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Abstract

Droughts, often considered the costliest natural disaster, are triggered by severe
shortage of water, mainly in the form of precipitation. The Southeast US has been
affected by frequent severe droughts in recent years and this calls for a more pragmatic
approach to better manage its consequences. The primary objective of this study was
to analyze how droughts in Alabama and ACF River Basin will change in future as a
result of projected climate change. Commonly used drought indices were computed
to quantify the change in droughts.

Historical and future droughts were quantified by the means of Standardized
Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index
(SPEI) and the change in frequency, severity and spatial extent of future droughts
were studied using Severity-Area-Frequency (SAF) curves. Precipitation and tem-
perature data, regionally downscaled for the Southeast US for high emission scenario
(A2), from three General Circulation Models, Hadley Centre Coupled Model Version
3 (HadCM3), Geophysical Fluid Dynamics Laboratory (GFDL) Model and Commu-
nity Climate System Model (CCSM), from the Third Coupled Model Inter-comparison
Project (CMIP3) archive were used for this study. Data from 1969 to 1999 were used
for historical simulation and that from 2039 to 2069 were used for future projections.

The study showed that droughts similar to ones in the past would be observed
frequently in future as well. In Alabama, SPI from GFDL and HadCM3 models
indicated increasing frequency of droughts with more severity and increased spatial
extent in the future. SPI from CCSM model indicated decreased severity of droughts
in the future spread over similar area as in the past. This model indicated decreased

occurrences of severe and extreme droughts but increased occurrences of moderate
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droughts. Similar conclusions were drawn about droughts in the ACF River Basin as
well from the respective models and indices.

SPI was also correlated with groundwater levels in the Lower ACF River Basin
to determine if it could be used to monitor groundwater conditions in the region.
The index, when calculated at timescales between 9 and 12 months, showed strong
correlation with groundwater levels in many groundwater wells in the region. The
results suggested that it can be used as a tool to monitor groundwater conditions and
hydrologic droughts in the Lower ACF River Basin.

The results of this research can be used by policymakers to plan ahead of time
for better preparation of drought years. If droughts can be projected well ahead of
time, their consequences can be tackled more appropriately. The results will also help
us understand expected changes in droughts in the Southeast US and would help us

prepare better to mitigate the economic, social and environmental effects of droughts.
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Chapter 1

Introduction

1.1 Background

Water is a crucial resource for sustenance of life on earth. Although almost 71
percent of earth is covered by water, only about 2.5 percent is fresh water and only
about 1 percent of this fresh water is available for human consumption (Gleick, 1993).
The increasing population and decreasing water supply over the past few decades have
stressed available water resources resulting in the need for better water treatment and
management practices. The proper management of water resources often influences
social, economic and environmental growth of a society. Water hazards cause dis-
ruption in water management plans, often halting growth in affected area. Drought
is one natural hazard triggered by the shortage of water resources and affects the
ecosystem and the economy of the region where it occurs.

Drought, although simple in definition, has proven to be a natural hazard that
has been very complex to understand. It can broadly be defined as a shortage in water
supply but its causes and implications are not just confined to lack of availability of
water. They can be relatively short or long, local or widespread, and the degree
of severity varies for each occurrence. Droughts have often been claimed to be the
costliest natural hazard. Even a minor drought event can bring immense losses. Since
1900, droughts have caused deaths of more than 11 million people and have affected
more than 2 billion people, which is more than by any other physical hazard (FAO,
2013). Although they cannot be prevented, their temporal and spatial identification

would enable stakeholders and water users to specifically identify the impacts they



may cause. Also, the policymakers and decision makers would be able to make better
plans for drought mitigation.

Shortage of precipitation or snow generally triggers droughts. However, different
components of the water cycle and other climatic phenomena influence the charac-
teristics of droughts in the affected region. Certain human activities often ignite
droughts. Cutting of trees reduce the soil’s capacity to hold water, hence, making it
dry. Construction of dams can reduce streamflow causing droughts downstream. De-
creased snow pack and glaciers cause droughts in regions where they are the sources
of water supply. The land and sea surface temperatures and the atmospheric circu-
lation patterns affect the precipitation in a region. To put it in a nutshell, droughts
can often be a outcome of a number of causes.

The severity and impact of droughts usually depend on their causes and the
region where they occur. Their impacts last for a longer time and over large areas
compared to the impacts from other natural hazards. These impacts, unlike those
of floods, show up only after some time and are often more far reaching than one
might expect. As droughts limit the water supply in a region, they affect all activities
that are dependent on water resources. It often leads to reduction in agricultural
production, loss in biodiversity, and increase in soil erosion. This ultimately results
into competition among consumers for food and water resources and imbalances in
the ecosystem of the region they occur.

In the United States, droughts have been one of the most detrimental natural
disasters ever since climatic data have been recorded. Tree ring studies indicate that
long and extreme drought events have occurred since as early as the thirteenth cen-
tury (Weakly, 1965). Although the Great Plains region is considered to be the region
that is most susceptible to droughts, they are just as common across the Southeast

and the Southwest too. The drought of 2011 affected the southern states of Texas,



New Mexico and Oklahoma the most. Arizona, Kansas, Arkansas, Mississippi, Al-
abama, Georgia, Florida, South Carolina and North Carolina were among the other
affected states. Droughts in the United States have led to increase in the price of food
and commodities all across the country. According to a recent study (by Professor
Timothy Richards of Arizona State University), the California Drought of 2014 was
expected to significantly increase the prices of avocados, lettuce, berries, broccoli,
grapes, melon, packaged salad, peppers and tomatoes. United States Drought Mon-
itor predicts that the drought is affecting about 52 million people across California,
Texas and Oklahoma (as of April 1, 2015).

Droughts have been known to be occurring since ages and will continue to occur
in the future. The recurrence of droughts in the Southeast United States has been
a major economic, social and environmental problem for the region. Although there
have been efforts to mitigate the consequences, a number of problems have prevented
it from being tackled.

The repercussions of climate change can be better managed if we make better
choices today. By forecasting droughts with climate models and enforcement of better
management practices by governing bodies, droughts will not have catastrophic reper-
cussions or irreversible consequences. Water resource managers and policymakers rely
on novel studies that pertain to the present and projected future world scenarios to

overcome the obstacles arising from new challenges.

1.2 Problem Statement

The Southeast US has a variable climatic condition and it experiences different
kinds of weather and climate events. The future projections of natural disasters like
droughts and thunderstorms cannot be done with certainty. Even though this region
generally has abundant water, it is highly susceptible to droughts as most of the water

resources demand is met by winter precipitation (especially in Alabama and Georgia)



and lack of it immediately causes water troubles. However, Florida receives most of
its water because of tropical storms that mostly occur in July and August.

Droughts have been one of the major causes of economic downturn in the region.
NCDC (2011) states that the region has experienced the most billion-dollar natural
disasters than any other region in United States. Loss of more than $1 billion was
caused because of the major Georgia drought of 2007-2008 and it led to federal law-
suits regarding release of water from Lake Lanier which supplies water to the city of
Atlanta (NOAA, 2013).

Droughts have been more frequent and severe in the region since 1980s and this
changing nature of droughts forces us to explore them more deeply. Analysis of
droughts using projected climate data can provide insight about how climate change
will change drought characteristics in the region. There is a significant gap in studies
pertaining to changes in droughts in the Southeast US because of climate change. This
study intends to bridge this gap so that policymakers and water resource managers

can have an insight to the enormity of problems droughts can cause in the future.

1.3 Thesis Objectives

The goal of this study is quantify what the commonly used drought indices say
about future droughts in Alabama and the Apalachicola-Chattahoochee-Flint River

Basin. The objectives of this thesis are:

1. Analyze the changes in frequency, severity and spatial extent of droughts in

Alabama using Severity-Area-Frequency Curves.

2. Analyze the changes in frequency, severity and spatial extent of droughts in the
Apalachicola-Chattahoochee-Flint River Basin using Severity-Area-Frequency

Curves.



3. Determine the applicability of Standardized Precipitation Index for monitoring
groundwater conditions in the lower Apalachicola-Chattahoochee-Flint (ACF)

River Basin.



Chapter 2

Review of Literature

2.1 The Hydrologic Cycle

Water is a limited renewable resource. It circles the earth’s ocean, atmosphere,
and land in various forms through different physical processes. It moves through
various pathways, including precipitation in the form of rain and snow, percolation or
seepage in rivers and streams, and comes back to the atmosphere through evaporation
and transpiration. Water keeps changing its forms between solid, liquid and gas phase
constantly. Although about 70 percent of the earth’s surface is water, only about 2.5
percent of this is freshwater (Postel et al. 1996). The circulation of this water is
critical to sustenance of life on Earth (Jackson et al., 2001) and it accounts for the

largest volumetric flow of any material in the biosphere (Chahine 1992).
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Figure 2.1: Pathways through which water circles the earth.
Source: http://pmm.nasa.gov/education/water-cycle



Huntington (2005) showed intensification of the water cycle because of climate
change. Change in the usual pattern of water cycle in a region can cause an increase
in the frequency of extreme weather events. An increased volume of water in rivers
causes flood. Similarly, lack of water availability causes droughts. Drought is an

effect, and not merely the cause, of an imbalanced water cycle.

2.2 Droughts

Droughts are basically a consequence of aberrations in the normal pattern of
water cycle. They are natural hazards that are predominantly caused by the lack
of precipitation. The common conception is that droughts are abnormal climatic
condition. However, droughts are normal climatic events that occur periodically
(Glantz 2003) and are a characteristic feature of the North American climate. Natural
hazards such as floods and earthquakes show immediate damage, whereas, droughts
usually show their effect slowly. They are often called a creeping phenomenon (Gillette
1950) due to this fact. The definition of droughts is subjective because their effects
vary based on region and climate. Droughts vary from aridity in the sense that aridity
is a permanent climatic feature and are limited to climate regions that receive low
rainfall (Wilhite, 1993).

Unlike other extreme disasters like flood, droughts are more widespread and
continue for a longer period of time. Hence, the spatial and temporal identification
of these events become extremely complicated. The difficulty to determine the onset,
duration, magnitude and spatial extent of any drought event (Burton et al., 1978;
Cordery and McCall, 2000; Wilhite, 2001) complicates things even more. Numerous
efforts have been made to better understand this phenomenon clearly so that we can

be better prepared for their effects.



2.3 Kinds of Droughts

Wilhite and Glantz (1985) suggested classification of droughts as meteorological,
hydrological, agricultural or socioeconomic based on their causes and effects. Amer-
ican Meteorological Society officially accepted this classification and brought it into

use 1n 1997.

2.3.1 Meteorological Droughts

Meteorological droughts are those that occur due to immediate result of lack of
precipitation. They are considered to occur when the rainfall in a region decreases
25 percent below the normal precipitation of the region. The lack of precipitation
could either be a consequence of reduction in total amount of rainfall, reduction in
the intensity of rainfall or even the timing of rainfall. As the variation in rainfall
across regions is significant, this kind of drought is region specific. Their start and

end can often be abrupt.

2.3.2 Agricultural Droughts

Agricultural droughts occur when the top level of the soil surface (root zone)
dries and cannot supply enough water to the plant for its growth. It usually occurs
during the growing season. It is defined by the amount of water available in soil for
a crop to grow properly. Such droughts also depend on the water holding capacity of
the soil, as soils with low water holding capacity are more susceptible to agricultural
droughts. A reduction in agricultural production and biomass are immediate effects

of such kind of droughts.

2.3.3 Hydrological Droughts

Hydrological droughts occur when the surface and subsurface water supply is

diminished by reduction in precipitation over long periods of time. As a result of this



kind of droughts, water levels in most of the components (streams, lakes, reservoirs,

etc.) are seen to decrease. Such droughts often lead to decrease in wetlands and

wildlife habitat.

2.3.4 Socioeconomic Droughts

Socioeconomic droughts are those wherein the three other droughts instigate an
imbalance in the supply and demand of economic goods. These are the droughts that
arise from decreased water supply which affect the production and consumption in a

society. Policymakers are most concerned about droughts of this category.

2.4 Effects of Droughts

In most cases, the effects of droughts are quantified in terms of the loss suffered
by the society and its economy. There has been a significant increase in the num-
ber of drought occurrences and their severity over the past few decades in America
(Wilhite and Hayes, 1998; Changnon et al., 2000). Fifty-eight weather-related disas-
ters affected United States between 1980 and 2003, and they caused a total loss of
about $349 billion (Ross and Lott, 2003). Droughts accounted for 10 (17.2 percent)
of these events and about $144 billion (41.2 percent) of the losses (Ross and Lott,
2003). USDA declared a natural disaster in about 71 percent of United States at
the peak of the drought of 2012. About 81 percent of the contiguous United States
was under abnormal drought conditions during this time, which caused an estimated
loss of $30 billion. In 2011, about 80 percent of the total area of Texas was under
exceptional drought (Center for Climate and Energy Solutions, Last accessed June
12", 2015). In consideration of the fact that droughts can prove to be extremely
detrimental economically, they are often called the costliest economic disaster (Cook

et al., 2007).



All kinds of droughts are usually triggered by scanty rainfall (Wilhite and Glantz,
1985). However, various other factors like climate conditions, available water capacity
of soil, population of the region, etc. influence and often exacerbates droughts. The
effects of droughts progress in the order of meteorological, agricultural, hydrological

and socioeconomic droughts.

2.5 Droughts in the Southeast USA

Southeast US has experienced frequent droughts that are usually attributed to
climate variability cycles. Droughts in the region are normally a result of reduced
winter precipitation. The recharge of water resources in the southeastern US is de-
pendent on winter precipitation and hence, dry winter conditions (La Nina) has a
big role in causing droughts in the region. The La Ninia conditions that persisted in
the region in 1998 and 1999 were connected to the drought in immediate years that
lasted till 2001 in Georgia. Again, the major Georgia drought of 2007 was linked to
the La Nina conditions that persisted in 2006. Droughts have been a major problem
since early 1980s causing massive losses in agricultural production and affecting water
usage in the region.

Even though southeastern United States does not experience intense droughts
like those in Central and Western US, they often instigate serious water troubles that
last from months to years (Seager et al., 2009). Although droughts in the Southeast,
even as long as two years are relatively short when compared to those in the west,
they undoubtedly bring about huge economic losses (Manuel 2008). The 2007 drought
in Georgia caused a loss of about $1.3 billion worth of agricultural output (CAED,
2007).
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Droughts have often been associated with regional conflicts about water-usage
between the states of Alabama, Georgia and Florida (Ruhl, 2005). The rapidly grow-
ing population in the Southeast US will only increase the water-related problems

(Seager et al., 2009).

2.6 Drought Indices

Any parameter, which possesses the capability to signal the occurrence of droughts
or their effects are called drought indicators. The amount of rainfall, streamflow level,
groundwater level, availability of snow packs, etc. are drought indicators. Droughts
are usually characterized in terms of their severity, duration, intensity and spatial
extent. Drought index is a calculated value which can measure and quantify droughts
according to their characteristics. According to World Meteorological Organization
(1992), drought index is an index, which is related to some of the cumulative effects of
a prolonged, and abnormal moisture deficiency. Drought indices are developed using
various drought indicators. The fact that droughts don’t have a universal definition
makes it difficult for them to be measured in a universal way and for a universal
drought index to be developed (Heim 2002).

Friedman (1957) enlisted four fundamental criteria for any index to be classified
as a drought index. First, the timescale should be appropriate to the problem at
hand. Second, the index should be a quantitative measure of large-scale and long-
continuing drought conditions. Third, the index should be applicable to the problem
being studied, and fourth, a long accurate past record of the index should be available
or computable. Lastly, a fifth criterion exists for indices used in operational drought
monitoring. It states that the index should be able to be computed on a near-real-
time basis. This criterion will not be applicable to drought studies that depend on
paleoclimatic data (e.g., indices based on glacier and lake sediments, tree ring studies,

etc.).
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Almost all drought indices use precipitation data either solely or in conjunction
with other variables (WMO, 1975a; Tannehill, 1947). Munger’s Index and Kincer’s
Index were two of the early drought indices both of which depended on precipitation
(Heim, 2002). Many other indices evolved over time, which took into account other
variables like temperature and soil moisture. With the intent of providing drought
information to governing entities, National Drought Mitigation Center (NDMC) has
been consistently maintaining a National Drought Risk Atlas across contiguous USA.
This web-based tool can be used to visualize and assess droughts across the USA.
NDMC has been using 5 drought indices in the Drought Risk Atlas to monitor
droughts across America. They are Standardized Precipitation Index (SPI), Stan-
dardized Precipitation Evapotranspiration Index (SPEI), Palmer’s Drought Severity
Index (PDSI) and Self-calibrating Palmer’s Drought Severity Index (sc-PDSI) and
Deciles.

To avoid the drawbacks arising from the variable and unpredictable nature of
droughts, ample priority has been given to devise drought indices that can tell re-
searchers more about droughts. Many studies (Wells et al., 2004; Gonzélez and
Valdés, 2004; Keyantash and Dracup, 2004; Tsakiris et al., 2007) have been con-
ducted either to develop new drought indices or to ameliorate the ones that are being

used currently.

2.6.1 Palmer’s Drought Severity Index (PDSI)

Palmer’s Drought Severity Index (PDSI), devised by Palmer, 1965, is based on a
simple two-layered water bucket-type balance model. It has been continuously used
as a tool for monitoring and assessing droughts. It uses available water capacity of
the soil apart from precipitation and evapotranspiration. Its values usually range

between -4 and +4.
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Although PDSI proved to be a remarkable index for its ability to assess and
monitor droughts, it has several drawbacks (Alley, 1984; Karl, 1986; Soulé, 1992;
Akinremi et al, 1996; Weber and Nkemdirim, 1998). The use of 68 terms in calculation
of PDSI (Soulé 1992) makes its calculation sophisticated. Although many of the
drawbacks of PDSI were overcome by the self-calibrating PDSI, its computation is
very tedious. The most significant drawback of PDSI and sc-PDSI is that both
use a fixed timescale (Vicente-Serrano, 2007). The timescale used by PDSI in its
computation is about 9 months (Guttman, 1998) and it prevents identification of
droughts of shorter timescales. Also, PDSI hasn’t been used to study the effect of
climate change on droughts, most likely because of the difficulty in quantifying the

change in available water capacity of soil due to climate change.

2.6.2 Self-calibrating Palmer’s Drought Severity Index (sc-PDSI)

Self-calibrating Palmer’s Drought Severity Index (sc-PDSI) was developed by
Wells et al., 2004 to fix the drawbacks of PDSI. It is different from PDSI only be-
cause it uses location-specific climate characteristic coefficient and duration factor in
its computation. In PDSI, the values initially computed by Palmer, 1965 are used for
these parameters for any given location. Hence, the index is spatially more compa-
rable and more consistent than PDSI.

Most of the drawbacks of PDSI were taken care of by sc-PDSI (Wells and God-
dard, 2004). However, sc-PDSI decreases significantly with increased temperatures,
thereby indicating severe and frequent droughts (Vicente-Serrano et al., 2007). Also,
it uses separate climate characteristic coefficients and duration factors for each points
and hence it is tedious to compute those at each and every grid point for a high res-
olution dataset. SPEI is highly correlated to sc-PDSI and given its vivid advantages

over sc-PDSI, Vicente-Serrano et al. (2007) suggested its use over sc-PDSI.
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2.6.3 Standardized Precipitation Index (SPI)

McKee et al. (1993) developed the SPI. The index has been widely praised for its
ability to predict severity of droughts. The analysis on several drought indices done
by Keyantash and Dracup (2002) concluded the superior ability of SPI to correctly
forecast the severity of droughts in spatial as well as temporal terms. Unlike PDSI,
SPI is spatially and temporally comparable (Guttman, 1998; Hayes et al., 1999). Its
relative ease of calculation makes it able to be calculated on real time basis hence,
making it an invaluable tool for drought management.

The normalization of SPI makes it an index that is equally capable of monitoring
wet spells just like dry spells. Depending on the timescale for which it is calculated,
it can be used to deduce conclusions on various aspects of the hydrological cycle.
Short timescales (2-3 months) can be used to draw conclusions about soil moisture
and streamflow, whereas, long timescales (12 to 24 months) can be used to draw
conclusions about groundwater levels (Hayes et al., 1999).

SPI was developed in such a way that it could better account for the moisture
supply than PDSI. As it is a multiscalar index, SPI can quantify droughts at different
timescales. It is determined by computing the probability of observed precipitation
at any given location for any chosen duration and hence, is simply a statistical index.
The World Meteorological Organization accepted SPI as the reference drought index
because of all its qualities (Vicente-Serrano et al., 2011).

Even though the SPI is a relatively new index, it has been used either in research
or operational mode in more than 60 countries. It has been growing in popularity in
the US with more and more studies using it every day. Some countries where it has
been used so far are Spain (Lana et al., 2001; Vicente-Serrano et al., 2007), India (Pai
et al., 2011; Chaudhari and Dadhwal, 2004), South Korea (Min et al., 2003), Turkey
(Komuscu, 1999), Greece (Livada and Assimakopoulos, 2006), Hungary (Domonkos,
2003), Germany (Khadr et al., 2009), China (Wu et al., 2001; Zhang et al., 2009),

14



Mexico (Giddings et al., 2005) and Poland (Labedzki, 2007). Because of its pragmatic
applications, Guttman (1999) suggested SPI to be made the primary drought index
and to be considered at least on equal level with the Palmer indices.

The calculated SPI values can vary according to the process used to normal-
ize the data. National Drought Mitigation Center uses gamma distribution for this
normalization. However, Guttman (1999) concluded that the Pearson Type 3 dis-
tribution is the best probability distribution function to use for the computation of
SPI. Initially, an incomplete gamma distribution was used in the computation of SPI
(McKee et al., 1993 and 1995).

Positive SPI values indicate moist conditions and negative values indicate drought
conditions (Edwards and McKee, 1997). SPI values are influenced by the number of
years of data available. At least 30 years of data is desired for calculating the SPI.
The criticism faced by SPI is mostly because it’s solely based on precipitation data
(Vicente-Serrano et al., 2007). However, several studies (Chang and Cleopa, 1991,
Heim, 2002) suggest that precipitation is the driving force in the identification of
onset, severity, and end of droughts.

The SPI is often considered to be a comparatively better index than the PDSI
(Guttman, 1998; Steinemann, 2003; Paulo and Pereira, 2007) not just because of its
relative ease to calculate but also because of its capability to detect droughts early
(Wu et al., 2001). SPI successfully identified the start and severity of the 1996 drought
in Texas at least a month before PDSI. PDSI and SPI were observed to be highly
correlated for timescales of 5 to 12 months and strongest correlation was observed

around 6 months (Hayes et al., 1999).

2.6.4 Standardized Precipitation Evapotranspiration Index (SPEI)

Even with a few flaws, the PDSI always did a reasonably good job of forecasting

droughts because it was sensitive to the evapotranspiration and the available water
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in the soil apart from precipitation. SPEI is basically a modification of SPI. It was
developed with the intention of adding one more dimension of water cycle (evapo-
transpiration) while still keeping the calculation easy and maintaining the multiscalar
nature SPI possessed so that it could overcome the flaws of PDSI (Vicente-Serrano,
2007).

Even though the SPEI is in its nascent stage, it has found popularity amongst
many researchers and is widely used in studies encompassing from drought monitoring
systems and drought impacts (Fuchs et al. 2012; McEvoy et al., 2012; Wolf 2012) to
climate change (Wolf and Abatzoglou, 2011; Soo-Jin et al., 2013; Yu et al., 2014).
SPEI has also been used to assess the change in frequency and severity of droughts
(Yu et al. 2013). Its acceptance is expected to grow over the next few years because
of its robustness and ability to monitor droughts of different timescales.

Although the theoretical possible values of both these indices range from —oo to
00, the typical values of range from -3 to +3. Depending on the magnitude of these

indices, droughts are classified into moderate, severe and extreme.

SPI and SPEI Values Category
2.00 and above Extremely Wet

1.50 to 1.99 Very Wet
1.00 to 1.49 Moderately Wet
0.99 to -0.99 Near Normal
-1.50 to -1.99 Very Wet
-2.00 and less Extremely Wet

Table 2.1: Classification scale for SPI and SPEI values

2.7 Climate Change and Droughts

A general increasing trend in temperature (0.5-2°C) has been witnessed over the
world since mid-nineteenth century (Jones and Moberg, 2003). The forecast from cli-
mate models indicate significant increase in temperature during this century (Solomon

et al. 2007). Also, the precipitation is predicted to decrease as much as 15 percent
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in some regions (IPCC, 2007). These changes in climatic parameters are bound to
change the characteristics of droughts. With increasing evapotranspiration, the wa-
ter demand is expected to rise, which will stress the water resources and influence
droughts (Sheffield and Wood, 2008). There is no denying that there has been drastic
changes in the climate of the Southeast US. The area experiencing moderate to se-
vere droughts during spring, summer and fall has increased by 12, 14 and 9 percent,
respectively, in the region since mid-1970s (Karl et al., 2009). However, despite these
alarming increases, there is still lack of detailed study relating droughts to climate
change in the Southeast US. Several studies (Li et al., 2008; Burke and Brown, 2010;
Dai, 2011; Milano et al., 2012) have assessed future drought conditions using pro-
jected climate data and different indices. All of these studies have been done at a
very coarse resolution and for areas other than the Southeast US. Detailed informa-
tion on droughts is required to know more about how climate change is influencing
droughts in the region. Studies must quantify the spatial variability of droughts at

high resolution so that they can be better monitored in the region.

2.8 Climate Change Scenarios

The Special Report on Emission Scenarios (SRES) defined four possible sets of
future climate change scenarios, which were driven by population, economy, technol-
ogy, energy, agriculture and land-use. The scenarios were called A1, A2, B1 and B2.
A1 scenario was based on the assumptions of rapid growth of economy, technological
innovation and GDP with a balanced energy sector and proper management of re-
sources. A2 scenario was based on the assumptions of rapid population growth, slow
technological innovation, low growth of GDP, energy demands fulfilled by fossil fuels
and irrational use of resources. Bl scenario was contingent on the assumptions that
population growth would be low, GDP growth and technological innovation would be

rapid, renewable resources would be used to fulfill energy demands and biodiversity
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and resources would be conserved. B2 scenario was contingent on the assumptions of
intermediate growth of GDP, population and technology in a mixed energy scenario
and conservation of resources.

Climate change projected according to A2 emission scenario presents a changed
world wherein most of the conditions are different from the present world. Figure
2.2 depicts how various climate change emission scenarios project the global surface
warming to change.

Multi-model Averages and Assessed Ranges for Surface Warming
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Figure 2.2: Surface warming projections according to different emission scenarios.
Source: http://www.narccap.ucar.edu/about/emissions.html

2.9 General Circulation Models

The forecast from various climate change scenarios are based on the assumptions
that temperature will increase and precipitation will decrease in the future (IPCC,
2007). Coupled Model Inter-comparison Project Phase 3 (CMIP3) dataset was pro-

duced from the outputs of more than 20 General Circulation Models (GCMs) from all
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over the world (Meehl et al., 2007). There exist differences in various model outputs

because of the underlying assumptions and methods used by the models.

2.9.1 Community Climate System Model

This model is based at National Center for Atmospheric Research (NCAR) in
Boulder, Colorado and is funded by the National Science Foundation (NSF) and De-
partment of Energy. It is a sophisticated model that couples atmosphere, land, ocean
and sea ice components (Gent et al., 2009). The model is capable of producing results
at multiple spatial resolutions. Collins et al. (2005) provides detailed descriptions on

the intricacies of the model.

2.9.2 Geophysical Fluid Dynamics Laboratory Model

In 1995, National Oceanic and Atmospheric Administration (NOAA) introduced
the GFDL model. This model is also an atmosphere and ocean coupled model with
comparatively simpler formulation of respective processes. Delworth et al. (2002),
Dixon et al., (2003) and Bender et al. (2007) provide informative details about the

model in depth.

2.9.3 Hadley Center Coupled Model Version 3

This model was developed at the Hadley Center in the United Kingdom by Gor-
don et al. (2000). The model is based on coupled atmospheric and oceanic interactions
wherein the atmospheric component has 19 levels and the oceanic component has 20
levels. The resolution of the atmospheric component is 2.50 degrees latitude by 3.75
degrees longitude thereby producing an output of 96 x 73 grid cells. The resolution of
the oceanic component is 1.25 degrees latitude by 1.25 degrees longitude. This high

resolution enables proper depiction of oceanic current (Mishra and Singh, 2008).
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2.10 Regional Downscaling

GCMs lack the capability to supply information at fine spatial resolutions. Hence,
they cannot be used for studies to evaluate impacts at regional scale (Carter et al.,
1985). GCMs typically have horizontal spatial resolution between 250 km and 600 km.
To enable them to be used for regional climate studies, the results from various GCMs
are regionally downscaled at finer resolution using different downscaling procedures.
Downscaling can either be statistical or dynamic. Statistical downscaling involves the
use of mathematical and statistical functions like regression to relate large climatic
features to local climatic features. It can often just be simple interpolation of coarse
resolution data. Dynamic downscaling is done using regional climate models with
finer spatial resolution that contain detailed regional features like topography (Déqué
et al., 2007). Usually, very fine data is required to run hydrological models. Regional
downscaling provides fine resolution data and can also provide results for locations
without any observations. This allows detailed regional assessment and provide better

information.

2.11 Potential Evapotranspiration (PET)

Potential evapotranspiration (PET) is an essential component in computation of
certain drought indices. Various methods like Penmann-Monteith, Thornthwaite and
Hargreaves can be used to compute PET. Penmann-Monteith method is dependent on
many variables like solar radiation, relative humidity, wind speed and temperature.
Although it has a tedious computation methodology, it has been widely accepted
by major organizations including Food and Agricultural Organization (FAO) and
American Society of Civil Engineers (ASCE). Vicente-Serrano (2007) suggests that
the method of computation of PET is not of much concern in case of drought indices

as the main objective is to make a relative temporal estimation of PET. Furthermore,
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the use of both simple and complex methods in calculation of PET resulted in similar
values of drought indices (Mavromatis, 2007). However, some studies argue that
the method of calculation of PET does impact the drought index values (Sheffield
et al., 2012). Yu et al. (2013) used Thornthwaite method in estimating PET to
calculate SPEI and assess if the frequency and severity of droughts were changing with
climate change. They successfully quantified the increase in frequency and severity

of droughts in China using this method.

2.12 Severity-Area-Frequency (SAF) Curves

The shortcomings and dubiety of GCMs coupled with the complex nature of
droughts restricts the analysis of droughts on an event basis. Historical and projected
droughts can be better analyzed by seeing the variation in respective Severity-Area-
Frequency (SAF) curves (Mishra and Singh, 2009). This useful drought assessment
technique was proposed by Henriques and Santos (1999). This technique has been
improved and used by many others (Akhtari et al., 2008; Mishra and Singh 2009;
Alemaw et al., 2013) conducting drought assessment studies. As studies on drought
frequency cannot quantitatively link droughts to its other important characteristics,
like severity and spatial extent, such studies lack in elaborateness (Mishra and Desai,

2005).

2.13 Thesis Organization

This thesis is primarily centered on the stated objectives. It has a total of six
chapters. Chapter 1 is the introduction and it provides an insight and background
information on droughts, especially in the context of the United States. It also gives
an overview of the problem statement and states the objectives of this study. Chapter
2 is the review of literature. It discusses the written available studies that have been

performed before and the findings of those. The chapter provides the basis for choice
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of various methods used in the study. The three objectives are presented in Chapters
3, 4, and 5, respectively, with details about the study area, data, methodology and
discussion of results. Chapter 6 discusses the findings and conclusions made from this

study. Finally, possible future research is stated in Chapter 7.
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Chapter 3
Projected future changes in frequency, severity and spatial extent of droughts in

Alabama

3.1 Abstract

Droughts, often considered the costliest natural disaster, are triggered by severe
shortage of water, mainly in the form of precipitation. The Southeast US has been af-
fected by frequent severe droughts in recent years and this calls for a more pragmatic
approach to better manage their consequences. The primary objective of this study
was to analyze how droughts in Alabama would change in future as a result of pro-
jected climate change. Commonly used drought indices were computed to quantify
the changes in droughts.

Historical and future droughts were quantified by the means of Standardized
Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration In-
dex (SPEI) to study the change in frequency, severity and spatial extent of future
droughts. Precipitation and temperature data, regionally downscaled for the South-
east US for high emission scenario (A2) by Regional Spectral Model (RSM) at the
Florida State University (FSU) - Florida Climate Institute (FCI), from three General
Circulation Models, Hadley Centre Coupled Model Version 3 (HadCM3), Geophysical
Fluid Dynamics Laboratory (GFDL) Model and Community Climate System Model
(CCSM), from the Third Coupled Model Inter-comparison Project (CMIP3) archive
were used for this study. Data from 1969 to 1999 were used for historical simulation
and that from 2039 to 2069 were used for future projections.

The Severity-Area-Frequency (SAF) curves for droughts with different recurrence

intervals were analyzed. Both SPI and SPEI from the GFDL and the HadCM3 model
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indicated droughts in the future to be more severe, frequent and widespread. The
SPI from the CCSM model suggested more moderate droughts in the future but fewer
severe and extreme ones. This model also indicates the severity to decrease and the
spatial extents to remain similar. The SPEI from CCSM model suggested increased
frequency of extreme droughts in the future with the overall severity and spatial
extent to be similar to that in the past.

The results of this study provides insight about expected changes in drought
characteristics in Alabama. The results can be used by policymakers to plan better for

drought years and mitigate the socioeconomic and environmental effects of droughts.

3.2 Introduction

People from different professions define drought in different ways. Meteorologists
simply define drought as shortage of precipitation. Agriculturists define drought as
scarcity of ample moisture in the soil to sustain crop growth during growing season.
Economists define drought as a period wherein shortage of water supply cripples
the economy. No matter in which way one may define droughts, they are, without
any doubt, one of the most detrimental environmental hazards. Globally, the average
annual losses from droughts are as high as $6-$8 billion. Climate change coupled with
rampant increase of population has stressed available water resources all around the
globe. Water demand has increased substantially in many regions in recent years due
to excessive agricultural and industrial expansion. Drought directly affects water and
food availability and may often lead to famine, desertification and loss of biodiversity.

United States is not new to the problems surfacing from droughts. The persis-
tence of droughts in many regions in the US is a major setback for its socioeconomic
development and ecosystem balance. Many regions are being affected by droughts
each year. Almost 81 percent area of contiguous US was under at least abnormally

dry condition when the 2012 drought peaked. The total loss from this disaster was
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estimated to be around $30 billion. The West, Southwest and the Midwest are the
regions in US that are affected by droughts the most. Presumably because of this
reason, most studies about North American droughts are based in the semi-arid re-
gions in Western US. Droughts in the Southeast US haven’t been studied as much,
possibly because the severity of their effects is comparatively smaller in the region.
The droughts of 1986-88, 1998-02 and 2006-09 were notably the most severe ones suf-
fered by the Southeast US since record keeping began. The recent droughts reiterate
the need of more drought-related studies based in the region. Studies pertaining to
droughts in the Southeast will definitely assist in long term regional planning.

The Southeast US is prone to a wide range of extreme weather and climate
events. It frequently witnesses natural disasters in the form of severe thunderstorms,
floods, tornadoes and droughts. The southeastern droughts are relatively short in
duration when compared with those in the Western and the Central US, which can
even last for decades. The climate of the southeastern region is highly influenced by
its nearness to water bodies apart from the latitude and topography. The effects of
climate change in the region have been quantified by different studies and reports
(KC et al, 2015; NCA, 2013). As a result of the change in climate in the region,
the average temperatures are expected to increase in several places, the air quality is
projected to deteriorate and the water resources are predicted to be strained.

Although Alabama usually receives ample yearly precipitation, the vulnerability
of several parts of the states to drought cannot be undermined. The economy of
Alabama is highly influenced by the agricultural activities in the state. Almost half of
its area is used for agriculture. Hence, the effects of droughts can often be immediately
visible in the state’s economy. Population of Alabama has increased almost by a
million since 1980. The demand for water resources is clearly increasing. It is difficult

to counter the point that a drought of magnitude similar to that of the 1980s would
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affect Alabama equally or more if it occurred today. It is, hence, essential to be
prepared against any sort of event that is likely to strike upon us.

Although extreme droughts are rare in the region, their changing characteristics
in recent years force us to contemplate more about them. Are droughts going to be
more frequent in the future? If yes, how rapidly is the frequency increasing? How
widespread would those droughts be? Would they be more severe? Are the droughts
a direct consequence of climate change? Are the droughts associated with anoma-
lies in the sea surface temperature or are they caused by unexplained atmospheric

abnormalities? There are many questions that need to be answered.

3.3 Objective

Analyze the changes in frequency, severity and spatial extent of droughts in Al-

abama using Severity-Area-Frequency Curves.

3.4 Study Area

The area under consideration for this study is the state of Alabama. The south-
eastern state of Alabama is surrounded by Tennessee in the north, Georgia in the
east, Mississippi in the west and Florida and the Gulf of Mexico in the South. The
total area of the state is 52,419 square miles. It has four physiographic regions: Gulf
Coastal Plain, Piedmont Plateau, Ridge and Valley section, and Appalachian Plateau.
The highest elevation in the state is Cheaha Mountain at 2407 feet and the lowest
point is at sea level. The state frequently experiences natural hazards in the form of
hurricanes, floods, tornadoes and droughts.

Droughts in Alabama are usually the outcome of reduced precipitation in winter
and spring. On average, Alabama receives about 55 inches of yearly rainfall. In
regions close to the Gulf of Mexico, it can often be as high as 65 inches whereas

it is usually about 50 inches in the central and west-central parts. Usually, more
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Figure 3.1: The average annual rainfall in Alabama.
Source: Department of Geography, University of Alabama

than half of the total precipitation occurs between the months of December and
May. Inadequate precipitation during these months causes insufficient recharge of soil
moisture in the region. Summer follows these months and almost no precipitation
coupled with excessive evapotranspiration during the summer months causes drying of
the soil. The average annual temperature in Alabama is about 64°F. During summer,
the average temperature rises to about 90°F increasing water loss to evaporation and

transpiration.
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Figure 3.2: The average annual temperature in Alabama.
Source: Department of Geography, University of Alabama

The recording of droughts in Alabama and Georgia were started since the begin-
ning of the twentieth century. It was around this time that droughts started to be
quantified by drought indices. Before the droughts of 1980s intensified drought issues
in Alabama, the droughts of 1954-55 and 1960-63 were the ones that were most severe
and persisted statewide. Besides these, the drought of 1929-32 affected the northeast
portion of the state, and those of 1938-45 and 1964-70 affected nearly the entire state
(USGS, 1988-89). The severe statewide droughts of the 80s were all a result of re-

duced precipitation. Some severely affected regions suffered from precipitation deficit

28



higher than a year’s worth of rain. Droughts began to become a major concern in
the state only after the occurrence of these droughts. The droughts of 2007 worsened
the condition in Alabama and it was considered to be the worst drought in over one
hundred years (B. Riley, State of Alabama, Governor’s office press release, July 30,
2007). It is evident from the drought patterns that droughts have continuously been

increasingly severe.

3.5 Data and Methodology

Many climate variables from three different models were downscaled to 10 km res-
olution over the Southeast US by the Regional Spectral Model (RSM) at the Florida
State University (FSU) - Florida Climate Institute (FCI) with the methods adapted
from Kanamitsu et al. (2010). As part of the COAPS (Center for Ocean-Atmospheric
Prediction Studies) Land-Atmosphere Regional Ensemble Climate Change Experi-
ment for Southeast US at 10 km resolution (CLAREnCE10), three Coupled Model
Inter-comparison Project (CMIP3) coupled General Circulation Models (GCMs) were
downscaled for the A2 emissions scenario of the Fourth Assessment Report (IPCC,
2007). The two timeslices used in this study was between 1969 and 1999 for the
historical simulations and 2039 and 2069 for the future simulations. The models
used were Community Climate System Model (CCSM), Geophysical Fluid Dynamics
Laboratory (GFDL) Model and Hadley Centre Coupled Model Version 3 (HadCM3).
Precipitation and temperature data were used from these three general circulation
models to compute the indices. As the spatial resolution of the data used in this
study is 10 km, it was chosen over the data produced by North American Regional
Climate Change Assessment Program (NARCCAP), which is at a spatial resolution
of 50 km. The resolution of 10 km makes the data ideal for hydrologic assessment

over the region.
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In this study, droughts were quantified by the use of SPI and SPEI as both

possess the capability to monitor and forecast droughts effectively.

3.5.1 Standardized Precipitation Index (SPI)

Long-term precipitation data is required to compute the SPI. Data of at least
30 years is desired. First, the mean and standard deviation for the long record of
precipitation at any given location is calculated. The data is transformed into log-
normal values to obtain the U-statistic, shape and scale parameter. Using these
parameters, the cumulative gamma probability distribution can be calculated. The
cumulative probabilities are obtained from this distribution. This probability is fur-
ther transformed to standardized normal probability distribution using probability
transformation techniques suggested by Abramowitz and Stegun (1965). A step-by-
step procedure to calculate the index is described in Appendix A.

SPI was computed for timescales of 1, 3, 6 and 12 months using precipitation
data from CLAREnCE-10 dataset. A total of 1417 points existed across Alabama for

which the time series of SPI values were calculated.

3.5.2 Standardized Precipitation Evapotranspiration Index (SPI)

SPEI calculation procedure is very much similar to that applied in calculating
SPI. It takes into account evapotranspiration apart from the precipitation. This index
is basically derived based on the moisture value at any given location. The moisture
departure is obtained as the difference between the precipitation and potential evap-
otranspiration. Moisture departure is then transformed into log-logistic probability
distribution. This probability distribution is further transformed to standardized nor-
mal probability distribution using probability transformation techniques suggested by
Abramowitz and Stegun (1965) to obtain the SPEI. A step-by-step procedure to cal-

culate the index is described in Appendix B.
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SPEI was computed for timescales of 1, 3, 6 and 12 months using precipitation
and temperature data from CLAREnCE-10 dataset. A total of 1417 points existed
across Alabama for which the time series of SPEI values were calculated. PET was
calculated from temperature using Thornthwaite Method. The difference between
precipitation and PET was calculated as the moisture balance, which was used to

compute the SPEIL.

3.5.3 Potential Evapotranspiration

Potential evapotranspiration (PET) is an important component in calculation of
SPEIL. The PET is subtracted from the precipitation to obtain the moisture balance.
It is the moisture balance that is processed to compute the SPEI. In this study, Thorn-
thwaite method was used to calculate PET. Studies show that Penmann-Monteith is
the most reliable method to compute PET. However, Mavromatis (2007) showed that
the choice of method for estimation of PET doesn’t affect the drought index signifi-
cantly. The primary idea of this study is to analyze drought events during two time
slices. Therefore, the choice of method for PET calculation is not likely to affect the
results as the method chosen would equally affect the values during both time slices.

The method applied to calculate PET is described in detail in Appendix C.

3.5.4 Severity-Area-Frequency (SAF) Curves

Severity-Area-Frequency (SAF) curves are very effective in analyzing droughts.
Although it is a relatively long procedure to construct them, they give detailed and
informative description about droughts. Droughts can be compared with standard
droughts with specific recurrence intervals to assess their severity, frequency and spa-
tial extent at the same time. To see changes in the frequency and severity of droughts
at individual locations, the time series of the index can be studied. However, com-

paring droughts at individual locations to comment on overall drought characteristics
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across a region is not the wisest method. SAF curves make it easier to discern the
subtle difference in drought severity across different percentage area while associating
them with various return intervals simultaneously.

To construct SAF curves, the drought variable of a suitable timescale (3-SPI,
6-SPI or 12-SPI) must be identified. For the selected drought variable, the drought
severity, which is simply the sum of negative values during a dry spell, was calcu-
lated. Then, for different areal extent of the droughts, the aggregated mean of drought
severity was calculated by taking various areal thresholds into account. The drought
severities across various areal extents were all fitted according to a probability distri-
bution. In this study, Extreme Value Type I distribution was used. Then, frequency
analysis was performed to generate respective severities across different areal extents
for different return intervals. Finally, these severities were plotted against the areal

extents to obtain the SAF curves.

3.5.5 Timescale of Indices

SPI and SPEI can be analyzed for different timescales depending on what kind of
droughts one wants to quantify and assess. SPI and SPEI from shorter timescales like
2-3 months can provide information about the soil moisture condition or streamflow.
Similarly, longer timescales of 12-24 months can be used to assess information about
groundwater level. SPI less than -1 indicate drought conditions. Hence, for analysis,
all the values of SPI greater than this were omitted. In this study, SPI and SPEI
computed using a timescale of 6 months was used to construct SAF curves. This
particular drought variable was chosen to analyze general droughts in the region.
Droughts usually take up 2-3 months to make a mark and can exist for periods ranging
from months to years. Hence, minor temperature fluctuations over a month or two
are not likely to instigate a drought. It is, therefore, expected that the timescale of 6

months ensures that all major droughts were covered and minor ones were eliminated
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in the analysis. SPI at a timescale of 6 months has been used by many other studies

to analyze their results (Reddy and Ganguli, 2012; Tsakiris and Vangelis, 2004).

3.6 Results and Discussion

Droughts in the state were assessed by SPI and SPEI from three GCMs for
historical and projected simulations by the means of SAF curves. The results from

the respective indices are discussed below:

3.6.1 SPI

The results of SPI from various models are presented below:

CCSM

Initially, the results of SPI from CCSM were used to obtain basic information
about drought duration and frequency. The total number of drought incidences at
all points across Alabama is shown in Figure 3.3. It shows an increase in moderate
droughts whereas a decrease in severe and extreme droughts in the future period being
considered. Moderate droughts increased by 10.0 percent, severe droughts decreased
by 13.7 percent and extreme droughts decreased by 39.5 percent. However, when
the overall occurrence of droughts was considered, droughts were reduced by only
1.5 percent. When the drought durations were compared, it was seen that droughts
observed in past lasted as long as 24 months whereas among those in the future,
maximum duration was of 12 months.

SAF curves were used to compare the severity of droughts of specific return in-
tervals in the past and future. The historical and future SAF curves are presented in
Figure 3.4. It was observed from the curves that for droughts with all return inter-
vals, past droughts are more severe for majority of the area. As the percentage area

considered is increased, droughts in past and future tend to be of similar severity.
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Figure 3.3: Total number of different kind of drought incidences according to SPI

from CCSM.
Recurrence 2 5 10 25 50 75 100
Interval years | years | years | years | years | years | years
Percentage | o0 | 594 | 463 | -3.65 | -3.18 | -2.07 | -2.83
Decrease

Table 3.1: Average percentage decrease in overall drought severity according to SPI
from CCSM.

When smaller percentage area of the state is considered, past droughts usually are of
higher severity. On average, droughts with all recurrence intervals decreased in sever-
ity. The average decrease in severity for droughts with different recurrence intervals
is shown in Table 3.1. It was observed that 2-year droughts in the future would be on
average 10.9 percent less severe than the ones in future and 100-year droughts would
be 2.8 percent less severe. From the SAF curves, the maximum drought severity can

be observed to be around 23.7, spread across 5 percent of the area for a 100-year
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Figure 3.4: SAF curves for droughts with different recurrence intervals during
historical and future periods (SPI from CCSM).

drought in the past. The severity gradually decreases with increase in areal extent

being considered.

GFDL

As evident from Figure 3.5, GFDL model indicated that there would be more
incidences of all kinds of droughts in the future. Moderate droughts increased by 6.7
percent, severe droughts increased by 8.3 percent and extreme droughts increased by
15.7 percent. On average, the droughts increased by 8.1 percent in the future. The
droughts in the future are often as long as 20 months whereas the longest one in the
past was of 16 months.

The future droughts were clearly seen to be more severe from the SAF curves
shown in Figure 3.6. The SAF curve for droughts with any given recurrence interval

in the future was much higher than its corresponding curve in the past. A 50-year
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Figure 3.5: Total number of different kind of drought incidences according to SPI
from GFDL.

drought in the future almost appears like a 100-year drought in the past. For future
droughts, the severity is going to be higher and they are going to be more widespread

too. The average increase of severities for droughts of different recurrence intervals

Recurrence 2 5 10 25 50 75 100
Interval years | years | years | years | years | years | years

Percentage | ¢\ | 943 | 979 | 1009 | 1027 | 10.33 | 10.38
Increase

Table 3.2: Average percentage increase in overall drought severity according to SPI
from GFDL.

are presented in Table 3.2. The average percentage increase vary by as much as 8.0
percent for 2 year droughts and 10.4 percent for 100-year droughts. From the SAF
curves, the highest severity can be observed to be 27.6 across 5 percent area for a

100-year drought in the future. The overall severity, according to SPI, from GFDL
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Figure 3.6: SAF curves for droughts with different recurrence intervals during
historical and future periods (SPI from GFDL).

was indicated to be higher than that from CCSM. This could either imply more severe

droughts or similar droughts spanning a longer duration.

HadCM3

SPI from this model indicated the highest increase in droughts. An increase
in the occurrence of all kind of droughts can be seen in Figure 3.7 with moderate
droughts increasing by 5.4 percent, severe droughts increasing by 18.6 percent and
the extreme droughts increasing by a whopping 74.2 percent. Overall, droughts were
seen to increase by 17.3 percent. The longest drought during both periods (past and
future) was 15 months.

From the SAF curves shown in Figure 3.8 for SPI from HadCMS3, severity of
droughts in the future can be observed to be much more severe than those in the

past. For any given areal threshold and recurrence interval, droughts in future would
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Figure 3.7: Total number of different kind of drought incidences according to SPI
from HadCM3.

be substantially more severe than the past ones. It can be seen that even a 50-year
drought in the future is going to be more severe than a 100-year drought in the past.
The results of this model indicate future droughts to increase in frequency, severity
and spatial extent than those in the past. Droughts of all recurrence intervals are
expected to increase in severity by more than 20 percent as shown in Table 3.3.
Drought severity is expected to increase by 22.8 percent for 2-year droughts and by

23.7 percent for 100-year droughts. However, the severity is still lesser than that

Recurrence 2 5 10 25 50 75 100
Interval years | years | years | years | years | years | years

Percentage | o) o0 | 9333 | 9349 | 2360 | 23.65 | 23.68 | 23.69
Increase

Table 3.3: Average percentage increase in overall drought severity according to SPI
from HadCM3.
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Figure 3.8: SAF curves for droughts with different recurrence intervals during
historical and future periods (SPI from HadCM3).
indicated by the GFDL model. The maximum severity for a 100-year future drought

can be seen to be 25.0 for 5 percent of the area from Figure 3.8.

3.6.2 SPEI

For the analysis of SPEI too, only the values of the index below -1 was considered.

The results of SPEI from various models are presented below:

CCSM

The comparison of drought incidences across Alabama with results of SPEI from
CCSM is depicted in Figure 3.9. It shows an increase in extreme droughts but a
decrease in moderate and severe droughts in the future. Extreme droughts increased
substantially by 58.9 percent whereas moderate and severe droughts decreased by 3.5

percent and 8.9 percent, respectively. The total number of droughts decreased by 2.4
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percent. The overall change in droughts from SPI as well as SPEI calculated from
this model isn’t very different from each other. Droughts as long as 19 months can
be observed in the future period. In the past period, the longest drought was of 14

months.
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Figure 3.9: Total number of different kind of drought incidences according to SPEI
from CCSM.

The SAF curves from the results from this model is shown in Figure 3.10. It can
be seen that for droughts of any given recurrence interval in the past and the future
appear to be roughly similar. For lower thresholds of area, droughts are slightly more
severe in the past whereas for higher thresholds, droughts in future are slightly more
severe. As the curves are not significantly different, it can be said that this model
doesn’t predict droughts to change significantly in the future. Table 3.4 shows average
increase or decrease in severity for droughts with different recurrence intervals. The
average severity of droughts is expected to decrease by 11.5 percent for 2-year droughts

but it is expected to increase by 1.7 percent for 100-year droughts. The SAF curves
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Figure 3.10: SAF curves for droughts with different recurrence intervals during
historical and future periods (SPEI from CCSM).

indicate that the maximum severity would be 24.3 for a 100-year drought across 5
percent of the area in the future. This is smaller than the severity values indicated by
other models. Both the indices computed from CCSM suggests that climate change

won’t affect droughts significantly.

Recurrence 2 5 10 25 50 75 100
Interval years | years | years | years | years | years | years

Percentage

Increase or | -11.47 | -3.39 -1.26 0.36 1.10 1.44 1.67
Decrease

Table 3.4: Average increase(+) or decrease (-) in overall drought severity according
to SPEI from CCSM.
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GFDL

The results from GFDL model indicated increase in moderate and severe droughts
whereas a decrease in extreme droughts in the future. This can be observed in Figure
3.11. Moderate droughts increase by 11.6 percent and severe droughts increase by 5.2
percent but extreme droughts decrease by 21.2 percent. In totality, droughts increase
by 7.1 percent across the state. The longest drought in the past lasted for 14 months.

In the future period, droughts as long as 18 months are projected.
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Figure 3.11: Total number of different kind of drought incidences according to SPEI
from GFDL.

Droughts in the future are again seen to be more severe from the SAF curves
in Figure 3.12. Among the SPEI from various models, this one suggests drought
properties to change most significantly in the future. Droughts with all recurrence
intervals are distinctly seen to be more severe in the future. Table 3.5 indicate increase

in drought severity for droughts with different recurrence intervals. The severity
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Figure 3.12: SAF curves for droughts with different recurrence intervals during
historical and future periods (SPEI from GFDL).

Recurrence 2 5 10 25 50 75 100
Interval years | years | years | years | years | years | years

Percentage | ) -- | g¢r | 939 | 905 | 890 | 882 | 878
Increase

Table 3.5: Average percentage increase in overall drought severity according to
SPEI from GFDL.

increases by 11.8 percent on average for 2-year droughts and by 8.8 percent for 100-
year droughts. The maximum severity for a 100-year future drought at 5 percent
threshold area is as high as 27.4. As it is evident from Figure 3.12, for any chosen

percentage area, future droughts will be more severe and for any chosen severity,

future droughts will be more widespread.
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HadCM3

HadCM3 indicated an increase in all kinds of droughts. As seen in Figure 3.13,
moderate, severe and extreme droughts increased by 6.7 percent, 8.5 percent and 7.6
percent respectively. The total number of drought incidences across Alabama was
seen to increase by 7.3 percent. The longest drought in the past period was observed
to be of 15 months duration whereas the longest drought was of 14 months in the

future time period.
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Figure 3.13: Total number of different kind of drought incidences according to SPEI
from HadCMa3.

Again, the SAF curves in Figure 3.14 indicate future droughts to be more severe
than those of the past. However, they don’t appear to be as severe as that indicated
by the SPI from this model. It can be seen that the future curve for droughts of
any recurrence interval is higher than their corresponding curve in the past. This
implies droughts in the future will be more severe for any area considered and for

any chosen severity, droughts will be more widespread. Table 3.6 summarizes the
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Figure 3.14: SAF curves for droughts with different recurrence intervals during

historical and future periods (SPEI from HadCM3).

Recurrence 2 5 10 25 50 75 100
Interval years | years | years | years | years | years | years

Percentage | 1, .0 | o1y | 718 | 647 | 612 | 596 | 5.87
Increase

Table 3.6: Average percentage increase in overall drought severity according to

SPEI from HadCMa3.

average percentage increase in drought severities for droughts with different recurrence

intervals. 2-year droughts are predicted to increase in severity by about 11.8 percent

and 100-year droughts are predicted to increase by 5.9 percent.

3.7 Summary and Conclusion

This study used two common drought indices, SPI and SPEI to quantify the
effect of climate change on droughts in Alabama. The indices were analyzed using

SAF curves. It is widely known that the effects of climate change can be observed
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fastest on water resources. Climate change is bound to stress available water resources
at any place. As a consequence of limited water supply, the characteristics of droughts
are likely to change too because of climate change.

In general, droughts in Alabama are expected to increase in frequency as a result
of climate change. The results for two drought indices calculated from two out of
three GCMs (GFDL and HadCM3) used in this study showed that droughts in future
are expected to be more severe, more frequent and also more widespread in the future
than in the past. CCSM model indicates droughts to be similar in both time periods
being considered in this study. The increase in severity indicated by this study could
imply longer droughts that are moderately severe or relatively shorter droughts that
are exceptionally severe.

With droughts increasing in severity by as much as 23.7 percent, there is defi-
nitely the need for better preparedness against them. The characteristics of droughts
are being influenced by climate change to a certain extent. Our preparedness for
the future should be influenced by anticipation of worst droughts in future and far-
reaching consequences from those droughts.

The results of this research can be used by policymakers to plan ahead of time
for better preparation to the drought years. If droughts can be projected well ahead
of time, their consequences can be tackled more appropriately. The results of this
study also helps us to understand expected changes in droughts in the Southeast US
better and exposes the need to prepare better to mitigate the economic, social and

environmental effects of droughts.
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Chapter 4
How would frequency, severity and spatial extent of future droughts change in the

Apalachicola-Chattahoochee-Flint River Basin?
4.1 Abstract

Droughts are natural disasters that cannot be prevented, but forecasting and
quantifying them before their occurrence can reduce their impacts. Recurring droughts
in the Southeast US have called for a more pragmatic approach to manage their con-
sequences. The focus of this study was to analyze how droughts in the Apalachicola-
Chattahoochee-Flint (ACF) River Basin will change in future as a result of projected
climate change. Commonly used drought indices were computed to quantify the
change in droughts.

Two commonly used drought indices, Standardized Precipitation Index (SPI)
and Standardized Precipitation Evapotranspiration Index (SPEI) were used to quan-
tify and assess historical and future droughts. The change in frequency, severity
and spatial extent of future droughts were analyzed. Precipitation and temperature
data, regionally downscaled for the Southeast US for high emission scenario (A2)
by Regional Spectral Model (RSM) at the Florida State University (FSU) - Florida
Climate Institute (FCI), from three General Circulation Models, Hadley Centre Cou-
pled Model Version 3 (HadCM3), Geophysical Fluid Dynamics Laboratory (GFDL)
Model and Community Climate System Model (CCSM), from the Third Coupled
Model Inter-comparison Project (CMIP3) archive were used for this study. Data
from 1969 to 1999 was used for historical simulation and that from 2039 to 2069 was

used for future projections.
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Severity-Area-Frequency (SAF) curves were analyzed for droughts with different
recurrence intervals. SPI from HadCM3 and GFDL model indicated droughts in
future to be more severe, frequent and widespread. SPI from CCSM suggested more
moderate droughts in the future but fewer severe and extreme ones. The model also
indicated that severity and spatial extent didn’t change much. SPEI from CCSM
suggested increased extreme droughts in the future but the overall severity and spatial
extent was again seen to be similar. Again, SPEI from HadCM3 and GFDL model
indicated increase frequency, severity and spatial extent of future droughts.

The results of this research helps us understand projected changes in the nature
of droughts in the ACF River Basin. The analysis of drought trends can be applied in
a drought monitoring or early warning system and can be used to mitigate the effects
of droughts p