1.94 1.93
1.10 9.00 9.00 9.70 9.69 0.70 0.69
1.20 2.92 2.92 3.16 3.16 0.24 0.24
1.40 0.28 0.28 0.31 0.31 0.03 0.03
1.60 0.02 0.02 0.02 0.02 0.00 0.00

Staggered

0.80 417.36 426.73 443.09 453.31 25.74 26.58
0.90 167.05 168.34 179.42 180.70 12.37 12.35
1.00 64.48 64.60 69.86 69.94 5.38 5.34
1.10 24.17 24.17 26.36 26.35 2.19 2.18
1.20 8.85 8.84 9.70 9.69 0.85 0.85
1.40 1.10 1.10 1.22 1.22 0.12 0.12
1.60 0.12 0.12 0.13 0.13 0.01 0.01

splitting for the staggered one. Again, the SF-SAPT values are
between half and two-thirds of the M05-2X values.34 The S2

results for both ∆E(10)
exch and the individual E(10)

exch values are quite
accurate in the presented range for this system compared to
the nonapproximate 1-flip data.

V. SUMMARY
We derived a new formula for the first-order spin-flip

SAPT exchange energy,7 valid for an arbitrary spin state
of a weakly interacting complex, replacing the conven-
tional single-exchange (S2) approximation by the much milder
single-spin-flip approximation. The new SF-SAPT correction,
with the noninteracting monomers described by their ROHF
determinants, involves terms similar to those appearing in the
expressions for the complete (non-S2) first-order exchange
and second-order exchange-dispersion energies.12,14 In this
way, the spin flips are treated as a subset of the double
excitations found in second-order dispersion and exchange-
dispersion corrections. The resulting equations were imple-
mented in both their molecular orbital and atomic orbital
forms, where the latter allows for the application of this
method to much larger systems.

The newly enhanced first-order SF-SAPT approach was
applied to the same selection of diatomic and small molec-
ular test systems as in Ref. 7. The S2 approximation is
not exact even for the Li· · ·H system where only a sin-
gle electron exchange is possible, as this approximation
neglects a term that is a product of two single exchanges.
This approximation is also particularly poor for the lithium
dimer, leading to an unphysical crossing of the singlet and
triplet curves at short range. In contrast, the single-spin-flip
approximation was demonstrated to be much milder than
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the S2 one. The 1-flip treatment is formally exact for any
dimer with at least one doublet monomer and deviates from
the exact E(10)

exch much slower than the S2 variant in other
cases. Another observation made possible by the new devel-
opment is that the S2 approximation is generally better for
the low-spin states of small complexes than for the high-
spin state. As the size of the system increases, at least
for the complexes considered here the effect of the S2

approximation on the high and low-spin states becomes
comparable.

The new E(10)
exch formulation was further applied to

the determination of the singlet-triplet splittings for the
phenalenyl radical dimer and other pancake bonded systems.
These calculations are feasible, thanks to the recasting of the
MO formulas into their AO form, which allows us to take
advantage of PSI4’s efficient tools for producing density-fitted
generalized Coulomb and exchange matrices.16 The result-
ing implementation is only somewhat more expensive than
the E(10)

exch(S2) one of Ref. 7, exhibiting the same N4 scaling
with the basis set size with a somewhat larger prefactor. In
fact, the computation time is dominated by the construc-
tion of the Coulomb and exchange matrices, and the num-
ber of such matrices is 8 for the S2 correction and 11 for the
1-flip one. Despite the formal exactness of the 1-flip treatment,
it does not provide especially different first-order splittings
compared to the S2 approximation. This is due to a more even
effect of the S2 approximation on the singlet and triplet states
of these systems. The SF-SAPT splittings were compared to a
selection of literature values, in particular, the M05-2X results
from Refs. 33, 34, and 37. In comparison to the DFT results,
the first-order SF-SAPT treatment underestimates the split-
tings and shows a different ordering of the PLY derivatives.
While these splittings are generally difficult to calculate and
the literature results are far from benchmark quality, we can-
not expect a high quantitative accuracy from a simple first-
order perturbation theory that also neglects intramolecular
electron correlation. The work to extend the new SF-SAPT
formalism to arbitrary-spin second-order exchange induc-
tion and exchange dispersion energies is in progress in our
group.

SUPPLEMENTARY MATERIAL

See the supplementary material for the numerical data
presented in all figures and the Cartesian coordinates for the
complexes considered in this work.
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Phys. 137, 164104 (2012).
6J. F. Gonthier and C. D. Sherrill, J. Chem. Phys. 145, 134106 (2016).
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