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Abstract 

 

A roadway departure (RwD) crash, comprising run-off-road (ROR) and cross median/cross 

centerline head-on collisions, is defined as a crash in which a vehicle crosses an edge line, a 

centerline, or otherwise leaves the traveled way. These types of crashes tend to be more severe 

than other crash types (e.g., rear end, head on, sideswipe). According to the U.S. National Highway 

Traffic Safety Administration (NHTSA), in 2013, 56 percent of all motor vehicle fatalities 

involved RwD crashes. Moreover, ROR crashes accounted for 62 percent of the total number of 

fatal motor vehicle crashes in the United States in that year. There are a number of reasons a driver 

may leave the travel lane, including, but not limited to, an avoidance maneuver, inattention or 

fatigue, or traveling too fast with respect to weather or geometric road conditions. There are also 

a number of roadway design factors that can increase the probability that driver error will result in 

an RwD crash (e.g., travel lanes that are too narrow, substandard curves, and unforgiving 

roadsides). Moreover, the probability of the severity of RwD crashes depends on the roadside 

features, including sideslopes, fixed-object density, offset to fixed objects, and shoulder width. 

The high fatality rates associated with this crash type necessitates further investigation to build a 

roadside inventory database, identify the factors contributing to crashes, and then to implement 

effective safety countermeasures. This dissertation is a collection of four papers as separate 

chapters.  

Chapter 1 evaluates the capability of existing methods for collecting roadside features vital 

to the effective implementation of the Highway Safety Manual (HSM) (published in 2010). Since 
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the release of the HSM, many states have sought to tailor various safety measures and functions 

within the report to better reflect road safety in their specific locations. However, the widespread 

utilization of the HSM faces significant barriers as many state departments of transportation 

(DOTs) do not have sufficient HSM-required highway inventory data. A significant amount of 

roadside information is missing in most databases, such as roadside slope, grade, roadside fixed 

objects and their density, and offset to the edge of the travel way. Many techniques have been used 

by state DOTs and local agencies to collect highway inventory data for other purposes, but it is 

unknown which of these methods or combination of methods is capable of efficient data collection 

while also minimizing cost and safety concerns. By virtue of the fact that many state DOTs are 

currently redesigning their asset management plans to meet the performance requirements of the 

national Moving Ahead for Progress in the 21st Century Act (MAP-21), there is a need to better 

understand the potential applications of existing highway inventory data collection methods for 

gathering HSM-related roadway inventory data.  

Chapter 2 identifies the significant contributing factors to ROR crashes, which have 

accounted for the majority of RwD events, using an exploratory data analysis (EDA) technique to 

determine the dataset structure. To realize the vision of the FHWA’s Toward Zero Deaths, one of 

the challenges researchers and state DOTs face is how to identify key contributing factors within 

large and complex datasets in order to implement effective safety countermeasures accordingly.  

Chapter 3 presents an overview of cost-effective improvements for preventing vehicle 

departures from roadways, and it provides transportation practitioners with a good understanding 

of the effectiveness of RwD safety countermeasures. In order to realize the vision of the Federal 

Highway Administration’s (FHWA’s) Toward Zero Deaths, many safety countermeasures (e.g., 
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signs, pavement safety, and roadside design) have recently been implemented by state DOTs and 

local agencies to mitigate RwD crashes.  

Chapter 4 presents a new reliability analysis approach to evaluating roadside safety for 

rural two-lane roads. Currently, the clear zone width and sideslope are used to determine the 

roadside hazard rating (RHR) and to quantify roadside safety for rural two-lane roadways on a 

seven-point pictorial scale. Since these two variables are continuous and can be treated as random 

variables, probabilistic analysis can be applied as an alternative method to account for uncertainty. 

Specifically, by emphasizing reliability analysis, it is possible to quantify the roadside safety level 

by treating the clear zone width and sideslope as two continuous, rather than discrete, variables 

and to calculate their reliability indices accordingly.  

As a national priority, the findings of this dissertation can prevent or mitigate the frequency 

and severity of RwD crashes, which will result in saving lives and reducing crash costs to society 

overall. It also provides guidance for all state DOTs, as a national-level resource, to obtain a better 

knowledge of cost-effective roadside inventory data collection methods, factors contributing to 

RwD crashes, and associated safety countermeasures, all of which will yield multiple national 

benefits.  
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1.1.Introduction 

 

The Highway Safety Manual (HSM) provides decision makers and engineers with the 

information and tools to improve roadway safety performance [1]. In the first edition of the HSM, 

predictive methods, which can be employed to quantitatively estimate the safety of a transportation 

facility in terms of number of crashes, were provided for three types of facilities: rural two-lane 

roadways, rural multi-lane highways, and urban/suburban arterials. A National Cooperative 

Highway Research Program (NCHRP) 17-45 project recently developed safety prediction models 

for freeways and interchanges [2]. Since the release of the HSM in 2010, many states have sought 

to tailor the various safety measures and functions within the report to better reflect road safety in 

their specific locations [3, 4]. This manual provides valuable insight that can help practitioners 

prioritize projects, compare different alternatives, and select the most appropriate countermeasures 

in the planning, design, construction, and maintenance process. The countermeasures can be any 

of the three Es: Education (e.g., raising safety awareness), Engineering (e.g., signal timing 

improvement), and Enforcement (e.g., implementing red light cameras at intersections) [5]. 

To implement methods presented in the HSM, a major challenge for state and local agencies 

is the collection of necessary roadway information along thousands of miles of highways [6]. 

Collecting roadway asset inventory data often incurs significant but unknown cost. To date, state 

Departments of Transportation (DOTs) and local agencies have employed a variety of methods to 

collect the roadway inventory data, including field inventory, photo/video log, integrated GPS/GIS 

mapping systems, aerial photography, satellite imagery, airborne Light Detection and Ranging 

(LiDAR), static terrestrial laser scanning, and mobile LiDAR [6]. These methods vary based on 

equipment needed, time required for both collecting data and reducing data, and costs. Each 

method has its specific advantages and limitations. Particularly, vehicle-mounted LiDAR, a 

relatively new type of mobile mapping system, is capable of collecting a large amount of detailed 

3D highway inventory data, but it requires expensive equipment and significant data reduction 

efforts to extract the desired highway inventory data. On the other hand, a traditional field survey 

requires less equipment investment, training, and data reduction efforts. However, this method is 

not only time-consuming and labor-intensive, but also exposes data collection crews to dangerous 

roadway environments.  
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The efforts and costs associated with collecting various data with different techniques vary 

greatly. Therefore, there is a need to understand the application of existing highway inventory data 

collection (HIDC) methods for gathering HSM-related roadway inventory data. This chapter 

sought to present an in-depth review of various roadway asset inventory data collection methods 

and to compare the quality and desirability of these methods. A national survey was conducted to 

all the state DOTs to collect the related information towards these various data collection 

techniques. Additionally, field trials were conducted to identify the most promising methods for 

collecting and recording highway inventory data to support HSM implementation. By virtue of the 

fact that many state DOTs are currently redesigning their asset management plans to meet the 

national Moving Ahead for Progress in the 21st Century Act (MAP-21) requirements, the outcomes 

of this research effort may provide a resource for saving money and time.  

 

1.2.Prior Work 

 

1.2.1.Highway Inventory Data for Highway Safety Manual 

 

The HSM can be used to predict the safety performance of a roadway segment or an 

intersection. The safety performance is evaluated by using a system of equations, known as Safety 

Performance Functions (SPFs), to estimate the average crash frequency based upon roadway 

characteristics and traffic conditions [1]. The input data for different types of roadway segments 

and intersections are quite different [7, 8]. Tables 1.1 and 1.2 summarize the required input data 

for the safety predictive models in the HSM [1]. The check mark indicates the required variables 

for roadway segments and intersections. Currently, few states have existing highway inventory 

databases that contain all the required variables for the input of the HSM models. Particularly, a 

significant amount of roadside information, such as roadside slope, grade, roadside fixed objects 

and their density, and offset to the edge of travel way are missing in the current Illinois Department 

of Transportation (IDOT) databases [9]. Therefore, the main objective of this chapter is to evaluate 

which data collection method is able to collect those roadside features in the most economical and 

effective way. Due to the fact that these features are also absent in many state DOTs databases, 

the findings of this chapter will be helpful to provide guidance for other states.  
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Table 1.1 Highway Inventory Data Required for Road Segments in the Highway Safety Manual [1] 

Variables  
Rural Two-lane 

Highways 

Rural Multilane 

Highways 

Urban/ Suburban  

Arterials 
Descriptions 

Number of through lanes  √ √ √  

Lane width  √ √   

Shoulder width  √ √   

Shoulder type  √ √   

Presence of median   √ √  

Median width   √   

Presence of passing lane  √    

Presence of rumble strips √   
A road safety feature that alert inattentive 

drivers by causing a tactile vibration 

Presence of two-way left-turn lane  √  √  

Driveway density √    

Number of major/minor commercial driveways    √  

Number of major/minor residential driveways    √  

Number of major/minor industrial/institutional 

driveways  
  √  

Number of other driveways    √  

Horizontal curve length √   
A feature that increases road safety and comfort 

in the design of horizontal curves 

 

Horizontal curve radius  √   
A feature that increases road safety and comfort 

in the design of horizontal curves 

 

Horizontal curve superelevation  √   
A feature that allows a driver to negotiate a 

curve at a higher speed and more convenient 

 

Presence of spiral transition  √   
A feature used to gradually change the 

curvature and superelevation of a roadway 

 

Grade  √   

A feature determined by the percent 

grade for the roadway between each point of 

change in grade 

 

Roadside hazard rating  √   

A feature is used to characterize the potential 

hazard related to roadside environment 

 

 

http://en.wikipedia.org/wiki/Road_safety
http://en.wikipedia.org/wiki/Motorist
http://en.wikipedia.org/wiki/Tactile
http://en.wikipedia.org/wiki/Oscillation


5 

 

Table 1.1 Highway Inventory Data Required for Road Segments in the Highway Safety Manual, cont. [1] 

 
 

Table 1.2 Highway Inventory Data Required for Intersections in the Highway Safety Manual [1] 

Variables  
Rural Two-lane 

Highways 

Rural Multilane 

Highways 

Urban/Suburban 

Arterials 
Descriptions 

Number of intersection legs  √ √ √ 

A feature determined by the 

number of approaches in 

each intersection 

Number of approaches with left-turn lane(s) √ √ √  

Number of approaches with right-turn lane(s) √ √ √  

Intersection skew angle  √ √  
A feature determined by 

angle at which the legs of 

an intersection meet 

Presence of lighting   √ √  

Pedestrian volume/lane   √  

Number of bus stop within 1000 ft   √  

Number of alcohol sales within 1000 ft   √  

Presence of schools within 1000 ft   √  
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1.2.2.Review of Highway Inventory Data Collection Methods 

 

Lately, advanced methods have been used to gather data in the fields of traffic safety [10-20], 

traveler and driver behaviors [21-29], network modeling [30-35], transportation planning [36-41], 

and asset management [42-46]. HIDC methods can be broadly divided into two different 

categories: land-based and air- or space-based methods as shown in Table 1.3 [47]. These methods 

vary in equipment used, data collection time, data reduction time, accuracy, and cost. A brief 

description of the available data collection methods and related studies is provided in Table 1.4.  

Table 1.3 Categorization of Highway Inventory Data Collection Methods 
 Land Based Air or Space Based 

GPS 
 Field Inventory 

 Integrated GPS/GIS Mapping 
 

GPS + Imaging  Photo/Video Log 
 Satellite Imagery 

 Aerial Imagery 

GPS + Imaging + LiDAR 

(using a laser to 

illuminate a target and 

measure the reflected 

light) 

 Static Terrestrial Laser Scanning (Using 

direct 3D precision point information 

acquired from stationary 3D laser scanners to 

extract highway inventory data) 

 Mobile LiDAR (driving an instrumented 

vehicle while collecting direct 3D precision 

point information using either land-based 

LiDAR systems or photogrammetry systems 

while traveling at highway speeds) 

 Airborne LiDAR (Using 

direct 3D precision point 

information acquired 

from aircraft-based 

LiDAR systems to derive 

highway inventory data) 
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Table 1.4 Existing Highway Inventory Data Collection Methods and Related Studies 
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In general, it can be noted that although there are a considerable number of studies on various 

HIDC methods, none of them have solely focused on supporting HSM implementation. Therefore, 

the challenge is to match the best methods to HSM-oriented highway inventory applications. 

Additionally, it is not clear to what extent these methods have been implemented by various state 

DOTs. Such information might aid other state DOTs and teach valuable lessons regarding which 

methods are preferred. This chapter was aimed at characterizing the utility of these existing HIDC 

methods for collecting HSM-required road inventory data through a national survey and field 

evaluation of selected HIDC methods.  

 

1.3.Survey Data Collection and Analysis 

 

In many states, there is a lack of worthy highway databases that include all the required 

variables as inputs for the HSM predictive models. On the other hand, many state DOTs do have 

road inventory databases that provide some data elements that can be used in the HSM predictive 

models. It was of interest to determine how different state DOTs have collected these inventory 

data, and whether there is any lesson that can be learned from them. To gain an understanding of 

the implementation status of various HIDC methods and their perceived strengths and 

shortcomings, a web-based survey was developed and sent to 50 state DOTs and seven Canadian 

provinces. More specifically, the respondents were asked to indicate their primary data collection 

methods and their opinions on the adopted methods regarding cost, time, accuracy, safety, and data 

storage requirements. The survey (Appendix A) has focused on a few roadside features that are 

known to be difficult to collect but play an important role in the HSM models. 

The survey analysis results, based upon 30 respondent states (60 percent response rate), 

demonstrated that over 50% of responding states use field inventory, integrated GPS/GIS mapping, 

video log, and aerial imagery for collecting roadside feature data. In truth, the field inventory 

method is still required for many roadway features due to equipment limitations since new 

technologies may not be suitable for all assets. According to the survey results, it is evident that 

satellite imagery and airborne LiDAR are less popular choices among state DOTs because it is 

difficult to identify small objects using these methods. Additionally, mobile LiDAR is uncommon 

but appears to be growing and most popular. Figure 1.1 depicts the percentage of states using each 
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type of HIDC method. It should be noted that some states use multiple methods that account for 

the total being more than 100%. 

 

Figure 1.1 Technology Adoption Percentage in Respondent States 

It should be noted that most of the respondent states indicated that they use a combination of 

several data collection methods to meet their roadside inventory data needs. The results revealed 

that guardrails, shoulders, and mileposts are the most predominant objects being collected but 

using different methods. Moreover, only 9 % of states collected roadside slope and curvature 

alignments.  

Additionally, the survey respondents were requested to indicate their level of satisfaction with 

their primary collection method using a scale of 1 to 5 (representing unacceptable, fair, good, very 

good, and excellent, respectively) where one is worst and five is the best. Table 1.5 illustrates the 

results for the nine satisfaction indicators considered in the survey, including equipment cost, data 

accuracy, data completeness, crew hazard exposure, data collection cost, data collection time, data 

reduction cost, data reduction time, and data storage requirement. Based on these parameters, most 

states express their level of satisfaction as good for the primary data collection methods, which 

they have used more frequently to collect the required datasets.  
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Table 1.5 Levels of Satisfaction for Primary Data Collection Method of State DOTs 

Satisfaction Factors 
Unacceptable 

(%) 

Fair 

(%) 

Good 

(%) 

Very Good 

(%) 

Excellent 

(%) 

Sum 

(%) 

Equipment Cost Rating 0 21 58 21 0 100 

Data Accuracy Rating 0 7 41 45 7 100 

Data Completeness Rating 7 17 34 34 7 100 

Crew Hazard Exposure Rating 4 29 39 21 7 100 

Data Collection Cost Rating 3 24 55 17 0 100 

Data Collection Time Rating 3 34 48 14 0 100 

Data Reduction Time Rating 11 26 30 26 7 100 

Data Reduction Cost Rating 4 39 29 21 7 100 

Data Storage Requirement Rating 0 14 52 31 3 100 

 

The data shown in Table 1.5 indicates that most agencies rated their current systems from fair 

to good for most performance categories. Table 1.6 presents the rating of each satisfaction indicator 

in Table 1.5 for each data collection method based on the level of satisfaction with the primary 

data collection method. It showed that satellite imagery, photo logs, and aerial imagery scored 

highest on all of the evaluation elements. Examination of the scores of different evaluation 

elements reveals that most methods had lower rankings for data reduction time, data collection 

time, and data collection cost. This clarifies that the focus of concern of state DOTs is on the time 

required for data collection and reduction and the associated cost. Moreover, state DOTs who used 

either airborne LiDAR or mobile LiDAR expressed less satisfaction towards these two methods in 

equipment cost, data reduction cost, and data reduction time performance categories. Their 

concerns are clearly related to the data reduction time associated with these two methods. Both 

methods collect a tremendous volume of data that is difficult to process. Some of the other 

interesting findings were that the New York State DOT rates its GPS/GIS system as unacceptable 

to fair in several categories, and the California State DOT appears generally dissatisfied with its 

photo log system. Overall, no single technology stands out as the obvious choice of methods for 

roadside feature data collection, and most agencies perceive that their inventory methods could be 

substantially improved. 
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Table 1.6 Level of Satisfaction on Adopted Inventory Data Collection Methods by State 

DOTs 
          Highway Inventory Data Collection Methods 

Satisfaction Factors 
Satellite 

Imagery 

Photo 

Log 

Aerial 

Imagery 

Field 

Inventory 

Video 

Log 

Integrated 

GPS/GIS 

Mapping 

Mobile 

LiDAR 

Airborne 

LiDAR 

Equipment Cost Rating 3.1 3.0 3.1 3.1 3.1 2.9 2.0 2.5 

Data Accuracy Rating 3.3 3.5 3.6 3.5 3.4 3.8 3.0 3.0 

Data Completeness Rating 3.2 3.3 3.3 3.4 3.3 3.3 3.4 2.8 

Crew Hazard Exposure Rating 3.2 3.4 2.9 2.9 2.9 3.0 2.5 3.0 

Data Collection Cost Rating 3.2 2.9 3.0 2.8 3.0 2.8 2.5 2.5 

Data Collection Time Rating 3.2 2.8 2.9 2.8 2.8 2.7 2.6 2.0 

Data Reduction Time Rating 2.8 3.1 2.9 3.1 2.8 2.9 2.0 2.0 

Data Reduction Cost Rating 3.2 3.1 2.9 2.7 2.8 2.8 2.5 2.0 

Data Storage Requirement Rating 3.2 3.5 3.4 3.3 3.1 3.3 3.0 3.4 

 

1.4.Field Trial and Results 

 

Based on the literature review and survey, the research team identified five potential methods 

to be further evaluated: GPS data logger, robotic total station, GPS enabled photo/video log, 

satellite/aerial imagery, and mobile LiDAR. Four different types of roadway segments, including 

rural two-lane highway, rural multi-lane highway, urban and suburban arterial, and freeway 

segment, were chosen as the test sites for these methods. These segments varied in length but were 

not shorter than one mile.  

The data reduction effort required for each data collection technique has a significant impact 

on the utility of the technique. Specifically, one previous study revealed that the manual data 

collection was more cost-effective than automated methods such as mobile mapping systems, as 

the latter incur high equipment costs and significantly greater data reduction effort [48]. However, 

recent developments in automated data reduction methods and declining equipment costs (e.g., 

laser, camera) may have changed this conclusion. Given this fact, the research team recorded the 

time spent conducting data reduction tasks such as extracting objects, determining clear zone 

distance, side slope and other parameters from datasets. A list of promising data collection methods 

and the proposed data reduction methods are provided in Table 1.7. Moreover, researchers also 

evaluated the feasibility and training needs for DOT personnel to use these programs. In general, 

the effort of data reduction was directly proportional to the quantity and richness of data collected 

in the field.  
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Table 1.7 Proposed Data Reduction Methods 

Data Collection Method 
Data Reduction Method (if 

required) 
Descriptions 

Field Inventory N/A  

Photo/Video Log Manual review, photogrammetry  

Integrated GPS/GIS Mapping Systems N/A  

Aerial Photography GIS package (ArcGIS)  

Satellite Imagery GIS package (Google Earth Pro)  

Mobile LiDAR 
Point cloud post-processing 

software 

A software which has a 

capability to decimate files 

intelligently without losing the 

important featured-related 

information such as locations 

 

1.4.1. GPS Data Logger 

 

A GPS data logger is a GPS unit that records time of observation, location, elevation, and crew-

entered notes. The data logger is equipped with an internal camera, allowing images of recorded 

locations to be stored and associated with the location data. Output from the data logger may be 

viewed on a mapping application such as Google Earth. Figure 1.2 illustrates a sample of this 

device in use to locate a traffic sign. 

 
Figure 1.2 A GPS Data Logger Device for Data Collection 

In general, the GPS data logger device is very user-friendly, reduces the need for extensive 

training, and can be operated by one surveyor. As for data collection, the GPS data logging 

technique is accomplished by placing the device next to the object to be recorded. In doing so, at 
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the beginning of data collection work, the device must be initialized. Initialization refers to the 

automated startup routine that GPS receivers employ to scan the visible sky, identify observable 

satellites, and make a location determination. Depending on the number of satellites in view and 

their geometrical distribution above the target, this process may require from a few minutes to as 

many as 15 minutes. Once initialization is complete, location data is provided in real time even if 

the receiver is in motion. Notably, in this method, data collection time is very sensitive to the type 

of objects, the objects’ density, the distance between objects, and the terrain. Therefore, using a 

four-wheel, all-terrain vehicle can reduce data collection time significantly (Figure 1.2). In this 

study, by the help of the aforementioned vehicle, the average times for setting up the device and 

collecting data per object were five minutes and one minute, respectively.  

As to the data reduction effort, one of the primary tasks is the organization of all data collected 

for the purpose. The data reduction steps required by this method, for this research, included 

importing the collected data files into a Computer Aided Design (CAD) software program (e.g. 

AutoCAD Civil 3D), establishing a drawing-file template which includes many of the standard file 

settings and objects for use in a new file, and importing the resulting data files into the drawing 

format. The latter consisted of a series of discrete points with associated elevation and description 

attributes. By virtue of the drawing file, a highway alignment drawing was assembled. Moreover, 

additional processing using the discrete point elevations to define a surface representing the 

topography, called "slope banding," was simultaneously employed to identify roadside slope based 

upon percentage of slope (in dark color) (Figure 1.3).  

In this study, the analysis of results demonstrated that the GPS data logger not only can gather 

all the objective highway inventory data to be implemented in the HSM but also can meet the 

accuracy required by the HSM safety predictive models; i.e., four inches accuracy of feature 

locations can be achieved. One of the shortcomings is the likelihood of GPS outage in areas with 

tall buildings and significant tree cover. Crew exposure to traffic is another issue that requires 

mitigation strategies such as setting up warning signs and traffic cones which consumed a 

significant percentage of the time required to survey each segment.  
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Figure 1.3 A Sample of Slope Banding  

 

1.4.2. Robotic Total Station 

 

During the late 1980s, electronic distance measuring equipment was successfully integrated 

with electronic theodolites, used for measuring angles in horizontal and vertical planes, to create 

"total station" surveying instruments. This new generation of surveying instrument directly 

displays horizontal and vertical angles, slope distance, and derived horizontal distance, vertical 

distance, and x,y,z coordinates. With the addition of electronic data collection in the early 1990s, 

survey field work productivity has dramatically improved. A typical survey crew using a total 

station instrument consists of three people: an instrument person to point the instrument and initiate 

measurement, a party chief to direct the work and sketch additional data, and a rodman to walk to 

the object to be recorded and plumb the reflector prism equipped survey rod over the object. 

Surveying total stations and robotic total stations employ electronic distance measuring systems 

that measure the time required for light to travel from the instrument to the target and back. A 

retro-prism mounted on a pole is placed at the target and the instrument's light beam is directed 

toward it and then sent directly back by the reflective prism. By adding auto tracking of the prism 

via radio links and robotic servos, total station systems have been developed that automatically 

continuously track the prism target and transmit data to a data collector and operating controller 

located on the prism pole. This type of system is referred to as a robotic total station. A robotic 

total station may be operated by a single person who controls the robotic total station remotely 

while walking with the prism pole and data collector. During this study, a single surveyor using a 
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robotic total station required an average of one minute to collect information for each object. Figure 

1.4 depicts the robotic total station in use during the data collection activities. Notably, in 

comparison with the GPS data logging, the initial system setup and data collection time per object 

were higher.  

 

Figure 1.4 A Robotic Total Station Device for Data Collection 

The robotic total station method requires the same data reduction effort. As GPS data logging. 

A skilled operator, using up-to-date software, has the capability to process survey crew-derived 

data at rates in excess of 2,000 ft. per hour. The results indicated that this method is able to collect 

all the required asset roadway inventory data with a precision of 0.01 ft., more than adequate for 

the accuracy requirements for implementing the HSM. A major deficiency of the robotic total 

station method is that it has an operating radius of approximately 1,000 ft. from each setup point. 

Therefore, the robotic total station must be relocated as the survey progresses, a process that 

requires approximately 15 minutes for each required move. Loss of prism tracking, which is to 

automatically point the instrument at the prism at all times by a radio link, video imaging system, 

and light beam recognition system controlled by the instrument's programmable logic system, is 

an additional issue associated with robotic total stations. Loss of tracking may be caused by line 

of sight interference do to terrain or highway traffic. Several minutes may be required to reestablish 

contact with the robotic total station with every loss of tracking event. To operate the system, the 

surveyor must walk to the object being measured. This exposes the surveyor to traffic especially 

when collecting edge of pavement, shoulder, and centerline data. Crew safety must be addressed 

through warning signs, traffic cones, and high-visibility clothing. 
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1.4.3. GPS Enabled Photo/Video Logging 

 

The collection of geo-tagged digital videos and photos is carried out using a 

Red Hen video mapping system (www.redhensystems.com) [87, 88]. Equipped with a video 

camcorder and a GPS antenna, the video mapping system is able to collect geo-tagged digital video 

with essential locational information, which may be imported into ArcGIS 9.3 software (with a 

ArcView 9.3 or Arc Editor 9.3 license) using a video for ArcGIS extension (or GeoVideo) (Figure 

1.5). In the instance of data collection time, the GPS enabled photo/video logging requires a 

relatively short time but an extensive feature extraction effort in the office [89, 90]. In this study, 

the average time for data collection employing this method was nine minutes per mile.  

 
 Figure 1.5 A Video Logging System Configurations in Use for Data Collection 

In respect to the data reduction effort, with the help of high-resolution imagery (e.g., 1-ft digital 

orthophotos, an undistorted aerial imagery which can be used to measure the true distances, or 

satellite imagery) as a background and video files collected in the field in MPG format that 

produces better quality videos than other formats, features in the form of points, lines, and 

polygons can be traced through on-screen digitizing and saved as feature classes in ArcGIS. In the 

present research, extraction of required features took an average of 50 minutes per mile or one 

minute per object. Figure 1.6 illustrates an example of object extractions using both video logging 

and high-resolution imagery.  
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Figure 1.6 A Sample of Object Extraction Using Both Video Logging and High-Resolution 

Imagery 

Due to recording videos on a vehicular platform, this method eliminates the risk of exposing 

the data collection crew to road traffic. Additionally, working with high-resolution aerial 

photographs or satellite imagery, the photo/video log method can provide all roadside inventory 

data to be implemented in the HSM except roadside slope with a reasonable accuracy. A locational 

accuracy of six inches for all roadside objects is achievable with 1-ft spatial resolution images. 

 

1.4.4. Satellite/Aerial Imagery 

 

Satellite/aerial imagery has been employed over the past several decades to obtain a wide 

variety of information about the earth’s surface. High-resolution images taken from 

satellite/aircraft can be utilized to identify and extract highway inventory data input [47, 91]. 

Therefore, Google maps and Bing maps are two beneficial tools for this purpose. The increasing 

availability of high-resolution images offers the possibility of leveraging these images to extract 

some HSM-related roadside features as shown in Figure 1.7. Notably, one of the considerable 

benefits of the satellite/aerial imagery method is the elimination of data collection efforts since all 

imagery is already freely accessible. Compared to other methods, therefore, this method is the 

most economical one due to the absence of the field data collection cost. However, similar to the 
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photo/video log method, the satellite/aerial imagery is not capable of collecting some HSM-related 

highway inventory data. For instance, extraction of roadside slope information is very difficult 

from images and small vertical objects are not quite visible. Based on the analysis of results, in 

this method, the average extraction time was 1.5 minutes per object. 

 
Figure 1.7 Data Extracted Using Satellite/Aerial Imagery Method (Image: Bing Map) 

 

1.4.5. Mobile LiDAR 

 

Mobile LiDAR is an emerging technology that employs laser scanner technology in 

combination with Global Navigation Satellite Systems (GNSS) and other sensors to capture 

accurate and precise geospatial data from a moving vehicle. This system can collect data on 

approximately 30 miles of highway per day with a high data measurement rate of 50,000 to 

500,000 points per second per scanner [47, 75]. Figure 1.8 shows a photo of outside view of a 

mobile LiDAR van and a picture of computer screen inside the van to show the different mounted 

cameras and data collection progress.  
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Figure 1.8 A Mobile Lidar System Configuration in Use for Data Collection (Image: 

Woolpert Co.) 

Regarding data collection, this method is capable of collecting a huge amount of data in a very 

short time, using an equipped vehicle, in comparison with conventional survey methods. Taking 

advantage of this technology, in this study, an average of 30 minutes was required to collect 

information for each mile of segment. However, the data reduction is a major undertaking with 

mobile LiDAR and the time associated with the data reduction part in this method is significant. 

Additionally, the processing of and feature extraction from mobile LiDAR data involves a fairly 

intensive computational effort and requires software and technical expertise. In terms of 

commercial packages for LiDAR data processing, Terrasolid Suite, Virtual Geomatics, TopoDOT, 

and QTModeler are found to be applicable for a variety of data extraction purposes. In particular, 

the Terrasolid Suite is the most commonly used software for airborne and mobile LiDAR data 

processing. As a result, it was chosen as the program to benchmark the data reduction time. The 

data processed during the data reduction steps include point clouds which is a set of data points in 

some coordinate system, geo-referenced imagery, data collection path, and an AutoCAD file. One 

of concerns with the mobile LiDAR method is the need for large data storage space, here 9.3 

Gigabyte (GB) space per mile of roadway. Given this fact, the mobile LiDAR data are typically 

divided into manageable blocks to reduce any difficulty during the process. For the purpose of this 

research, a typical block did not exceed 2 GB. As each type of highway segment was broken into 
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equal sized blocks, data extraction was performed on representative blocks and then the results 

were utilized to infer the data reduction time for the whole highway segment. In this study, 

determining roadside slope, roadside fixed objects density, super-elevation rate, and grade took 5, 

15, 15 and 15 minutes per block, respectively.  

The mobile LiDAR has the capability of collecting all categories of HSM highway inventory 

data. Although the data collection time in this method is short, the cost of field data collection is 

higher than other methods. However, these shortcomings cannot overshadow the potential of this 

method; it collects survey-grade data, which only can be matched by the robotic total station 

method, but with no traffic exposure or need for road closures. The main strength of this method 

also lies in its ability to collect data that are valuable for multiple DOT programs. The rapid 

development of computing hardware and LiDAR data processing methods indicate that the mobile 

LiDAR method will soon be comparable with other methods in terms of data reduction time.  

Overall, GPS data logger and robotic total station can gather all required feature data, but they 

impose longer field data collection times and expose data collection crews to dangerous road 

traffic. Photo/video logging and aerial imagery, when used together, can collect nearly all required 

feature data, except roadside slope. The mobile LiDAR has the capability to collect all required 

feature data in a short amount of field time, but the data require extensive reduction efforts.  

The results of field trials are summarized in Table 1.8. In the table, the capability of each HIDC 

method is evaluated using the metrics including capability of collecting HSM-related roadside 

features, total data collection time, total data reduction time, unit data collection and reduction 

time, and total cost. For cost analysis, two unit labor costs were assumed: $75 per hour for a person 

trained at an introductory level and $130 per hour for an expert level person. Based on the quotes 

from five LiDAR companies, the average data collection cost per mile for mobile LiDAR was 

considered to be $200. In the present research, the photo/video log method required the least total 

time (man-hr./mi) and the robotic total station method required the most. Specifically, the mobile 

LiDAR technology ranked at the median level, with 5.5 man-hr./mile.  

Furthermore, based on Table 1.8, the total cost per mile to prepare the required highway 

inventory dataset for photo/video log, satellite/aerial imagery, GPS data logger, mobile LiDAR, 
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and robotic total station methods were $72, $107, $700, $915, and $1,075, respectively. In 

particular, the photo/video log had the lowest cost and the robotic total station had the highest cost. 

Table 1.8 Comparison between Different Highway Inventory Data Collection Methods 

Methods 

Type of 

Segment 

Selected 

Capability of 

Collecting HSM-

related Roadside 

Features 

Total 

Length 

(mi) 

Total Data 

Collection 

Time 

(person-hr) 

Total Data 

Reduction 

Time 

(person-hr) 

Total Time 

(person-

hr/mi) 

Total Cost 

($/mi) 

Photo/Video Log 1, 2, 3, 4 Some 28.0 4.0 23.0 0.96 
$72 

  

Satellite/Aerial 

Imagery 
1, 2, 3, 4 Some 7.0 --- 10.0 1.43 

$107  

 

Mobile LiDAR 1, 2, 3, 4 All 14.2 8.0 70.0 5.50 
$915 

 

GPS Data Logger 2, 3, 4 All 1.3 6.0 3.5 7.31 
$700 

 

Robotic Total 

Station 
1, 3, 4 All 1.3 13.0 3.5 12.70 $1,075  

(Note: 1= rural multi-lane highways; 2= freeway segment; 3= rural two-lane highway; 4= urban/suburban 

arterials) 

 

1.5.Comparative Analysis of Selected Data Collection Methods 

 

In addition to unit cost, some other factors are important in selecting data collection method, 

such as data quality and completeness, safety and disruption of traffic. To consider those factors, 

based on the field trial results, an evaluation matrix was developed to compare different data 

collection methods, as shown in Table 1.9. Eleven criteria were utilized to assess the performance 

of the different technologies. Each criterion was assigned a score of 1 to 5 to rank it (5 being the 

best and 1 the worst) to indicate the relative performance of one method compared to the others. 

Specifically, the equipment cost for the satellite/aerial imagery method had a score of "5" because 

it did not incur any field data collection cost. The total weighted score is the summation of score 

of each criterion multiple by its corresponding weighing factor. For GPS data logger method, as 

an example, the total weighted score is 24 which is sum of (3×0.25) + (2×0.25) + (2×0.25) + 

(2×1.00) + (3×2.00) + (3×2.00) + (2×1.00) + (5×0.25) + (5×0.25) + (5×0.50) + (5×0.25).  
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Table 1.9 Evaluation Matrix for Highway Inventory Data Collection Methods 

 Criteria 

GPS 

Data 

Logger 

Robotic 

Total 

Station 

GPS Enable 

Photo/Video 

Log 

Satellite/

Aerial 

Imagery 

Mobile 

LiDAR 

Weighting 

Factor 

Field Data 

Collection 

Equipment Cost 3 2 4 5 1 0.25 

Labor Cost 2 1 4 5 3 0.25 

Data Collection Time 2 1 4 5 3 0.25 

Safety 2 1 4 5 3 1.00 

Data Completeness 3 4 2 1 5 2.00 

Data Quality 3 4 2 1 5 2.00 

Disruption to Traffic 2 1 4 5 3 1.00 

Field Data 

Reduction 

Software Cost 5 4 3 2 1 0.25 

Labor Cost 5 3 4 2 1 0.25 

Data Reduction Time 5 3 4 2 1 0.50 

 Data Storage Size 5 4 2 3 1 0.25 

Total Weighted 

Score 
 24 23 23 21 29  

Note: Based on 30 responded states 

For each evaluation criteria, a weighing factor (WF) was designated. These WFs, that imply 

the relative importance of each data collection method, were identified through discussions with 

stakeholders at IDOT. A weight of 2.0 was assigned for data completeness and data quality because 

the highest data quality and completeness were required to have collected data to serve different 

offices (planning, design, pavement management, and safety) in the agency. Transportation 

agencies can assign their own WF for each evaluation criteria for their specific purposes. This 

method, as used in multi-criteria analysis (MCA) approaches, is widely utilized to assess and 

recognize the importance of one criterion over another in an intuitive manner when quantitative 

ratings are not available [92]. All of these criteria were employed to rank various HIDC methods 

based on the summation of weighted components. The results demonstrated that the mobile 

LiDAR has the highest overall score when data completeness and data quality are the top priority 

for the agency. It should be noted that the score results are not transferable but the approach utilized 

to explore overall preferences among alternative options is. 

 

1.6.Conclusions and Recommendations 

 

The purpose of this chapter was to identify cost-effective methods for collecting highway 

inventory data for implementing in the HSM. Several promising methods, including the GPS data 

logger, the robotic total station, the GPS enabled the photo/video log, the satellite/aerial imagery, 

and the mobile LiDAR, were identified through a comprehensive literature review to compare and 
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determine their capabilities and limitations. Moreover, field trials for collecting HSM-related 

highway inventory data on four types of roadway segments (includes rural two-lane two-way 

roadways, rural multi-lane highways, urban and suburban arterials, and freeway) were performed 

to evaluate and compare the utility of these methods. The findings of this research indicate that the 

GPS data logger, the robotic total station, the mobile LiDAR, and the combination of video/photo 

log method with aerial imagery are all capable of collecting HSM-related information. Based on 

the perceived advantages and disadvantages of each data collection method, the following 

recommendations are made for consideration by state and local transportation agencies: 

 The GPS data logger method can be employed for short distances, low speeds, and low to 

medium traffic volume roadways that are not obstructed by buildings or trees. 

 The robotic total station technology can be employed for points of specific interest, such 

as intersections. 

 The photo/video log method, together with high-resolution aerial imagery, can be used to 

collect roadside inventory data for large-scale statewide data collection. 

 The mobile LiDAR technology can be used to gather highway inventory data with the 

highest data quality and completeness for serving multiple offices in state DOTs and local 

agencies. In order to share the costs of the mobile LiDAR data collection and processing, 

identifying multiple clients within the DOT is important. 
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CHAPTER 2: Exploratory Analysis of Run-Off-Road Crash 

Patterns 
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2.1.Introduction 

 

Roadway departure (RwD) occurs when a vehicle departs from the traveled way by crossing 

an edgeline or a centerline [93]. RwD events comprise both run-off-road (ROR) and cross-

median/centerline head-on collisions. Most head-on crashes are similar to ROR crashes—in both 

cases, the vehicle strays from its travel lane [94]. Factors contributing to ROR collisions can be 

divided into two major categories: infrastructure and environmental factors and driver factors. 

Examples from the first include the effect of weather on pavement conditions, travel lanes that are 

too narrow or have substandard curves, and unforgiving roadsides. Driver factors include traveling 

too fast through a curve or down a grade; a driver attempting to avoid a vehicle, an object, or an 

animal in the travel lane; and inattentive driving due to distraction, fatigue, sleep, or drugs [95]. 

Compared to other crash types, RwD is one of the most severe types of crashes [96]. An analysis 

of statistics from the Fatality Analysis Reporting System (FARS) database for crash data from 

2007 to 2013 reveal that an average of 59 percent of annual motor vehicle traffic fatalities in the 

United States occurred due to RwD [97]. Moreover, according to the FHWA, 80 percent of total 

ROR fatalities occurred on rural highways, and about 90 percent of those occurred on two-lane 

roads [98, 99], the roadway type upon which this chapter is focused.  

In order to determine the most significant contributing factors, and then develop effective 

safety countermeasures, these numbers require further analysis. A major challenge for state and 

local agencies is to find patterns in these huge databases. Exploratory data analysis (EDA) is an 

approach by which patterns, changes, and anomalies in large datasets may be determined, beyond 

the hypothesis testing task or formal modeling [100, 101]. Using a variety of mostly graphical 

techniques (e.g., box plot, scatter plot, multiple correspondence analysis, and principal component 

analysis), EDA can extract specific information from datasets and transform it into an 

understandable structure. Since ROR crashes accounted for the majority of RwD events (about 80 

percent), this chapter uses multiple correspondence analysis (MCA) to identify the key factors 

contributing to ROR collisions related to the roadway and roadside geometric design features of 

rural two-lane roads. The MCA method identifies patterns in complex datasets and measures 

significant contributing factors and their degree of association. To employ this method, datasets 
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from the United States Road Assessment Program (usRAP), a program of the American 

Automobile Association (AAA) Foundation for Traffic Safety, were obtained and five years 

(2009-2013) of ROR crash data in Illinois were gathered. To achieve the program’s Toward Zero 

Deaths vision, agencies are working to decrease the frequency and severity of RwD crashes. The 

results of this chapter can help researchers and transportation agencies to get a better knowledge 

of the major contributing factors to ROR crashes and prioritize the locations where safety 

countermeasures should be implemented (e.g., signage, pavement safety measures, and roadside 

design improvements). 

 

2.2.Prior Work 

 

There have been a considerable number of studies identifying various contributing factors to 

ROR crashes, using a variety of data collection and data analysis methods. In an attempt to identify 

contributing factors to ROR crashes, McLaughlin et al. [102] obtained the dataset from a 100-car 

naturalistic driving study. In each car, seven various software and hardware instruments had been 

installed to collect data. In the study, an ROR event was identified as having occurred when the 

subject vehicle passed or touched a roadway boundary (e.g., edge line marking and pavement 

edge). The study results revealed that a single factor contributed to 75 percent of the ROR events, 

followed by two other factors contributing 22 percent. The analysis results showed that the most 

common factors contributing to ROR events included: distraction, short following distance, low 

friction, narrower lane, and roadside geometric configurations. Additionally, 36 percent of the 

ROR events involved distractions due to non-driving tasks and 30 percent of the ROR events 

happened on road curves. Liu and Subramanian [103] evaluated various contributing factors 

associated with single-vehicle ROR crashes. Their results showed that horizontal road alignment, 

area type, speed limit, roadway geometric characteristics, and lighting conditions significantly 

affect the frequency and severity of ROR crashes. Lord et al. [98] investigated the factors 

contributing to RwD crashes on two-way two-lane rural roads in the state of Texas. The authors 

divided the contributing factors into three groups, comprising highway design characteristics (i.e., 

lane width, shoulder width and type, roadside design, pavement edge drop-off, horizontal 

curvature and grades, driveway and pavement surfaces, and traffic volume), human factors (i.e., 
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speeding, alcohol and drug use, and age and gender), and other factors (i.e., time of day, vehicle 

type). The data for the crashes, geometric road characteristics, bridges and curves, and traffic 

characteristics were gathered from various databases and then combined. The results demonstrated 

that, compared to tangent sections, wider shoulders yielded greater safety effects on horizontal 

curves. Additionally, most RwD crashes occurred on weekends, being attributed to people driving 

under the influence (DUI). Unlike driveway density, which had a little impact on RwD crashes, 

lighting conditions had a great influence on the probability of an RwD crash occurrence.  

In another study conducted by the National Highway Traffic Safety Administration (NHTSA), 

driver inattention, driver fatigue, roadway surface conditions, driver blood alcohol presence, 

drivers’ level of familiarity with the roadway, and driver gender were identified as the most 

significant factors contributing to ROR crashes [104]. Jalayer and Zhou [105] presented a new 

approach to evaluating the safety risk of roadside features for rural two-lane roads based on 

reliability analysis. The authors confirmed that reliability indices could serve as indicators to gauge 

safety levels. Eustace et al. [106] identified the most significant factors contributing to severe ROR 

crashes (i.e., injury and fatal) using generalized ordered logit regression. Their results 

demonstrated that driver conditions (e.g., impaired drivers), road alignments (e.g., curves), 

roadway characteristics (e.g., grade), gender (e.g., male), and roadway surface conditions (e.g., 

wet) increased the likelihood of severe ROR crashes. In an attempt to determine unforgiving 

roadside contributing factors, Roque et al. [107] collected ROR crash data on freeway road 

sections in Portugal and developed multinomial and mixed logit regression models, accordingly. 

The empirical findings of this study indicated that critical slopes and horizontal curves 

significantly contributed towards the fatal ROR crashes. In 2015, the American Traffic Safety 

Services Association (ATSSA) published a booklet as an executive summary of various case 

studies to educate transportation practitioners regarding ROR crashes and associated safety 

countermeasures [108]. In this booklet, countermeasures are categorized as signs (e.g., chevron), 

pavement safety (e.g., high friction surface treatments), and roadside design (e.g., clear zone 

improvements). The results of this study found pavement safety countermeasures, compared to 

other categories, to be the most effective in reducing total ROR crash frequency and severity. 
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Regarding the methodology outlined in this study, while there is an extensive body of literature 

on the application of statistical modeling in transportation science [2-10, 21-39, 109-111], few past 

studies have applied multiple correspondence analysis (MCA) to highway safety. Das and Sun 

[112] employed MCA to analyze eight years’ worth of vehicle-pedestrian crash data in Louisiana. 

In another study, Das and Sun [113] applied MCA method to determine the contributing factors in 

fatal ROR crashes using eight years (2004-2011) of Louisiana crash data. Using MCA, Factor et 

al. [114] investigated the social morphology of car accidents over a 20-year period. Nallet et al. 

[115] employed MCA to identify the effect of driving license points recovery courses on attending 

drivers’ road crashes. Kim and Yamashita [116] also used MCA to explore the characteristics of 

pedestrian-involved collisions in Hawaii. In another study, Fontaine [117] applied MCA method 

to analyze the topology of vehicle-pedestrian accidents.  

It should be noted that although there are a considerable number of studies of the factors 

contributing to ROR crashes [118-135], very few have used graphical EDA techniques for crash 

analysis. To our knowledge, no previous analyses of the usRAP database have investigated the 

effects of roadway and roadside geometric design features on ROR crash frequency and severity, 

which we address in this chapter. 

 

2.3.Method and Data 

 

2.3.1. Multiple Correspondence Analysis 

 

MCA, as an increasingly popular EDA technique, is a powerful method for analyzing and 

graphically presenting the relationship patterns among several categorical (nominal-scale) 

dependent variables in large and complex datasets [112]. MCA is able to interpret the large datasets 

without the necessity of any preconditions [112, 115, 136]. Moreover, in both of count data models 

and crash severity models the sample size significantly influences model performance [137]. 

MCA’s graphical overviews simplify the expression of the relationships between variables, 

thereby making interpretation easier [113, 138-139]. More detailed descriptions of the MCA 

method and its development history can be found in Das and Sun [112], Greenacre and Blasius 

[139], Gifi [140] and Le Roux and Rouanet [141]. 
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Denoting I as the set of i individual records and J as the set of j categories of all variables, 

MCA is performed on an I×J design or indicator matrix [112, 141]. Therefore, an entry in the cell 

(i, j) includes the individual record i and category j. For instance, gender is one nominal variable 

with two values, male vs. female, corresponding “0 1” for the male and “1 0” for the female. 

Accordingly, the completed matrix includes the binary columns with one and only one column, 

per nominal variable, which takes the value of “1” [113]. The categories can be either qualitative 

or represent the outcome of the splitting of quantitative variables into categories. In MCA, 

associated categories are placed close together in a Euclidean space, leading clouds, or 

combinations of points that have similar distributions [113, 141]. Notably, MCA produces two 

point clouds, including an individual records cloud and a categories cloud, which are defined by 

one-, two-, or three-dimensional graphs [112, 113]. It should be noted that the distances between 

points within a variable in the N-dimensional graph are summaries of all the information about the 

similarities between all the individual records [112, 139]. Since a lower-dimensional space that 

includes all or nearly all of the information is desirable, especially for large and complex databases, 

the two-dimensional graph is the most convenient, with its illustrative planar surface [112, 139]. 

The fundamental principles of the two types of point clouds are described in the following sections. 

 

2.3.1.1. Cloud of Individuals 

 

As mentioned above, the construction of clouds is based on the set of all distances between 

individual records for a variable in the database, for which different categories have been selected. 

In other words, if two individual records i and i´ select the same category for variable m, the 

distance between them will be zero [112]. Otherwise, for each variable, the squared distance 

between individuals associated with each category is calculated based on Equation 2.1 

[112, 113, 141]: 

 

𝑑𝑚
2 (𝑖, 𝑖´) =

1

𝑓𝑗
+

1

𝑓
𝑗´
         (2.1) 

where: 𝑑𝑚
2 (𝑖, 𝑖´) = squared distance between individuals 𝑖 and 𝑖´for variable 𝑚 

𝑓𝑗 = relative frequency of individual records that selected category 𝑗 

𝑓𝑗´ = relative frequency of individual records that selected category 𝑗´. 
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For variable “lane width”, as an example, the individual records i and i´ are two different 

roadway segments and the categories j and j´ are two different lane widths (e.g., “less than 9 ft.” 

and “9 to 10.6 ft.”). The relative selection frequency of each category is defined as the total number 

of individual records that chose that particular category divided by the total number of individual 

records (n) in the database [112, 113]. In order to obtain the overall squared distance between two 

individual records i and i´, all individual squared distances must be added together, as shown in 

Equation 2.2 [112, 113]: 

𝐷2(𝑖, 𝑖´) =
1

𝑀
 ∑ 𝑑𝑚

2 (𝑖, 𝑖´)𝑚∊𝑀                      (2.2) 

 

where: 𝐷2(𝑖, 𝑖´) = overall squared distance between individuals 𝑖 and 𝑖´  

𝑑𝑚
2 (𝑖, 𝑖´) = squared distance between individuals 𝑖 and 𝑖´for variable 𝑚 

𝑀 = set of all variables. 

 

2.3.1.2. Cloud of Categories  

 

The cloud of categories has the same dimension as the cloud of individuals. Category j is 

defined by a point, namely Nj, with weight (nj), which is the number of individuals that selected 

this category [112]. The squared distance between categories j and j´ can be written as in Equation 

2.3 [112, 113]: 

(𝑁𝑗𝑁𝑗´
)2 =

𝑛𝑗+𝑛
𝑗´−2𝑛

𝑗𝑗´

𝑛𝑗𝑛
𝑗´/𝑛

                                          (2.3) 

where: (𝑁𝑗𝑁𝑗´
)2 = squared distance between categories 𝑗 and 𝑗´ 

𝑛𝑗 = number of individuals that selected category 𝑗 

𝑛𝑗´ = number of individuals that selected category 𝑗´ 

𝑛𝑗𝑗´ = number of individuals that selected both categories 𝑗 and 𝑗´. 
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2.3.2. Data 

 

In order to evaluate the proposed MCA method, the required data for crashes and 

roadway/roadside geometric features from two databases were gathered and combined. The 

historical ROR crash data for a 5-year period from 2009 through 2013 were compiled, from the 

Illinois Department of Transportation (IDOT) [9]. The roadway/roadside geometric design 

features of 4,500 300-ft roadway segments were also gathered from the usRAP database in Illinois 

[142]. The usRAP database is an efficient tool that provides information in accessible formats 

regarding crash risk from the standpoints of public and highway agencies. In the pilot program, 

the eight participating states included Florida, Illinois, Iowa, Kentucky, Michigan, New Jersey, 

New Mexico, and Utah [143]. The usRAP database contains data about roadways, roadsides, and 

bicycle and pedestrian facilities, all of which contribute to vehicle crashes.  

For the purposes of this study, a set of key variables for further investigation from among all 

the parameters included in the usRAP database was nominated, based on engineering study results 

gleaned from a comprehensive literature review. These variables comprise roadside severity, 

paved and unpaved shoulder widths, lane width, shoulder rumble strips, horizontal curvature, 

delineation condition, vertical alignment variation, road condition, land use, and speed limit. Table 

2.1 lists all the contributing variables and categories, along with their frequencies and percentages. 

According to this table, for some variables, the majority of segments fall into one or two categories. 

For instance, more than 89 percent of segments have no horizontal curvature, 98 percent of 

segments are without shoulder rumble strips, and 95 percent have good road conditions. Roadside 

severity indicates the nature of and/or distance to the nearest roadside object, which could result 

in a fatal or serious injury to vehicle occupants [144]. Since only segments with the same annual 

average daily traffic (AADT) range, 6500-7500 vehicles per day were considered, in this study, 

the effect of AADT on ROR crashes could not be considered. It should be noted that the fixed 

segmentation rule (i.e., 300ft.) and thresholds for roadway characteristics such as lane width and 

shoulder width, in this study, are defined by the usRAP database [144]. Moreover, the “crash 

severity” variable is corresponding to the most severe crash occurring on a segment in cases 

multiple crashes occurred on a segment. For the sake of readers, a flowchart of working steps is 

shown in Figure 2.1. 
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Table 2.1 Distributions of Segments Based on Study Categories 
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Table 2.1 Distributions of Segments Based on Study Categories, cont. 
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Figure 2.1 A Flowchart of Working Steps 

2.4.Results and Discussions 

 

To analyze the dataset and plot the two-dimensional graphs, R Version 3.02 statistical software 

and the FactoMineR package were employed. In a two-dimensional graphical display with two 

principle axes, associated categories are close together and form the point clouds [112, 113, 141]. 

The output is the magnitude of information associated with each dimension, which is given a value 

between 0 and 1, known as the eigenvalue [112]. The eigenvalue of each dimension can serve as 

a dependable indicator of the total variance among variables [113]. The eigenvalues of the first, 

second, and third dimensions are higher than others, so a two-dimensional graph carries most, but 

not all, the information. Figure 2.2 illustrates the percentages of variance for the top five 

dimensions. 
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Figure 2.2 Eigenvalues and Variances of the Top Five Dimensions 

Based on Figure 2.2, the first and second principle axes on the planar surface, the MCA plot, 

describes 10.9 percent of the total variances together. The low eigenvalues demonstrate that the 

variables in the database are heterogeneous due to the random nature of road segments 

characteristics and occurrence of accidents [112, 113]. Every point on each plot has its own 

coordination for all dimensions, and, obviously, the scale of the plot depends heavily on the volume 

of contributions of each dimension. Figure 2.3 depicts all the study variables and their relative 

proximity on the map.  

Regarding the interpretation of the MCA plots, it should be noted that similar objects can be 

compared based on their relative distances on the graph. In other words, individual records, 

variables, and categories within a variable may be compared just by looking at the distance 

between the points on the map [113, 140, 141]. As for non-similar objects, such as categories of 

different variables, an imaginary line from each point of interest to the centroid of the map must 

be considered, and then the angle defined between those lines. A very small angle indicates a 

relatively strong relationship, and a right angle shows that there is no association between those 

particular objects. An angle of more than 90 degrees denotes a negative association [145]. Figure 

2.3 shows that many variables are located closely to each other, thus making the same contribution 
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to all the variances. The closer a point is located to the centroid in one dimension, the less it 

contributes to the eigenvalue of that particular dimension, making it as a relatively less important 

variable [112, 113]. Therefore, for dimension one, the roadside severity of the right side, the 

roadside severity of the left side, and the horizontal curvature contributed the most. Similarly, for 

dimension two, the roadside severity of the left side, the roadside severity of the right side, and the 

paved shoulder width are the most significant variables on ROR crash frequency and severity. 

Table 2.2 lists in descending order of significance all the ROR contributing factors in this study, 

considering the coefficient of determination (R2) and a p-value of the overall test (F-test). R2 ranges 

from 0 to 1, with 0 being no relationship and 1 being a very strong relationship between the 

qualitative variable and the MCA dimension [112, 141]. As it can be seen, compared to roadside 

severity, the risk of ROR crashes is not strongly associated with delineation, land use, or vertical 

alignment variation.  

 

Figure 2.3 MCA Plot of All Study Variables 
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Table 2.2 Significance of Test Results for Key ROR Contributing Factors in Top Two 

Dimensions 
 Variable R2 p-value 

Dimension 1 

Roadside severity-right side 0.584 <0.001 
Roadside severity-left side 0.582 <0.001 
Total crash 0.512 <0.001 
Crash severity 0.393 <0.001 
Horizontal curvature 0.191 <0.001 
Paved shoulder width 0.131 <0.001 
Unpaved shoulder width 0.088 <0.001 
Lane width 0.037 <0.001 
Delineation 0.017 <0.001 
Road condition  0.015 0.002 

Shoulder rumble strips 0.013 0.003 

Dimension 2 

Roadside severity-left side 0.487 <0.001 
Roadside severity-right side 0.476 <0.001 
Total crash 0.288 <0.001 
Crash severity 0.182 <0.001 
Paved shoulder width 0.127 <0.001 
Speed limit 0.121 <0.001 
Unpaved shoulder width 0.102 <0.001 
Land use-left side 0.089 <0.001 
Horizontal curvature 0.078 <0.001 
Lane width 0.068 <0.001 
Delineation 0.039 <0.001 
Land use-right side 0.031 <0.001 

 

Figure 2.4 shows the top 20 categories that contributed the most to the two-dimensional plot. 

Based on the relative proximity of points, several point clouds for categories can be created. 

According to this figure, one combination cloud correlates five ROR crashes with sharp horizontal 

curvature and the presence of a cliff as a roadside condition. This means that segments with a 

severe roadside condition and horizontal curvature are associated with a significant increase in the 

likelihood of ROR crashes, which is consistent with the findings of the majority of existing 

literature [105, 107, 121]. Additionally, based on another cloud, most segments with three crashes 

had no shoulders and moderate horizontal curvature. This indicates that presence of shoulders and 

curves with larger radii decrease the likelihood of ROR crashes. These results are in good 

agreement with the findings of Roque et al. [107], Lord et al. [98], and Van Petegem et al. [132]. 

Another point cloud associates factors such as injury crashes, distance to fixed objects between 0 

and 15 ft., two crashes, and the presence of a traffic barrier. Moreover, the cloud links the PDO 

crashes to the paved shoulder widths of 3 to 7.9 ft. These results are also in line with the finding 

of another study conducted by Lord et al. [98]. 
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 Figure 2.4 MCA Plot of Top 20 Key Categories

2.5.Conclusions 

 

This chapter utilized MCA method to identify the factors contributing to ROR crashes through 

combining usRAP data and historical crash records. To achieve the FHWA’s Toward Zero Deaths 

vision, one of the challenges researchers and state DOTs face is how to identify key contributing 

factors within large and complex datasets, and then how to implement effective safety 

countermeasures accordingly. In conventional regression models, unlike MCA, it is required to 

hold the basic assumptions of regression truth and any deviation may result in incorrect outcomes 

[112]. Moreover, very small and very large sample sizes significantly influence performances of 

both count data models and crash severity models [137]. Since it is always possible to transform a 

quantitative variable into a categorical variable, and since a multidimensional approach to a crash 

will always involve a large set of categorical variables, this method is of particular interest.  
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To perform the model, five years’ worth of ROR crash data from 2009 to 2013 for the state of 

Illinois were obtained. In this paper, we evaluated the characteristics of the roadways and roadsides 

that affect ROR crashes for 4,500 300-ft segments, gathered from the usRAP database. More 

specifically, no previous analyses of the usRAP database have investigated the effects of roadway 

and roadside geometric design features on ROR crash frequency and severity. These features 

include roadside severity, paved and unpaved shoulder widths, lane width, shoulder rumble strips, 

horizontal curvature, delineation condition, vertical alignment variation, road condition, land use, 

and speed limit. According to the obtained results, the main contributing factors to ROR crashes 

are roadside severity, horizontal curvature, and shoulder width. Moreover, the likelihood of a 

collision with a fixed object off the road, such as s concrete barrier, is associated with increased 

severity of ROR crashes. Additionally, the results indicate that providing paved shoulders, with a 

minimum width of 3 ft., is associated with reduced ROR crash severity. It was also found that the 

risk of ROR crashes is not strongly associated with delineation, land use, or vertical alignment 

variation. One of the reasons we obtained such results is the disproportionate proportion of 

segments within these variables categories, which can be improved by a wider set of data.  

The study results confirm that our proposed approach is suitable for recognizing the patterns 

of ROR crashes, when combining multiple large datasets at the state level, or even at the regional 

level. As for the total explained variances by the study variables, eigenvalue correction can be 

conducted on the Burt matrix to increase the variances [112, 113, 138]. Possible extension of this 

study can focus on, including person-level data to consider the effect of drivers’ characteristics on 

crash occurrences. It should be noted that although the approach set forth here does not calculate 

the marginal effects of the variables, the ease of analyzing the big crash data following this 

approach in identifying the most statistically significant combinations of factors is exceptional. 

Moreover, taking advantage of the properties of MCA method, it is possible to not only identify 

contributing factors but also define associations between these factors. As such, MCA certainly 

has the potential to help state DOTs prioritize effective safety countermeasures with multiple 

benefits to mitigate ROR crash frequency and severity based on their large databases. 
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CHAPTER 3: Overview of Safety Countermeasures for Roadway 

Departure Crashes 
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3.1.Introduction 

 

As discussed in the previous chapter, RwD crashes constitute one of the most severe types of 

crashes. Figure 3.1 depicts the percentage of total RwD fatal crashes across the United States, 

categorized by the first event in the crash. According to a query of seven years of crash data 

(20072013) from the Fatality Analysis Reporting System (FARS) database, an average of 57 

percent of motor vehicle traffic fatalities occurred each year due to RwD in the United States [97]. 

More information about this database can be found at NHTSA [97] and Baratian-Ghorghi et al. 

[146]. The distribution of this number differs between states (Figure 3.2). In addition, the majority 

of RwD crashes occurred during the nighttime and inclement weather conditions (e.g., fog, snow).  

 

Figure 3.1 Percentage of Fatal Motor Crashes in the United States in 2013 [147] 

Several strategies to reduce the number of RwD crashes have been identified by the American 

Association of State Highway and Transportation Officials (AASHTO) including [148]:   

 Pavement edgeline installation, 

 Centerline and shoulder rumble strip installation, 

 Pavement marking enhancement, 

 Shoulder drop-offs elimination, 

 Safer slopes design, 

 Object removal/relocation within the clear zone, 

 Object delineation using retroreflective tape, 

 Barrier design improvement, 

 Horizontal curve geometric improvement, and 

 Skid-resistant roadway surface provision. 
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Figure 3.2 Average Percentage of RwD Fatalities in Each State (2007-2013) [147] 

State RwD State RwD State RwD

Vermont 79.0% Alabama 64.0% California 49.0%

Wyoming 78.0% Kansas 64.0% Michigan 49.0%

West Virginia 75.0% Nebraska 63.0% Illinois 49.0%

Montana 73.0% Wisconsin 63.0% Delaware 48.0%

Arkansas 72.0% Washington 63.0% Nevada 48.0%

Maine 71.0% Alaska 63.0% Arizona 46.0%

Kentucky 69.0% Oklahoma 63.0% New Jersey 46.0%

Tennessee 69.0% South Dakota 62.0% New Mexico 44.0%

Idaho 69.0% Pennsylvania 62.0% Florida 43.0%

New Hampshire 69.0% South Dakota 62.0% Dist. of Columbia 29.0%

Virginia 68.0% Rhode Island 62.0%

North Dakota 66.0% South Carolina 61.0%

Missouri 65.0% North Carolina 61.0%

Oregon 65.0% Louisiana 61.0%

Ohio 61.0%

Iowa 60.0%

Colorado 60.0%

Connecticut 58.0%

Indiana 57.0%

Massachusetts 57.0%

Georgia 56.0%

Hawaii 55.0%

Texas 54.0%

Mississippi 54.0%

Utah 52.0%

Minnesota 52.0%

Maryland 50.0%

Average Annual Roadway Departure Fatalities (2007-2013)

Group 1 (65% and Higher) Group 2 (Between 50-65%) Group 3 (Below 50%)
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Not only are most of these strategies low-cost countermeasures but they can also be 

implemented systematically. This chapter provides a brief overview of cost-effective 

improvements for preventing vehicle departures from roadways. It is a summary of a recent 

publication by the American Traffic Safety Services Association (ATSSA), which can help 

transportation agencies better understand the effectiveness, and prioritize the implementation of 

each RwD safety countermeasure [108].  

 

3.2.Roadway Departure Safety Countermeasures 

 

Countermeasure implementation case studies for mitigating RwD crashes were developed 

based upon a comprehensive literature review and input from state and local agencies. RwD safety 

countermeasures were divided into three major categories: signs, pavement safety, and roadside 

design. Figure 3.3 illustrates the 14 RwD safety countermeasures discussed in this chapter. Table 

3.1 lists the 14 countermeasures, the evaluation method used, the results obtained, and the relevant 

contact agencies. As shown in the table, the percentage reduction of the total number of RwD 

crashes varies between 23 and 91, depending on the safety countermeasure. Similarly, for the total 

number of ROR crashes, the reduction ranges from 22.1 percent to 61.6 percent. Most agencies 

used a simple before-and-after evaluation method and a few determined benefit-cost (B/C) ratios. 

The simple before-and-after method, is based on the assumption that if no improvement has been 

made, the expected number of the crashes would remain the same as in the before period [149]. 
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Figure 3.3 RwD Crash Safety Countermeasures [108] 



 

45 

 

 
Figure 3.3 RwD Crash Safety Countermeasures, cont. [108] 
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Table 3.1 Results from the 14 Case Studies [108] 

 Safety  

Countermeasure 

Safety Evaluation 

Method 
Results  

Benefit-cost  

(B/C) Ratio 

State Agency 

Implementation 

Implementation 

Time 

Signs 

Chevron 
Empirical Bayes 

(EB) 

 Total ROR crashes: -22.1 % 

 Total crashes during dark 

condition: -24.5 % 

8.0 WSDOT 1994-2006 

Dynamic Curve Warning 

Systems (DCWSs) 
--- 

 2.6 mile per hour (mph) 

reduction in mean speed 

 76 % of vehicle slowed down 

--- ODOT 2002 

Advanced Curve Warning 

and Advisory Speed Sign 

Simple before-and-

after 
 Before: 1 fatality per year; after: 

0 fatality 
--- KYTC 2006 

Pavement 

Safety 

High Friction Surface 

Treatments (HFSTs) 

Simple before-and-

after  Total RwD crashes in wet 

weather: -91.0 % 

 Total RwD crashes in dry 

weather: -78.0 % 

24 KYTC 2010 

Raised Pavement Markers 

(RPMs) 

Simple before-and-

after 
 Total RwD crashes: -86.0 % 

 Total injuries: -94.0 % 

 

--- ALDOT 2009 

Edge Line Pavement 

Markings  

Simple before-and-

after 
 Total RwD crashes: -23.0 % 

 Total severe RwD crashes:  

-38.0 % 

--- MoDOT 2009 

Safety Edge 

Simple before-and-

after 

 Total crashes: -5.7 % 

 Two-lane 

highways with 

paved shoulder: 

3.8 to 43.6  

 Two-lane 

highways with 

unpaved 

shoulder: 2.8 to 

62.8 

GDOT and 

INDOT 
2005 

Centerline Rumble Strips 

(CLRS) 

Simple before-and-

after 
 Total crashes: -33.0 % 

 Total RwD crashes: -31.0 % 

 Total head-one crashes: -35.0 % 

 Total opposite-direction 

sideswipe crashes: -46.0 % 

--- MDOT 2008-2010 
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 Safety  

Countermeasure 

Safety Evaluation 

Method 
Results  

Benefit-cost  

(B/C) Ratio 

State Agency 

Implementation 

Implementation 

Time 

Shoulder Rumble Strips 

(SRS) 

Simple before-and-

after 
 Total ROTRR crashes: -47.0 to 

61.6 % 

 Total severe ROTRR crashes:  

-15.3 to 66.6 % 

50 WSDOT 2000 

Roadside 

Design 

Cable Barrier 
Simple before-and-

after 
 Before: 19 fatal crashes; 

   after: 0 fatal crash 
--- MnDOT 2004-2008 

Guardrail 
Simple before-and-

after 
 Total severity and RwD index: -

16.6 to 36.7 % 
--- NCDOT 1997-2010 

Shoulder Widening 
Simple before-and-

after 
 Total severity and RwD index: -

43.7 to 69.2 % 
--- NCDOT 2002-2011 

Breakaway Supports for 

Signs and Lighting 
--- --- --- --- --- 

Clear Zone Improvements 
Simple before-and-

after 
 Total crashes: -38.0 % --- Iowa DOT 2006 

Pavement 

Safety (cont.) 
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3.2.1. Signs 

 

According to the FARS database, approximately 83% of horizontal curve fatalities are roadway 

departures [97]. Enhancing curve delineation with signs is typically considered to be a low-cost 

safety improvement. These signs alert drivers to changes in road alignment and provide 

information on the actions to be taken. For example, a sign may encourage drivers to reduce their 

speeds. When placed and maintained appropriately, curve signage may reduce the frequency and 

severity of RwD crashes. Based on the previous studies [43, 150], signs are only effective when 

they clearly convey the intended message in both day and nighttime conditions. 

 

3.2.1.1. Chevrons 

 

According to the Manual on Uniform Traffic Control Devices (MUTCD), chevrons and/or 

one-direction large (Figure 3.3a) arrows shall be used where the difference between speed limit 

and the advisory speed is 15 mph or more. It is important to ensure that these signs are placed and 

aimed properly [151]. The Washington State Department of Transportation (WSDOT) conducted 

a safety evaluation analysis of chevron signs for 139 treated curves on rural two-lane roads. 

Empirical Bayes (EB) analysis results demonstrated that chevrons along horizontal curves 

decreased the total number of lane departures and crashes of all types during dark conditions by 

up to 22.1 and 24.5 percent, respectively. According to cost analysis results, chevrons are also a 

very cost-effective countermeasure, with a benefit-cost (B/C) ratio exceeding 8:1 [108].   

 

3.2.1.2. Dynamic Curve Warning Systems 

 

Dynamic curve warning systems (DCWSs) detect the speed of approaching vehicles and are 

programmed to provide drivers exceeding a certain speed threshold with a message, flashing light-

emitting diodes (LEDs), or a display of their speed (Figure 3.3b). Results from a national safety 

study indicate that, two years after installation, a 2.0 mph mean speed reduction occurred at the 

beginning of the curve [152]. The Oregon Department of Transportation (ODOT) installed a 

DCWS system in advance of a curve on Interstate 5 near Myrtle Creek in Douglas County. The 
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system consists of a dynamic message sign, a 45-mph advisory speed sign, a controller unit, a radar 

unit, and computer software. The analysis results showed that 76 percent of drivers slowed down 

following the system’s installation, with a 2.6 mph reduction in mean speed for passenger cars 

[108]. 

 

3.2.1.3. Advanced Curve Warning and Advisory Speed Sign 

 

Curve or turn warning signs are placed in advance of curves to alert drivers of what lies ahead 

on their route (Figure 3.3c). Properly installed curve warning signs have been proven to improve 

safety for horizontal curves. The cost for most commonly used curve warning signs with advisory 

speed plates ranges from $500 to $700 per sign [153]. The Kentucky Transportation Cabinet 

(KYTC) installed an LED-enhanced curve warning sign on KY 82 in Estill County. Since its 

installation in 2006, no fatalities have been recorded, despite a crash history of one fatality per 

year for three consecutive years prior to the installation of the sign [108]. 

 

3.2.2. Pavement Safety 

 

Pavement safety countermeasures can also make significant contributions to reducing the 

number of RwD crashes. Insufficient friction between the tire and pavement surface, poor visibility 

during nighttime hours, and pavement drop-off edge are factors that may contribute to a vehicle 

leaving the traveled way.  

 

3.2.2.1. High Friction Surface Treatments 

 

High friction surface treatments (HFSTs) consist of a thin layer of durable aggregates (typically 

calcined bauxite) that are highly resistant to polishing [154] (Figure 3.3d). The aggregate is bonded 

to asphalt, concrete, or other pavement surfaces using polymer binders. HFST is not meant to 

change the pavement’s structural performance. Rather, HFST provides greater friction, allowing 

motorists to maintain better control in dry and wet road conditions, resulting in reduced numbers 

of RwD crashes. According to the FHWA Every Day Counts (EDC) 2012 Initiatives, a B/C ratio 
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of about 24:1 can be achieved by implementing pavement friction treatments [155]. The KYTC 

launched a 3-year HFST program to enhance friction on horizontal curves at 75 locations statewide 

in 2010. The safety analysis results confirm that the total number of RwD crashes at the treated 

sites dropped by 91 percent and 78 percent in wet and dry weather conditions, respectively [108]. 

 

3.2.2.2. Raised Pavement Markers 

 

Raised pavement markers (RPMs) are often used by transportation agencies as delineation 

treatments to improve nighttime visibility, particularly in wet pavement conditions (Figure 3.3e). 

According to the AASHTO’s Strategic Highway Safety Plan (SHSP), RPMs are considered to be 

an effective, low-cost strategy for mitigating RwD crashes [156]. Assisted by the FHWA and the 

Alabama Department of Transportation (ALDOT), Mobile County in Alabama systematically 

applied RPMs along 10 rural roadways with the highest number of RwD crashes. In this project, 

RPMs were installed with 80-foot spacing in tangent sections of roadways, 40-foot spacing 

between the advanced warning curve sign and the beginning of the curve, and 20-foot spacing 

through the curve. Crash analysis results reveal an average annual decrease of about 86 percent for 

RwD crashes and about a 94-percent reduction in injuries [108]. 

 

3.2.2.3. Edge Line Pavement Markings 

 

Edge line pavement markings (Figure 3.3f) distinguish travel lanes from the adjacent shoulders 

to delineate the travel path. According to the MUTCD, the edge line markings on the right edge of 

the roadway shall be white. In addition, the normal width of edge line markings is 4 to 6 inches 

and wide edge line markings are to be at least twice the width of a normal line [151]. From 2009 

to 2012, the Missouri Department of Transportation (MoDOT) initiated a program to install edge 

line marking on eligible high risk rural roads (HRRRs). First, MoDOT performed a safety 

evaluation of implemented countermeasures on 73 high-risk roadway segments. Based on the 

safety analysis results, the total number of RwD crashes and severe RwD crashes decreased by 23 

to 38 percent following the installation of edge line markings [108]. 
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3.2.2.4. Safety Edge 

 

As determined by the FHWA in 2012, the Safety Edge is one of nine proven safety 

countermeasures (Figure 3.3g). This strategy mitigates the vertical elevation difference by sloping 

the edge of the pavement to 30 degrees during paving or resurfacing projects. A Safety Edge is 

installed using one of several commercially available devices that can be attached to the hot-mix 

asphalt (HMA) paver [157], and is also highly cost-effective. The added cost of resurfacing with 

this treatment was determined to be very small, because the asphalt must simply be reformed to 

create the Safety Edge. The Midwest Research Institute (MRI) conducted a safety evaluation of 

the Safety Edge at 261 treated sites (685 miles) in Georgia and 148 sites (514 miles) in Indiana. 

The evaluation results showed a 5.7 percent reduction in total crashes after the implementation of 

the Safety Edge. Additionally, the B/C ratio for two-lane highways with paved shoulders ranged 

from 3.8 to 43.6 for Georgia and from 3.9 to 30.6 for Indiana. For two-lane highways with unpaved 

shoulders, the B/C ratio ranged from 3.7 to 62.8 for Georgia and from 2.8 to 12.8 for Indiana [108]. 

 

3.2.2.5. Centerline Rumble Strips 

 

Centerline rumble strips (CLRS) are a longitudinal safety feature that can be installed at or 

near the centerline of undivided roadways (Figure 3.3h). CLRSs include a series of milled or raised 

elements on the pavement [158]. Tires rolling over rumble strips generate noise and vibration 

which alert a distracted or drowsy driver to make a safe steering correction. The Michigan 

Department of Transportation (MDOT) initiated a CLRS installation program during the period 

from 2008 to 2010. Approximately 5,400 miles of non-freeway roadways were included in this 

program. The study results proved that the implementation of rumble strips resulted in a significant 

reduction in both center line and edge line encroachments in tangent sections and through curves 

[108]. More specifically, after CLRS installation, the number of center line encroachments to the 

left side within the curves dropped by 87 percent, and there was a 33 percent reduction in all crash 

types. Additionally, the number of opposite-direction sideswipe collisions, multi-vehicle head-on 

crashes, and single-vehicle RwD crashes decreased by 46, 35, and 31 percent, respectively [108]. 
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3.2.2.6. Shoulder Rumble Strips 

 

Shoulder rumble strips (SRS) are commonly installed in paved shoulders that are adjacent to 

the travel lane (Figure 3.3i). Like CLRS, SRS provide acoustical and vibrational warnings to 

drivers who are straying from their travel lane. According to survey results from 50 state DOTs, 

the B/C ratio for SRSs was estimated to be approximately 50:1 [159]. The WSDOT investigated 

the possibility of applying SRS on undivided highways. To date, WSDOT has installed over 260 

miles of a mix of milled and raised SRS on its rural two-lane undivided highways. In early 2013, 

the WSDOT undertook a review of historical crash data over the nine years from 2002 to 2010. 

The study examined a total of 190 roadway miles with SRS in 45 segments, covering all 

geographic areas of the state [108]. In cases where SRS had been added during or after CLRS 

installation, the results showed that run-off-road to the right side (ROTRR) crash rates were 

reduced by 47.0 to 61.6 percent for crashes of all severity types, and by 15.3 to 66.6 percent for 

fatal and serious injury crashes, respectively.  

 

3.2.3. Roadside Design 

 

The severity of ROR crashes depends on the roadside features, including sideslope, fixed-

object density, offset to fixed objects, and shoulder width. Collision with a fixed object has been 

identified as the primary harmful event in ROR crashes [160]. A recent inquiry of the FARS 

database revealed that 7,416 people perished in crashes involving roadside fixed objects in 2012, 

accounting for 22 percent of the total fatalities for that year [97]. Some practical countermeasures 

to enhance roadside safety include roadway cross-section improvements, hazard removal or 

modification, and delineation. These countermeasures have been used in all area types (i.e., rural, 

suburban, and urban) to keep vehicles in travel lanes and to reduce potential collisions with 

roadside objects, such as trees, signs, and utility poles [94]. 

3.2.3.1. Cable Barrier 

 

A barrier is a device designed to stop or redirect errant vehicles to prevent a more serious crash. 

Although barriers cannot reduce the total number of crashes, the benefits of cable barriers are that 
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they tend to minimize the severity of injuries by absorbing the impact of the crash and have safer 

consequence compared to vehicles striking the shielded obstacles. Flexible barriers, made from 

wire rope strung between posts (Figure 3.3j), are the most forgiving type of barriers and the best 

option for minimizing injuries to vehicle occupants [161]. A number of high-tension cable barrier 

systems are available, which remain functional after a crash and may not require immediate repairs. 

In 20042008, the Minnesota Department of Transportation (MnDOT) installed cable barriers at 

31 segments along approximately 150 freeway miles to reduce the number of fatalities and severe 

injuries caused by cross-median crashes. The safety evaluation results revealed that the number of 

fatal cross-median crashes and serious injury cross-median crashes after cable barrier installation 

dropped from 19 to 0 and 8 to 6, respectively [108]. 

 

3.2.3.2. Guardrail 

 

Guardrails (Figure 3.3k) are the most common and widely used type of barrier and can be 

effective in reducing:  

 reportable RwD crashes, 

 vehicles from hitting fixed objects, and 

 vehicles from going over steep embankments. 

The most common guardrail system used in the United States is the metal beam guardrail, 

which consists of W-shaped metal beam rail elements fastened to wood or galvanized steel posts. 

Guardrails have a low life-cycle cost since they often remain functional without immediate need 

of repair [156]. The North Carolina Department of Transportation (NCDOT) evaluated the results 

of spot safety and hazard elimination projects of 14 divisions in the state. Using a before-after 

analysis at the three treatment sites, the results showed that the percentage reduction in the total 

Severity Index and RwD Severity Index range from 16.6 percent to 36.7 percent. In this study, 

crash severity index was defined as being equal to the total number of equivalent property damage 

only (PDO) crashes (76.8 for “K=Fatal” and “A= Incapacitating injury” crashes, and 8.4 for 

“B=Non-Incapacitating injury” and “C=Possible injury” crashes) divided by the total number of 

crashes [108]. 
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3.2.3.3. Shoulder Widening 

 

Roadway shoulders, when used as a safety feature, can improve road safety not only by 

allowing drivers to recover in a stable, clear recovery area, but also by providing drivers with more 

space to maneuver to avoid crashes. In addition, a wider shoulder improves stopping sight distance 

(SSD) on horizontal curves and provides better bicycle accommodation (Figure 3.3l). Shoulder 

width can vary between 2 feet for minor rural roads and 12 feet for major roads. It can also be 

widened both inside and outside curves [162]. For low-volume roads (less than 1,000 vehicles per 

day) with narrow pavement width (less than 12 feet), it is more effective to consider narrower lanes 

with a wider shoulder [147]. Based on a before-after analysis of three treatment sites, the NCDOT 

showed reductions in the total Severity Index and RwD Severity Index ranging from 43.7 percent 

to 69.2 percent, respectively [108]. 

 

3.2.3.4. Breakaway Supports for Signs and Lighting 

 

Breakaway supports (Figure 3.3m) refer to various devices designed and constructed to break 

or yield when they are hit by a vehicle [163]. It is not always feasible to maintain object-free 

roadside clear zones (the total roadside border area starting at the edge of the traveled way); 

however, crash severity can be diminished by using breakaway supports for roadside objects. The 

2009 MUTCD mandates that post-mounted roadside sign supports in the clear zone be breakaway, 

yielding, or shielded [151]. In phone interviews with traffic and safety engineers from several state 

DOTs regarding the safety effects of breakaway supports, most agencies reported that this 

countermeasure has been proven to be effective in reducing the severity of RwD crashes and that 

no evaluation has been deemed necessary. 

 

3.2.3.5. Clear Zone Improvements 

 

A clear zone is defined by the 2011 Roadside Design Guide as “the unobstructed, traversable 

area provided beyond the edge of the through traveled way for the recovery of errant vehicles” 

[162]. This area includes shoulders, bike lanes, and auxiliary lanes, excepting those auxiliary lanes 
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that function as through lanes (Figure 3.3n). Recommended clear zone distances are most affected 

by traffic volume, speed, roadside slope, and curvature [162]. In 2006, the Iowa Department of 

Transportation (Iowa DOT) initiated a program to mitigate RwD crashes, mainly focusing on the 

removal/relocation of hazards (e.g., trees, telephone poles, mailboxes) within the clear zone area 

and shielding or delineating objects, if achieving the first option was not feasible. The safety 

evaluation results showed that the number of total crashes dropped by up to 38 percent [108]. 

 

3.3.Summary  

 

An investigation of 14 real-world case studies has provided an overview of current safety 

countermeasures practices for RwD crashes. These case study examples fall into three major 

categories: signs (i.e., chevrons, dynamic curve warning systems, and advance curve warning and 

advisory speed signs), pavement safety (high friction surface treatments, raised pavement markers, 

edge line pavement markings, safety edge, centerline rumble strips, and shoulder rumble strips), 

and roadside design (cable barrier, guardrail, breakaway supports for signs and lighting, clear zone 

improvements, and shoulder widening). The results of this chapter identify pavement safety as the 

most effective countermeasure for reducing total RwD-crash frequency and severity. One possible 

extension of this study is considering papers related to studies in other countries, covering a wider 

set of data. 
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CHAPTER 4: Evaluating the Safety Risks of Roadside Features for 

Rural Two-Lane Roads using Reliability Analysis 
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4.1.Introduction 

 

As discussed in previous chapters, roadside features (e.g., sideslope, fixed-object density, 

offset to fixed objects) can significantly impact the frequency and severity of ROR crashes. In 

order to characterize the potential of accidents with respect to roadside designs, Zegeer et al. [164] 

developed a roadside hazard rating (RHR) system, which is used in the accident prediction 

algorithm for rural two-lane highways. The RHR is a visual and subjective measure defined as the 

average hazard level in a roadside environment and has seven categories from 1 (best) to 7 (worst) 

(Figure 4.1): 

 RHR=1: Clear zone greater than or equal to 30 ft.; sideslope flatter than 1V:4H; 

recoverable 

 RHR=2: Clear zone between 20 and 25 ft.; sideslope about 1V:4H; recoverable 

 RHR=3: Clear zone about 10 ft.; sideslope about 1V:3H; marginally recoverable 

 RHR=4: Clear zone between 5 and 10 ft.; sideslope about 1V:3H; marginally forgiving 

 RHR=5: Clear zone between 5 and 10 ft.; sideslope about 1V:3H; virtually non-

recoverable 

 RHR=6: Clear zone less than or equal to 5 ft.; sideslope about 1V:2H; non-recoverable 

 RHR=7: Clear zone less than 5 ft.; sideslope of 1V:2H or steeper; non-recoverable 

 

A clear zone is defined by the American Association of State Highway and Transportation 

Officials (AASHTO) as “An unobstructed, traversable area provided beyond the edge of the 

through traveled way for the recovery of errant vehicles. The clear zone includes shoulders, bike 

lanes, and auxiliary lanes, except those auxiliary lanes that function like through lanes” [148]. 

The sideslope is defined as the slope of the cut or fill, and is expressed as a ratio of the vertical to 

the horizontal distance.  
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Figure 4.1 Roadside Hazard Rating Scale [164] 
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Consideration of the deterministic design criteria cannot identify the safety margin of the 

design output, nor does it determine the deviation from the design standards with respect to safety 

implications (e.g., identification of clear zone and sideslope values that are less than those 

recommended). A probabilistic approach, on the other hand, allows for the systematic analysis of 

uncertainties. Reliability analysis is a probabilistic method that specifies the safety margin of a 

system, based on the system’s capability to function under certain specified conditions. This 

concept has been widely employed in various fields of study, including structural design 

[165-176], earthquake engineering [177, 178], and mechanical engineering [179]. In transportation 

engineering applications, reliability analysis has been employed on a smaller scale. Specifically, 

for transportation safety, in some situations that measuring safety is difficult due to a lack of data 

or difficulty separating the impact of a single design element on frequency of collision is difficult, 

this method is of particular of interest [180, 181]. The reliability analysis has the capability to 

evaluate the safety risk associated with a particular design feature.  

In numerous definitions of reliability, establishing the performance function, or limit state 

function (LSF), is the principal step in reliability analysis. Generally, the LSF is a statement about 

the expected functional performance of the whole system. Many researchers in a variety of 

disciplines, and particularly in structural engineering, have put forth definitions of the LSF 

concept. For example, Nowak and Collins [182] characterized the LSF in terms of the difference 

between load-carrying capacity and demand or load effect. With respect to the LSF, two essential 

parameters may contribute to the safety margin: capacity and demand. Using mathematical models 

to consider the discrepancy between demand and capacity, a reliability index can be defined. This 

index rates the probabilistic characteristics of the whole system and its safety, in terms of the 

failure rate or non-compliance events [183]. 

This chapter uses reliability analysis to evaluate roadside safety levels for rural two-lane roads 

in order to define their reliability indices. Of particular interest to this study are the clear zone 

width and sideslope parameters. These two parameters identify a roadway’s RHR—the main 

measure of roadside conditions—and are key factors contributing to ROR crashes. The results of 

this chapter will help researchers, transportation agencies, and various jurisdictions to obtain 

greater understanding of the effect of roadside conditions, and specifically, practical clear zone 
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widths and sideslopes. Based on reliability indices, locations can then be prioritized for 

implementing safety countermeasures (e.g., removing/relocating roadside hazard objects or 

flattening slopes) to mitigate ROR crashes. 

  

4.2.Prior Work 

In an attempt to reduce the severity of RwD crashes on its roads, in 2006, the Iowa Department 

of Transportation (Iowa DOT) initiated a program to remove/relocate hazardous objects in the 

clear zone area (e.g., trees, telephone poles, mailboxes), or to shield or delineate those objects if 

the first option was not feasible. The safety evaluation results demonstrated that the number of 

total crashes dropped by up to 38 percent after these changes were implemented [184]. In another 

study, Zegeer et al. [164] reported that a 27 percent reduction in ROR crashes could be achieved 

by flattening a sideslope from 1V:2H to 1V:7H or more. Bella [185] investigated driver 

perceptions of roadside configurations on two-lane roads using simulation models. To evaluate 

driver behaviors with respect to speed and lateral position, the authors tested two different cross-

sections, with and without shoulders, for three roadside configurations, including: (1) only trees, 

(2) trees and barriers, and (3) trees and barriers having undergone a treatment. They used 36 drivers 

to drive in a simulator, focusing on six road scenarios. The analysis results demonstrated that only 

cross-sections influenced driver behaviors and the drivers did not change their behaviors in roads 

without barriers. In a similar study, Fitzpatrick et al. [186] explored the influence of clear zone 

width and roadside vegetation on driver behaviors with respect to vehicle speed and lateral 

position, using four combinations of clear zone widths and densities of roadside vegetation. The 

results indicated that the wider the clear zone, the greater the observed driver speed. Moreover, as 

the width of the clear zone increased, drivers tended to drive more closely to the edge of the road.  

Using zero-inflated models and nested logit models, Lee and Mannering [120] investigated the 

impact of roadside features on the frequency and severity of ROR crashes. They analyzed a 96.7-

km section of highway in Washington State. The results of this study demonstrated that the 

frequency of ROR crashes could be decreased by reducing the number of trees along the roads, 

avoiding cut side slopes, and increasing the distance between the shoulder edge and light poles. 

Regarding crash severity, the authors concluded that interactions with roadside features (e.g., light 
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poles, guardrails, trees, and slopes) contributed to crash severity. To analyze the safety level 

associated with various utility pole locations adjacent to the edge of the travel-way, El Esawey and 

Sayer [187] developed a safety performance function (SPF) in order to associate utility pole crash 

frequency with roadway and roadside conditions. The results of the study demonstrated that 

compared to fixed object density (here utility pole), the offset to the utility poles has a more 

significant impact on utility pole crash frequency.  

Holdridge et al. [188] evaluated the significant contributing factors to the severity of fixed-

object crashes using multivariate nested logit models. The authors found that the probability of 

fatal crashes increased in the presence of leading ends of guardrails and bridge rails, along with 

large wooden poles. Moreover, speeding and driving under the influence (DUI) increased the 

likelihood of crashes with severe outcomes. In an attempt to determine unforgiving roadside 

contributing factors, Roque et al. [107] collected ROR crash data on freeway road sections in 

Portugal and developed multinomial and mixed logit regression models to analyze the data. The 

empirical findings of this study indicated that critical slopes and horizontal curves significantly 

contributed to fatal ROR crashes. In another study, Hallmark et al. [134] evaluated driver behaviors 

on rural two-lane curves using data from the Strategic Highway Research Program 2 (SHRP 2) 

naturalistic driving study. Using logistic regression models, they assessed the probability of given 

types of encroachment, considering the driver, roadway, and environmental characteristics. The 

results demonstrated that the likelihood of a right-side lane departure was greater on the inside of 

a curve than on the outside.  

Ayati et al. [189] developed a roadside hazard severity indicator based on an evidential 

reasoning (ER) approach. The approach has the capability to take into account the subjective state 

of evaluation within a decision maker group. The authors considered bridges, ditches, trees, utility 

poles, rigid obstacles, dangerous terminal and transitions, and embankment as the main 

contributing factors to roadside hazard severity. The results demonstrated that the developed 

indicator can be used as a variable in crash severity prediction models in order to consider roadside 

conditions and can be employed to prioritize routes for improvements. In another study, Pardillo-

Mayora et al. [190] used roadside slope, non-traversable obstacles distance from the roadway edge, 

safety barrier installation, and alignment that participated significantly on RwD crash severity 
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levels in order to obtain a roadside hazardousness index (RHI) for Spanish two-lane roads. Based 

on the obtained results, the newly developed 5-level RHI summarize roadside safety related 

information and can be treated as a variable that includes roadside conditions in multivariate crash 

prediction models. Zou et al. [191] studied the risk of injury associated with various hazardous 

events, including roll over and strike with different roadside objects and barriers such as guardrail, 

concrete barrier, and cable barrier using a binary logistic regression model with mixed effects. The 

study found that the risk of injury associated with hitting a barrier was less than other hazardous 

events such as hitting a pole or rollover. Moreover, when traffic conditions allow, the 

recommendation to use cable barrier, guardrail, and concrete walls, respectively.  

Park and Abdel-Aty [192] evaluated the safety effects of multiple roadside treatments using 

parametric and nonparametric approaches. The authors developed generalized nonlinear models 

(GNMs) and multivariate adaptive regression splines (MARS) models to accommodate the 

nonlinearity in crash predictors. In doing so, four roadside elements, including driveway density, 

poles density, distance to poles, and distance to trees were selected. Moreover, five years’ worth 

of crash data, from 2008 to 2012, for rural undivided four-lane roadways in Florida were compiled, 

considering crash types and severity levels. Based on the results of study, the number of crashes 

was reduced followed by an increase in distance to poles and trees. Roque and Cardoso [135] 

developed a computer-aided procedure to include cost and benefits in roadside safety intervention 

decision making using installed equipment on Portuguese roadways. The authors used cost-benefit 

analysis software, which included a list of roadside safety measures, to compare different 

alternatives with various average annual daily traffic (AADT), average crash costs, discount rate, 

etc. and to analyze the effects of roadside characteristics on safety levels.  

 Hussein et al. [193] presented a reliability analysis method for calibrating geometric design 

models that would yield consistent risk levels. The authors calibrated middle-ordinate design 

charts at various probability levels, where middle ordinate is defined as the horizontal distance 

between the restrictive element and the centerline of the inside lane. The results demonstrated that 

current design guides are conservative, especially with respect to sharp curves and high speeds. 

The authors concluded that with reasonable reliability (risk) levels, significant reductions could be 

made in current design requirements. The Korean Government’s Ministry of Land, Transport, and 
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Maritime Affairs used reliability analysis to evaluate design speed in a 2011 pilot study [194]. 

Based on the design and observed speeds (and their variations), a reliability index model was 

developed to measure the crash risk for segments of Korean expressways. The authors treated 

design speed as capacity in their analysis and observed speeds as demand. Further, they 

implemented the developed reliability indices into 18 segments and then compared them with the 

actual number of crashes at these locations. The results revealed that as the safety margin (the 

differences between capacity and demand) increased, the crash rates tended to decrease.  

Although there have been a considerable number of roadside design studies [195-210], none 

have focused on reliability analysis. This valuable information could provide state departments of 

transportation (DOTs) and local agencies with a guideline for better understanding the effect of 

roadside conditions in their jurisdictions and to determine which countermeasures to implement to 

mitigate ROR crashes. 

4.3.Method and Data 

 

4.3.1. Reliability Analysis 

In order to define a reliability index, as a factor of safety, a proper LSF must first be established. 

To do so, a “failure event” or “non-compliance event” for a clear zone was defined as the measured 

clear distance being less than the practical (capacity) distance, denoted by DC in the following 

equations, as identified by the AASHTO Roadside Design Guide [148]. The capacity of the 

segments indicates their resistances against the likelihood of crashes. Although the clear zone 

width is defined based on a number of factors, including roadway design speed, traffic volume, 

embankment slope, and horizontal roadway curvature, previous studies have demonstrated that on 

high-speed roads, about 80 percent of errant vehicles can recover within 30 ft. of the edge of a 

through-traveled way [148]. Therefore, DC is assumed to be the minimum practical clear zone 

distance that provides adequate space for errant vehicles to recover. Regarding sideslope, 1V:3H 

is the threshold slope for which recovery is less likely on a fill section [148]. Therefore, a practical 

(capacity) slope (𝑆𝐶) is defined as a slope beyond which a section is non-recoverable. The LSF 

(𝑔) of the clear zone can be defined based on the observed clear zone and the practical (capacity) 

clear zone, as in Equation 4.1: 
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𝑔 = 𝐷𝑂 − 𝐷𝐶                       (4.1) 

where: 

 𝑔 = limit state function (LSF), 

𝐷𝑂 = probability density function (PDF) of observed clear zone, and 

𝐷𝐶 = PDF of practical (capacity) clear zone. 

Since the slope is often calculated as a fraction, the LSF of the sideslope differs only slightly 

from that of the clear zone, and can be defined based upon the observed sideslope and the practical 

(capacity) sideslope, as in Equation 4.2: 

𝑔 = 𝑆𝐶 − 𝑆𝑂                              (4.2) 

 

where: 

 𝑔 = limit state function (LSF), 

𝑆𝑂 = PDF of observed sideslope, and 

𝑆𝐶 = PDF of practical (capacity) sideslope. 

 

Consequently, as for the clear zone, the difference between the PDF of the practical 

(capacity) clear zone and the PDF of the observed clear zone yields the probability distribution of 

failure, namely (𝑃𝑓). The state of the failure is the condition in which 𝑔 < 0 (Figure 4.2). 

Therefore: 

𝑃𝑓 = 𝑃(𝐷𝑂 − 𝐷𝐶 < 0) = 𝑃(𝑔 < 0)                     (4.3) 

Based on the results from our comprehensive analysis, which are described later, the observed 

clear zone and the observed sideslope follow normal distributions, while the practical (capacity) 

clear zone and practical (capacity) sideslope are defined based on the manuals’ recommendations. 

Typically, when the distribution of 𝑃𝑓 is given and follows the normal distribution, the use of the 

graphical method is appropriate. In order to calculate the reliability index, a graphical approach 

was used to determine the probability of non-compliance, based upon data collected from the study 

segments. The margins of safety for the clear zone and sideslope are defined as the differences 

between the PDFs of their demand and capacity. The reliability index can be defined in terms of 

the standard deviation of the 𝑃𝑓, based on the distance between the mean value of the distribution 
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of the 𝑃𝑓 and the safety margin (𝑔 = 0). Using the graphical method, therefore, it is possible to 

calculate the reliability index as follows [166, 211]: 

𝛽 =
𝜇𝑔

𝜎𝑔
                             (4.4) 

where: 

𝛽 = reliability index, 

 𝜇𝑔 = mean of the safety margin, and 

𝜎𝑔 = standard deviation of safety margin. 

 

Figure 4.2 Graphical Relationship between Reliability Index and Statistical Parameters of 

𝑷𝒇 [166] 

However, if variables do not follow normal distributions and/or LSF is non-liner and/or LSF 

has more than two variables, it is inevitable that more complicated mathematical efforts are 

necessary (e.g., simulations, and approximate method). Using the standard normal distribution 

function, the probability of non-compliance is defined as in Equation 4.5 [166]: 

𝑃𝑓 = Φ (−𝛽)                        (4.5) 

where: 

 𝛽 = reliability index, and 

Φ = standard normal distribution. 

If the reliability index is greater than 0, this means that the capacity is greater than demand and 

the probability of non-compliance is less than 50 percent. On the other hand, if the reliability index 
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is less than 0, this indicates that demand is greater than capacity and the probability of non-

compliance will be greater than 50 percent. Table 1 illustrates the probability of non-compliance 

against a reliability index for normally distributed data. As can be seen, the probabilities of non-

compliance decrease when the reliability indices increase, indicating a more reliable and safe 

system. In Table 4.1, as an example, it was shown that a reliability index of 1.0 corresponds to a 

probability of non-compliance of around 16 percent. While for non-normal distributions the 

change in the probability of non-compliance is different, the same descending trends are present.  

Table 4.1 Probability of Failure vs. Reliability Index 

Reliability Index 
Probability of 

Failure 

0.0 0.500×10+0 

0.5 0.309×10+0 

1.0 0.159×10+0 

1.5 0.668×10-1 

2.0 0.228×10-1 

2.5 0.621×10-2 

3.0 0.135×10-2 

3.5 0.233×10-3 

4.0 0.317×10-4 

 

4.3.2.  Segment and Crash Data 

To evaluate the proposed method, data from two databases regarding crashes and roadside 

geometric design features were gathered and combined. The historical ROR crash data for a 5-year 

time period, from 2009 through 2013, were compiled from the Illinois Department of 

Transportation (IDOT) [9]. In this study, ROR crashes were only considered because ROR crashes 

accounted for the majority of the RwD events (about 80 percent) and cross centerline head-on 

collisions are not likely directly related to roadside conditions. The roadside geometric design 

features (i.e., sideslope and clear zone width) of 4,500 segments, each with a defined segment 

length of 300 ft, were also obtained from Google Earth Pro. Table 4.2 lists the distributions of the 

study segments, based on crash frequency and severity. As shown in the table, more than 64 

percent of the segments had no crashes, and less than two percent had more than three crashes. 

Since only those segments with similar roadway characteristics were considered in this study 

(speed limits between 45 and 55 mile per hour, lane widths greater than 10.6 ft., shoulder widths 
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less than 3 ft., no horizontal and vertical curvatures present, no shoulder rumble strips present, and 

good roadway conditions), the effect of those parameters on ROR crashes were not considered.  

Table 4.2 Distributions of Segments Based on Crash Frequency and Severity 

 Category Frequency Percentage (%) 

Crash severity 

Fatal 194 4.3 

Injury 477 10.6 

Property Damage Only (PDO) 909 20.2 

None (No Crash) 2920 64.9 

Crash frequency 

(number of ROR 

crashes per segment) 

Zero (No Crash) 2920 64.9 

One 1026 22.8 

Two 333 7.4 

Three 162 3.6 

Four 59 1.3 

 

4.4.Results and Discussions 

As mentioned previously, both clear zone width and sideslope are not deterministic values; 

therefore, the application of probabilistic analysis such as reliability analysis appears appropriate. 

To perform the reliability analysis, first, it is necessary to first identify distributions for the 

variables. The study segments fall into five categories (i.e., zero, one, two, three, and four) 

indicating the total number of ROR crashes that occurred in each road segment during the five-

year study period. Therefore, the PDFs of the observed clear zone and observed sideslope of 

segments for each of the five categories of crash frequency were separately specified. Using the 

MATLAB® R2014a application, the best fitted distributions of the clear zone and sideslope, based 

on their root-mean-square errors (RMSEs) were drawn as shown in Figures 4.3 and 4.4. 

Theoretically, the procedure to find the fitted normal distribution is deployed by matching the 

distribution’s peak and variance with the mean and the variance of the collected data. According 

to Figures 4.3 and 4.4, all PDFs behave as normal distributions. Moreover, the obtained normality 

test results (i.e., Shapiro-Wilk, Kolmogorov-Smirnov, and chi-square) confirmed that the observed 

clear zone and sideslope follow normal distributions. Table 4.3, as an example, presents the 

normality test results for both the clear zone and sideslope of segments without crashes with a 95-

percent confidence interval. As can be seen in the table, the computed p-values in all the tests are 

greater than the significance level (𝛼), which means that the null hypothesis cannot be rejected. In 

this case, the null hypothesis is that all the data were sampled from a population that follow a 

normal distribution. 
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Figure 4.3 Observed Clear Zone of Segments for Five Crash Categories :(a) No Crash; (b) 

One Crash; (c) Two Crashes; (d) Three Crashes; (e) Four Crashes 
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Figure 4.4 Observed Sideslope of Segments for Five Crash Categories :(a) No Crash; (b) 

One Crash; (c) Two Crashes; (d) Three Crashes; (e) Four Crashes 
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Table 4.3 Results of Normality Tests for Observed Clear Zone and Sideslope of Segments 

with No Crash 

Normality Test 
Observed Clear Zone Observed Sideslope 

p-value 𝜶 p-value 𝜶 

Shapiro-Wilk 0.51 0.05 0.54 0.05 

Kolmogorov-Smirnov 0.43 0.05 0.17 0.05 

Chi-Square  0.07 0.05 0.10 0.05 

Table 4.4 lists the statistical parameters (i.e., mean (𝜇) and standard deviation (𝜎)) of the fitted 

distributions. When looking at this table, a few points are worth mentioning. For example, the 

mean values of the observed clear zones of all studied segments vary between 7.5 ft. and 34 ft. and 

the mean values of the observed sideslopes of all studied segments fall between 0.28 (~1V:3.3H 

sideslope) and 0.47 (~1V:2H sideslope). The segments with unforgiving roadsides such as steep 

sideslopes and narrow clear zones experienced more ROR crashes, which is consistent with the 

findings of the majority of existing literature [102,103, 164, 120,184, 188-190, 207].  

Table 4.4 Statistical Parameters of the Fitted Normal Distribution 

Crash Frequency 
Observed Clear Zone Observed Sideslope 
𝝁 𝝈 𝝁 𝝈 

Zero 34.1 6.4 0.28 0.03 

One 24.6 5.5 0.31 0.06 

Two 15.4 5.2 0.34 0.05 

Three 11.9 4.5 0.42 0.04 

Four 7.5 3.0 0.47 0.02 

Table 4.5 compiles the statistical parameters of the safety margin distributions for both 

roadside features. Based on these results, the mean value of the safety margins of the clear zone 

and sideslope of segments with more crashes are negative. This means that these segments have 

clear zone widths and sideslopes that are less than practical values, as recommended in the 

manuals.  

Table 4.5 Statistical Parameters of the Safety Margin Distributions 

Crash Frequency 
Observed Clear Zone Observed Sideslope 
𝝁 𝝈 𝝁 𝝈 

Zero +4.1 6.4 +0.05 0.03 

One -5.4 5.5 +0.02 0.06 

Two -14.6 5.2 -0.01 0.05 

Three -18.1 4.5 -0.09 0.04 

Four -22.5 3.0 -0.14 0.02 

Using Eqs. (4) and (5), the reliability indices and probabilities of non-compliance for both 

roadside features for each crash category were calculated, as shown in Table 4.6. This table shows 



 

71 

 

that the reliability indices for a clear zone ranged between +0.64 and -7.50, which corresponds to 

the probabilities of non-compliance of 26 percent and 100 percent, respectively.  

Table 4.6 Probability of Non-compliance and Reliability Index vs. Crash Rate 

Crash Frequency 

(Number of ROR 

Crashes per Segment) 

Average 

AADT  

(veh/day) 

Crash Rate 

(Crashes per 

Million Vehicle 

Miles) 

Reliability 

Index 

Probability of  

Non-compliance 

Clear 

Zone 
Sideslope 

Clear 

Zone 
Sideslope 

Zero 8,650 0.00 +0.64 +1.67 0.261 0.047 

One 8,600 1.12 -0.98 +0.33 0.836 0.370 

Two 9,740 1.98 -2.81 -0.20 0.997 0.579 

Three 9,010 3.21 -4.02 -2.25 1.000 0.988 

Four 8,150 4.73 -7.50 -7.00 1.000 1.000 

It should be noted that the probability of non-compliance is not equal to the probability of crash 

occurrence. A collision may occur if a driver leaves the travel lane due to fatigue or traveling too 

fast, with respect to weather or geometric road conditions, and an object and/or steep slope exists 

on the side of the road simultaneously. To correlate the probabilities of non-compliance with the 

crash occurrences and to verify that reliability indices can be used to indicate the safety levels of 

roadside segments, five years (20092013) of ROR crash data, along with traffic volumes were 

collected and utilized. Since the reliability indices in this study were calculated based upon non-

crash statistical variables (i.e., clear zone and sideslope), it was essential that they be compared 

with actual crash data to determine whether or not they were reasonable indicators of roadside 

safety. To determine crash rates for each crash category, the number of crashes that occurred in 

the segments of the category were divided by the average of AADT volumes of all segments that 

fall into that particular category, as shown in Table 4.6. Then, the safety margins and the reliability 

indices for each crash category were separately calculated, using Equations 4.3 and 4.4.  

Table 4.6 links the probability of non-compliance to the crash rate of each crash category. As 

can be seen in the table, the crash rates increase with increases in the probabilities of non-

compliance. For example, a crash rate of 1.12 corresponds to probabilities of non-compliance of 

around 83 percent and 37 percent for the clear zone and sideslope, respectively. It should be noted 

that the probability of non-compliance describes the unsuccessful performance of whole segments, 

given only the practical and observed clear zones/sideslopes. Since only segments with similar 

roadway characteristics, apart from the roadside features studied here (i.e., clear zone and 

sideslope), were selected, the relationship between the probabilities of non-compliance/reliability 
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indices and crash occurrences can be confirmed to a great extent, ascertaining the normal 

distributions of the roadside features for each crash category.  

Figures 4.5 and 4.6 illustrate the variations of the safety margins and reliability indices with 

respect to the crash rates. As shown in Figure 4.5, as the safety margins increase, the crash rates 

decrease. These results are consistent with the findings of a study by Oh and Mun [194] 

demonstrating that as the safety margin (the differences between observed speed and design speed) 

increases, crash rates tend to decrease. This figure also shows that, with respect to the clear zone, 

the crash rates associated with a safety margin of -20 are much higher than those for a safety 

margin of 0. The former corresponds to a clear zone width of 10 ft. and the latter corresponds to a 

clear zone width of 30 ft. These results are in good agreement with the findings of Roque et al. 

[107], Van Petegem and Wegman [132], Lord et al. [98]; Jurewicz and Pyta [208]; and Ogle et al. 

[209]. Similarly, regarding sideslopes, the crash rates associated with a safety margin of -1.67, 

which corresponds to a 1V:2H sideslope, are higher than those with a safety margin of 0, or a 

1V:3H sideslope. These results are also in line with the findings of Roque et al. [107], Peng et al. 

[210], Pardillo-Mayora et al. [190]; and Zegeer et al. [164]. 

Figure 4.6 demonstrates that the greater the reliability index value, the lower the crash rate. 

This result is in good agreement with Oh and Mun’s findings [194]. More specifically, a crash rate 

corresponding to a sideslope reliability index value of -2.0 is about two times that with a value of 

0. Similarly, as for a clear zone, a crash rate for the reliability index of -4 is roughly three times of 

that for a reliability index of -1. It should be noted that the coefficients of determination (R2) in the 

polynomial regression models for the clear zone and sideslope are 0.99, and 0.98, respectively. 

Therefore, the relationship between the crash rates and the reliability indices showed a trend with 

a high coefficient of determination that validates this approach.  
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Figure 4.5 Safety Margin vs. Crash Rate 
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Figure 4.6 Reliability Index vs. Crash Rate 
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4.5.Limitations 

According to previous studies [6, 9], a significant amount of roadside information (e.g., 

roadside slope, grade, roadside fixed objects and their densities, and offset to the edge of travel 

way) is missing in many state DOT databases. One of the reasons that there are not many studies 

on the effects of parameters for RHR is the difficulty of obtaining those parameters for current and 

past years. Based on a previously conducted study, satellite imagery and aerial imagery are sound 

methods for extracting planimetric features [129]. With calibrated aerial images, the aerial imagery 

can also be utilized to derive slope information; however, depending on resolutions, these methods 

are limited to some extent in extracting information on small vertical roadside objects (e.g., sign 

posts, and fire hydrants). Therefore, limitations derived from the availability of high-resolution 

Google Earth Pro images for limited years should be considered. 

 

4.6.Conclusions and Recommendations 

This chapter utilized a probabilistic approach to develop reliability indices for roadside features 

(i.e., clear zone and sideslope) on rural two-lane roads. This represents one of the few early 

attempts to apply reliability analysis to traffic safety evaluation. The rationale for this effort was 

the need to quantify roadside safety levels by treating clear zone width and sideslope as two 

continuous, rather than discrete, variables for use in determining RHR on a scale of 1 to 7. RHR 

is the main measure of roadside conditions currently used in accident prediction algorithms for 

rural two-lane highways. This chapter provides researchers and transportation agencies with a 

better understanding of the effect of roadside conditions, in order to implement effective 

countermeasures. Relying solely on deterministic design criteria provides no information 

regarding any deviations from design standards or recommendations. To evaluate our method’s 

performance, five years of ROR crash data from 2009 to 2013 were obtained from a state of Illinois 

database. Moreover, the required roadside information for 4,500 300-ft segments were also 

gathered from Google Earth Pro. Based on the obtained results, the reliability indices for clear 

zones ranged between +0.64 and -7.50 and for sideslopes fell between +1.67 and -7.00. The 

findings of this study demonstrate that reliability indices can serve as a surrogate measure for the 

safety levels of roadside conditions. In other words, as the safety level of roadside conditions is 
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increased, their reliability index values also increase. This means that the higher the reliability 

index values, the lower the ROR crash rates. Moreover, ROR crash rates increase with an increase 

in the safety risk or probabilities of non-compliance. By considering only segments with similar 

roadway characteristics, the relationship between ROR collisions and roadside features (i.e., clear 

zone and sideslope) can be confirmed to a great extent  

To specify appropriate reliability indices, optimum reliability index values must be determined, 

which involves a determination of the trade-offs between a practical clear zone width and sideslope 

and failure cost (e.g., crash cost). The approach proposed in this chapter may be suitable for 

developing reliability indices for different scenarios with respect to various roadway 

characteristics and the practical values of clear zone widths and sideslopes at the city, county, and 

state levels. This model is also appropriate for use in road safety assessments (RSAs) and in risk 

evaluations of road segments in order to prioritize improvements with respect to their reliability 

indices.  

Possible extensions of this study can focus on two different aspects: LSF and roadside data 

collection. It should be noted that while two separate reliability models were built for clear zone 

width and sideslope, further research is desirable to combine these reliability indices in order to 

consider their combined effect on reliability to identify the series systems reliability. Additionally, 

conducting more research into this particular topic can help identify suitable LSF and target 

probability of non-compliance. Given the rapid pace of research and development in the field of 

mobile light detection and ranging (LiDAR) data processing as a highly-accurate emerging 

technology, it can be expected that this method will be an attractive solution for collecting and 

managing the nation’s roadside inventory data. As such, extraction of roadside features from 

remotely-sensed images, obtained from mobile LiDAR, can increase the accuracy of collected 

roadside features. 
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Appendix A 

Table A1. Highway Inventory Data Collection Survey 

 

Highway Safety Inventory Survey 

Illinois Department of Transportation 

Highway Asset Inventory Platform 

Oracle Spatial Network Data Model (Oracle database) 0 

ArcGIS Shapefiles (dBase database) 0 

ArcGIS Geodatabase (Access database) 0 

SQL database 0 

0=Not Used Excel Spreadsheet 0 

1=Used Other (please specify) 0 

Asset Inventory Method Technology Used 

Field Inventory (Conventional Surveying) 0 

GPS/GIS Data Logger Technology 0 

Video Log Technology 0 

Photo Log Technology 0 

Static Terrestrial Laser Scanner Technology 0 

Mobile Terrestrial Laser Scanner Technology 0 

Airborne LiDAR Technology 0 

Aerial Imagery Technology 0 

0=Not Used Satellite Imagery Technology 0 

1=Used Other (please specify) 0 
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Conventional Survey Technology 

Bridge Rails 0 

Driveway Intersections 0 

Fences 0 

Fire Hydrants 0 

Glare Screens 0 

Guardrails 0 

Impact Arrestors 0 

Jersey Barriers 0 

Junction Boxes 0 

Light Poles 0 

Luminaries 0 

Milepost paddles 0 

On-street parking 0 

Rock outcroppings 0 

Rumble Strips 0 

Shoulders 0 

Sign Supports 0 

Signals 0 

Trees 0 

Tree Groups 0 

Utility Poles 0 

Walls 0 

Roadside Slopes 0 

Slide Areas 0 

Horizontal Curve Data 0 

0=No Data Collected Longitudinal Slope Data 0 

1=Data Collected Other 0 

 

  



 

98 

 

GPS/GIS Data Logger Technology 

Bridge Rails 0 

Driveway Intersections 0 

Fences 0 

Fire Hydrants 0 

Glare Screens 0 

Guardrails 0 

Impact Arrestors 0 

Jersey Barriers 0 

Junction Boxes 0 

Light Poles 0 

Luminaries 0 

Milepost paddles 0 

On-street parking 0 

Rock outcroppings 0 

Rumble Strips 0 

Shoulders 0 

Sign Supports 0 

Signals 0 

Trees 0 

Tree Groups 0 

Utility Poles 0 

Walls 0 

Roadside Slopes 0 

Slide Areas 0 

Horizontal Curve Data 0 

0=No Data Collected Longitudinal Slope Data 0 

1=Data Collected Other 0 

 

  



 

99 

 

Video Log Technology 

Bridge Rails 0 

Driveway Intersections 0 

Fences 0 

Fire Hydrants 0 

Glare Screens 0 

Guardrails 0 

Impact Arrestors 0 

Jersey Barriers 0 

Junction Boxes 0 

Light Poles 0 

Luminaries 0 

Milepost paddles 0 

On-street parking 0 

Rock outcroppings 0 

Rumble Strips 0 

Shoulders 0 

Sign Supports 0 

Signals 0 

Trees 0 

Tree Groups 0 

Utility Poles 0 

Walls 0 

Roadside Slopes 0 

Slide Areas 0 

Horizontal Curve Data 0 

0=No Data Collected Longitudinal Slope Data 0 

1=Data Collected Other 0 
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Photo Log Technology 

Bridge Rails 0 

Driveway Intersections 0 

Fences 0 

Fire Hydrants 0 

Glare Screens 0 

Guardrails 0 

Impact Arrestors 0 

Jersey Barriers 0 

Junction Boxes 0 

Light Poles 0 

Luminaries 0 

Milepost paddles 0 

On-street parking 0 

Rock outcroppings 0 

Rumble Strips 0 

Shoulders 0 

Sign Supports 0 

Signals 0 

Trees 0 

Tree Groups 0 

Utility Poles 0 

Walls 0 

Roadside Slopes 0 

Slide Areas 0 

Horizontal Curve Data 0 

0=No Data Collected Longitudinal Slope Data 0 

1=Data Collected Other 0 
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Static Terrestrial Laser Scanner Technology 

Bridge Rails 0 

Driveway Intersections 0 

Fences 0 

Fire Hydrants 0 

Glare Screens 0 

Guardrails 0 

Impact Arrestors 0 

Jersey Barriers 0 

Junction Boxes 0 

Light Poles 0 

Luminaries 0 

Milepost paddles 0 

On-street parking 0 

Rock outcroppings 0 

Rumble Strips 0 

Shoulders 0 

Sign Supports 0 

Signals 0 

Trees 0 

Tree Groups 0 

Utility Poles 0 

Walls 0 

Roadside Slopes 0 

Slide Areas 0 

Horizontal Curve Data 0 

0=No Data Collected Longitudinal Slope Data 0 

1=Data Collected Other  0 
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Mobile Terrestrial Laser Scanner Technology 

 

Bridge Rails 0 

Driveway Intersections 0 

Fences 0 

Fire Hydrants 0 

Glare Screens 0 

Guardrails 0 

Impact Arrestors 0 

Jersey Barriers 0 

Junction Boxes 0 

Light Poles 0 

Luminaries 0 

Milepost paddles 0 

On-street parking 0 

Rock outcroppings 0 

Rumble Strips 0 

Shoulders 0 

Sign Supports 0 

Signals 0 

Trees 0 

Tree Groups 0 

Utility Poles 0 

Walls 0 

Roadside Slopes 0 

Slide Areas 0 

Horizontal Curve Data 0 

0=No Data Collected Longitudinal Slope Data 0 

1=Data Collected Other  0 
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Airborne LiDAR Technology 

Bridge Rails 0 

Driveway Intersections 0 

Fences 0 

Fire Hydrants 0 

Glare Screens 0 

Guardrails 0 

Impact Arrestors 0 

Jersey Barriers 0 

Junction Boxes 0 

Light Poles 0 

Luminaries 0 

Milepost paddles 0 

On-street parking 0 

Rock outcroppings 0 

Rumble Strips 0 

Shoulders 0 

Sign Supports 0 

Signals 0 

Trees 0 

Tree Groups 0 

Utility Poles 0 

Walls 0 

Roadside Slopes 0 

Slide Areas 0 

Horizontal Curve Data 0 

0=No Data Collected Longitudinal Slope Data 0 

1=Data Collected Other  0 
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Satellite Imagery Technology 

Bridge Rails 0 

Driveway Intersections 0 

Fences 0 

Fire Hydrants 0 

Glare Screens 0 

Guardrails 0 

Impact Arrestors 0 

Jersey Barriers 0 

Junction Boxes 0 

Light Poles 0 

Luminaries 0 

Milepost paddles 0 

On-street parking 0 

Rock outcroppings 0 

Rumble Strips 0 

Shoulders 0 

Sign Supports 0 

Signals 0 

Trees 0 

Tree Groups 0 

Utility Poles 0 

Walls 0 

Roadside Slopes 0 

Slide Areas 0 

Horizontal Curve Data 0 

0=No Data Collected Longitudinal Slope Data 0 

1=Data Collected Other 0 
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Aerial Imagery Technology 

Bridge Rails 0 

Driveway Intersections 0 

Fences 0 

Fire Hydrants 0 

Glare Screens 0 

Guardrails 0 

Impact Arrestors 0 

Jersey Barriers 0 

Junction Boxes 0 

Light Poles 0 

Luminaries 0 

Milepost paddles 0 

On-street parking 0 

Rock outcroppings 0 

Rumble Strips 0 

Shoulders 0 

Sign Supports 0 

Signals 0 

Trees 0 

Tree Groups 0 

Utility Poles 0 

Walls 0 

Roadside Slopes 0 

Slide Areas 0 

Horizontal Curve Data 0 

0=No Data Collected Longitudinal Slope Data 0 

1=Data Collected Other 0 
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Primary Method 

Conventional Survey Technology  0 

GPS/GIS Data Logger Technology 0 

Video Log Technology 0 

Photo Log Technology 0 

Static Terrestrial Laser Scanner Technology 0 

Mobile Terrestrial Laser Scanner  Technology 0 

Airborne LiDAR Technology 0 

Satellite Imagery Technology 0 

1=Primary Method Aerial Imagery Technology  0 

 

Equipment Cost Rating for  

Primary Method 

Unacceptable 0 

Fair 0 

Good 0 

Very Good 0 

Excellent 0 

 

Data Accuracy Rating for  

Primary Method 

Unacceptable 0 

Fair 0 

Good 0 

Very Good 0 

Excellent 0 

 

Data Completeness Rating for  

Primary Method 

Unacceptable 0 

Fair 0 

Good 0 

Very Good 0 

Excellent 0 

 

Crew Hazard Exposure Rating for 

 Primary Method  

Unacceptable 0 

Fair 0 

Good 0 

Very Good 0 

Excellent 0 
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Data Collection Cost Rating for  

Primary Method  

Unacceptable 0 

Fair 0 

Good 0 

Very Good 0 

Excellent 0 

 

Data Collection Time Rating for  

Primary Method 

Unacceptable 0 

Fair 0 

Good 0 

Very Good 0 

Excellent 0 

 

Data Reduction Time Rating for  

Primary Method 

Unacceptable 0 

Fair 0 

Good 0 

Very Good 0 

Excellent 0 

 

Data Reduction Cost Rating for  

Primary Method 

Unacceptable 0 

Fair 0 

Good 0 

Very Good 0 

Excellent 0 

 

Data Storage Requirement Rating for  

Primary Method  

Unacceptable 0 

Fair 0 

Good 0 

Very Good 0 

Excellent 0 

 


