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Abstract

Droughts, often considered the costliest natural disaster, are triggered by severe

shortage of water, mainly in the form of precipitation. The Southeast US has been

affected by frequent severe droughts in recent years and this calls for a more pragmatic

approach to better manage its consequences. The primary objective of this study was

to analyze how droughts in Alabama and ACF River Basin will change in future as a

result of projected climate change. Commonly used drought indices were computed

to quantify the change in droughts.

Historical and future droughts were quantified by the means of Standardized

Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index

(SPEI) and the change in frequency, severity and spatial extent of future droughts

were studied using Severity-Area-Frequency (SAF) curves. Precipitation and tem-

perature data, regionally downscaled for the Southeast US for high emission scenario

(A2), from three General Circulation Models, Hadley Centre Coupled Model Version

3 (HadCM3), Geophysical Fluid Dynamics Laboratory (GFDL) Model and Commu-

nity Climate System Model (CCSM), from the Third Coupled Model Inter-comparison

Project (CMIP3) archive were used for this study. Data from 1969 to 1999 were used

for historical simulation and that from 2039 to 2069 were used for future projections.

The study showed that droughts similar to ones in the past would be observed

frequently in future as well. In Alabama, SPI from GFDL and HadCM3 models

indicated increasing frequency of droughts with more severity and increased spatial

extent in the future. SPI from CCSM model indicated decreased severity of droughts

in the future spread over similar area as in the past. This model indicated decreased

occurrences of severe and extreme droughts but increased occurrences of moderate
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droughts. Similar conclusions were drawn about droughts in the ACF River Basin as

well from the respective models and indices.

SPI was also correlated with groundwater levels in the Lower ACF River Basin

to determine if it could be used to monitor groundwater conditions in the region.

The index, when calculated at timescales between 9 and 12 months, showed strong

correlation with groundwater levels in many groundwater wells in the region. The

results suggested that it can be used as a tool to monitor groundwater conditions and

hydrologic droughts in the Lower ACF River Basin.

The results of this research can be used by policymakers to plan ahead of time

for better preparation of drought years. If droughts can be projected well ahead of

time, their consequences can be tackled more appropriately. The results will also help

us understand expected changes in droughts in the Southeast US and would help us

prepare better to mitigate the economic, social and environmental effects of droughts.
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Chapter 1

Introduction

1.1 Background

Water is a crucial resource for sustenance of life on earth. Although almost 71

percent of earth is covered by water, only about 2.5 percent is fresh water and only

about 1 percent of this fresh water is available for human consumption (Gleick, 1993).

The increasing population and decreasing water supply over the past few decades have

stressed available water resources resulting in the need for better water treatment and

management practices. The proper management of water resources often influences

social, economic and environmental growth of a society. Water hazards cause dis-

ruption in water management plans, often halting growth in affected area. Drought

is one natural hazard triggered by the shortage of water resources and affects the

ecosystem and the economy of the region where it occurs.

Drought, although simple in definition, has proven to be a natural hazard that

has been very complex to understand. It can broadly be defined as a shortage in water

supply but its causes and implications are not just confined to lack of availability of

water. They can be relatively short or long, local or widespread, and the degree

of severity varies for each occurrence. Droughts have often been claimed to be the

costliest natural hazard. Even a minor drought event can bring immense losses. Since

1900, droughts have caused deaths of more than 11 million people and have affected

more than 2 billion people, which is more than by any other physical hazard (FAO,

2013). Although they cannot be prevented, their temporal and spatial identification

would enable stakeholders and water users to specifically identify the impacts they

1



may cause. Also, the policymakers and decision makers would be able to make better

plans for drought mitigation.

Shortage of precipitation or snow generally triggers droughts. However, different

components of the water cycle and other climatic phenomena influence the charac-

teristics of droughts in the affected region. Certain human activities often ignite

droughts. Cutting of trees reduce the soil’s capacity to hold water, hence, making it

dry. Construction of dams can reduce streamflow causing droughts downstream. De-

creased snow pack and glaciers cause droughts in regions where they are the sources

of water supply. The land and sea surface temperatures and the atmospheric circu-

lation patterns affect the precipitation in a region. To put it in a nutshell, droughts

can often be a outcome of a number of causes.

The severity and impact of droughts usually depend on their causes and the

region where they occur. Their impacts last for a longer time and over large areas

compared to the impacts from other natural hazards. These impacts, unlike those

of floods, show up only after some time and are often more far reaching than one

might expect. As droughts limit the water supply in a region, they affect all activities

that are dependent on water resources. It often leads to reduction in agricultural

production, loss in biodiversity, and increase in soil erosion. This ultimately results

into competition among consumers for food and water resources and imbalances in

the ecosystem of the region they occur.

In the United States, droughts have been one of the most detrimental natural

disasters ever since climatic data have been recorded. Tree ring studies indicate that

long and extreme drought events have occurred since as early as the thirteenth cen-

tury (Weakly, 1965). Although the Great Plains region is considered to be the region

that is most susceptible to droughts, they are just as common across the Southeast

and the Southwest too. The drought of 2011 affected the southern states of Texas,
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New Mexico and Oklahoma the most. Arizona, Kansas, Arkansas, Mississippi, Al-

abama, Georgia, Florida, South Carolina and North Carolina were among the other

affected states. Droughts in the United States have led to increase in the price of food

and commodities all across the country. According to a recent study (by Professor

Timothy Richards of Arizona State University), the California Drought of 2014 was

expected to significantly increase the prices of avocados, lettuce, berries, broccoli,

grapes, melon, packaged salad, peppers and tomatoes. United States Drought Mon-

itor predicts that the drought is affecting about 52 million people across California,

Texas and Oklahoma (as of April 1, 2015).

Droughts have been known to be occurring since ages and will continue to occur

in the future. The recurrence of droughts in the Southeast United States has been

a major economic, social and environmental problem for the region. Although there

have been efforts to mitigate the consequences, a number of problems have prevented

it from being tackled.

The repercussions of climate change can be better managed if we make better

choices today. By forecasting droughts with climate models and enforcement of better

management practices by governing bodies, droughts will not have catastrophic reper-

cussions or irreversible consequences. Water resource managers and policymakers rely

on novel studies that pertain to the present and projected future world scenarios to

overcome the obstacles arising from new challenges.

1.2 Problem Statement

The Southeast US has a variable climatic condition and it experiences different

kinds of weather and climate events. The future projections of natural disasters like

droughts and thunderstorms cannot be done with certainty. Even though this region

generally has abundant water, it is highly susceptible to droughts as most of the water

resources demand is met by winter precipitation (especially in Alabama and Georgia)
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and lack of it immediately causes water troubles. However, Florida receives most of

its water because of tropical storms that mostly occur in July and August.

Droughts have been one of the major causes of economic downturn in the region.

NCDC (2011) states that the region has experienced the most billion-dollar natural

disasters than any other region in United States. Loss of more than $1 billion was

caused because of the major Georgia drought of 2007-2008 and it led to federal law-

suits regarding release of water from Lake Lanier which supplies water to the city of

Atlanta (NOAA, 2013).

Droughts have been more frequent and severe in the region since 1980s and this

changing nature of droughts forces us to explore them more deeply. Analysis of

droughts using projected climate data can provide insight about how climate change

will change drought characteristics in the region. There is a significant gap in studies

pertaining to changes in droughts in the Southeast US because of climate change. This

study intends to bridge this gap so that policymakers and water resource managers

can have an insight to the enormity of problems droughts can cause in the future.

1.3 Thesis Objectives

The goal of this study is quantify what the commonly used drought indices say

about future droughts in Alabama and the Apalachicola-Chattahoochee-Flint River

Basin. The objectives of this thesis are:

1. Analyze the changes in frequency, severity and spatial extent of droughts in

Alabama using Severity-Area-Frequency Curves.

2. Analyze the changes in frequency, severity and spatial extent of droughts in the

Apalachicola-Chattahoochee-Flint River Basin using Severity-Area-Frequency

Curves.
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3. Determine the applicability of Standardized Precipitation Index for monitoring

groundwater conditions in the lower Apalachicola-Chattahoochee-Flint (ACF)

River Basin.
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Chapter 2

Review of Literature

2.1 The Hydrologic Cycle

Water is a limited renewable resource. It circles the earth’s ocean, atmosphere,

and land in various forms through different physical processes. It moves through

various pathways, including precipitation in the form of rain and snow, percolation or

seepage in rivers and streams, and comes back to the atmosphere through evaporation

and transpiration. Water keeps changing its forms between solid, liquid and gas phase

constantly. Although about 70 percent of the earth’s surface is water, only about 2.5

percent of this is freshwater (Postel et al. 1996). The circulation of this water is

critical to sustenance of life on Earth (Jackson et al., 2001) and it accounts for the

largest volumetric flow of any material in the biosphere (Chahine 1992).

Figure 2.1: Pathways through which water circles the earth.
Source: http://pmm.nasa.gov/education/water-cycle
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Huntington (2005) showed intensification of the water cycle because of climate

change. Change in the usual pattern of water cycle in a region can cause an increase

in the frequency of extreme weather events. An increased volume of water in rivers

causes flood. Similarly, lack of water availability causes droughts. Drought is an

effect, and not merely the cause, of an imbalanced water cycle.

2.2 Droughts

Droughts are basically a consequence of aberrations in the normal pattern of

water cycle. They are natural hazards that are predominantly caused by the lack

of precipitation. The common conception is that droughts are abnormal climatic

condition. However, droughts are normal climatic events that occur periodically

(Glantz 2003) and are a characteristic feature of the North American climate. Natural

hazards such as floods and earthquakes show immediate damage, whereas, droughts

usually show their effect slowly. They are often called a creeping phenomenon (Gillette

1950) due to this fact. The definition of droughts is subjective because their effects

vary based on region and climate. Droughts vary from aridity in the sense that aridity

is a permanent climatic feature and are limited to climate regions that receive low

rainfall (Wilhite, 1993).

Unlike other extreme disasters like flood, droughts are more widespread and

continue for a longer period of time. Hence, the spatial and temporal identification

of these events become extremely complicated. The difficulty to determine the onset,

duration, magnitude and spatial extent of any drought event (Burton et al., 1978;

Cordery and McCall, 2000; Wilhite, 2001) complicates things even more. Numerous

efforts have been made to better understand this phenomenon clearly so that we can

be better prepared for their effects.

7



2.3 Kinds of Droughts

Wilhite and Glantz (1985) suggested classification of droughts as meteorological,

hydrological, agricultural or socioeconomic based on their causes and effects. Amer-

ican Meteorological Society officially accepted this classification and brought it into

use in 1997.

2.3.1 Meteorological Droughts

Meteorological droughts are those that occur due to immediate result of lack of

precipitation. They are considered to occur when the rainfall in a region decreases

25 percent below the normal precipitation of the region. The lack of precipitation

could either be a consequence of reduction in total amount of rainfall, reduction in

the intensity of rainfall or even the timing of rainfall. As the variation in rainfall

across regions is significant, this kind of drought is region specific. Their start and

end can often be abrupt.

2.3.2 Agricultural Droughts

Agricultural droughts occur when the top level of the soil surface (root zone)

dries and cannot supply enough water to the plant for its growth. It usually occurs

during the growing season. It is defined by the amount of water available in soil for

a crop to grow properly. Such droughts also depend on the water holding capacity of

the soil, as soils with low water holding capacity are more susceptible to agricultural

droughts. A reduction in agricultural production and biomass are immediate effects

of such kind of droughts.

2.3.3 Hydrological Droughts

Hydrological droughts occur when the surface and subsurface water supply is

diminished by reduction in precipitation over long periods of time. As a result of this
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kind of droughts, water levels in most of the components (streams, lakes, reservoirs,

etc.) are seen to decrease. Such droughts often lead to decrease in wetlands and

wildlife habitat.

2.3.4 Socioeconomic Droughts

Socioeconomic droughts are those wherein the three other droughts instigate an

imbalance in the supply and demand of economic goods. These are the droughts that

arise from decreased water supply which affect the production and consumption in a

society. Policymakers are most concerned about droughts of this category.

2.4 Effects of Droughts

In most cases, the effects of droughts are quantified in terms of the loss suffered

by the society and its economy. There has been a significant increase in the num-

ber of drought occurrences and their severity over the past few decades in America

(Wilhite and Hayes, 1998; Changnon et al., 2000). Fifty-eight weather-related disas-

ters affected United States between 1980 and 2003, and they caused a total loss of

about $349 billion (Ross and Lott, 2003). Droughts accounted for 10 (17.2 percent)

of these events and about $144 billion (41.2 percent) of the losses (Ross and Lott,

2003). USDA declared a natural disaster in about 71 percent of United States at

the peak of the drought of 2012. About 81 percent of the contiguous United States

was under abnormal drought conditions during this time, which caused an estimated

loss of $30 billion. In 2011, about 80 percent of the total area of Texas was under

exceptional drought (Center for Climate and Energy Solutions, Last accessed June

12th, 2015). In consideration of the fact that droughts can prove to be extremely

detrimental economically, they are often called the costliest economic disaster (Cook

et al., 2007).
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All kinds of droughts are usually triggered by scanty rainfall (Wilhite and Glantz,

1985). However, various other factors like climate conditions, available water capacity

of soil, population of the region, etc. influence and often exacerbates droughts. The

effects of droughts progress in the order of meteorological, agricultural, hydrological

and socioeconomic droughts.

2.5 Droughts in the Southeast USA

Southeast US has experienced frequent droughts that are usually attributed to

climate variability cycles. Droughts in the region are normally a result of reduced

winter precipitation. The recharge of water resources in the southeastern US is de-

pendent on winter precipitation and hence, dry winter conditions (La Niña) has a

big role in causing droughts in the region. The La Niña conditions that persisted in

the region in 1998 and 1999 were connected to the drought in immediate years that

lasted till 2001 in Georgia. Again, the major Georgia drought of 2007 was linked to

the La Niña conditions that persisted in 2006. Droughts have been a major problem

since early 1980s causing massive losses in agricultural production and affecting water

usage in the region.

Even though southeastern United States does not experience intense droughts

like those in Central and Western US, they often instigate serious water troubles that

last from months to years (Seager et al., 2009). Although droughts in the Southeast,

even as long as two years are relatively short when compared to those in the west,

they undoubtedly bring about huge economic losses (Manuel 2008). The 2007 drought

in Georgia caused a loss of about $1.3 billion worth of agricultural output (CAED,

2007).
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Droughts have often been associated with regional conflicts about water-usage

between the states of Alabama, Georgia and Florida (Ruhl, 2005). The rapidly grow-

ing population in the Southeast US will only increase the water-related problems

(Seager et al., 2009).

2.6 Drought Indices

Any parameter, which possesses the capability to signal the occurrence of droughts

or their effects are called drought indicators. The amount of rainfall, streamflow level,

groundwater level, availability of snow packs, etc. are drought indicators. Droughts

are usually characterized in terms of their severity, duration, intensity and spatial

extent. Drought index is a calculated value which can measure and quantify droughts

according to their characteristics. According to World Meteorological Organization

(1992), drought index is an index, which is related to some of the cumulative effects of

a prolonged, and abnormal moisture deficiency. Drought indices are developed using

various drought indicators. The fact that droughts don’t have a universal definition

makes it difficult for them to be measured in a universal way and for a universal

drought index to be developed (Heim 2002).

Friedman (1957) enlisted four fundamental criteria for any index to be classified

as a drought index. First, the timescale should be appropriate to the problem at

hand. Second, the index should be a quantitative measure of large-scale and long-

continuing drought conditions. Third, the index should be applicable to the problem

being studied, and fourth, a long accurate past record of the index should be available

or computable. Lastly, a fifth criterion exists for indices used in operational drought

monitoring. It states that the index should be able to be computed on a near-real-

time basis. This criterion will not be applicable to drought studies that depend on

paleoclimatic data (e.g., indices based on glacier and lake sediments, tree ring studies,

etc.).
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Almost all drought indices use precipitation data either solely or in conjunction

with other variables (WMO, 1975a; Tannehill, 1947). Munger’s Index and Kincer’s

Index were two of the early drought indices both of which depended on precipitation

(Heim, 2002). Many other indices evolved over time, which took into account other

variables like temperature and soil moisture. With the intent of providing drought

information to governing entities, National Drought Mitigation Center (NDMC) has

been consistently maintaining a National Drought Risk Atlas across contiguous USA.

This web-based tool can be used to visualize and assess droughts across the USA.

NDMC has been using 5 drought indices in the Drought Risk Atlas to monitor

droughts across America. They are Standardized Precipitation Index (SPI), Stan-

dardized Precipitation Evapotranspiration Index (SPEI), Palmer’s Drought Severity

Index (PDSI) and Self-calibrating Palmer’s Drought Severity Index (sc-PDSI) and

Deciles.

To avoid the drawbacks arising from the variable and unpredictable nature of

droughts, ample priority has been given to devise drought indices that can tell re-

searchers more about droughts. Many studies (Wells et al., 2004; González and

Valdés, 2004; Keyantash and Dracup, 2004; Tsakiris et al., 2007) have been con-

ducted either to develop new drought indices or to ameliorate the ones that are being

used currently.

2.6.1 Palmer’s Drought Severity Index (PDSI)

Palmer’s Drought Severity Index (PDSI), devised by Palmer, 1965, is based on a

simple two-layered water bucket-type balance model. It has been continuously used

as a tool for monitoring and assessing droughts. It uses available water capacity of

the soil apart from precipitation and evapotranspiration. Its values usually range

between -4 and +4.
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Although PDSI proved to be a remarkable index for its ability to assess and

monitor droughts, it has several drawbacks (Alley, 1984; Karl, 1986; Soulé, 1992;

Akinremi et al, 1996; Weber and Nkemdirim, 1998). The use of 68 terms in calculation

of PDSI (Soulé 1992) makes its calculation sophisticated. Although many of the

drawbacks of PDSI were overcome by the self-calibrating PDSI, its computation is

very tedious. The most significant drawback of PDSI and sc-PDSI is that both

use a fixed timescale (Vicente-Serrano, 2007). The timescale used by PDSI in its

computation is about 9 months (Guttman, 1998) and it prevents identification of

droughts of shorter timescales. Also, PDSI hasn’t been used to study the effect of

climate change on droughts, most likely because of the difficulty in quantifying the

change in available water capacity of soil due to climate change.

2.6.2 Self-calibrating Palmer’s Drought Severity Index (sc-PDSI)

Self-calibrating Palmer’s Drought Severity Index (sc-PDSI) was developed by

Wells et al., 2004 to fix the drawbacks of PDSI. It is different from PDSI only be-

cause it uses location-specific climate characteristic coefficient and duration factor in

its computation. In PDSI, the values initially computed by Palmer, 1965 are used for

these parameters for any given location. Hence, the index is spatially more compa-

rable and more consistent than PDSI.

Most of the drawbacks of PDSI were taken care of by sc-PDSI (Wells and God-

dard, 2004). However, sc-PDSI decreases significantly with increased temperatures,

thereby indicating severe and frequent droughts (Vicente-Serrano et al., 2007). Also,

it uses separate climate characteristic coefficients and duration factors for each points

and hence it is tedious to compute those at each and every grid point for a high res-

olution dataset. SPEI is highly correlated to sc-PDSI and given its vivid advantages

over sc-PDSI, Vicente-Serrano et al. (2007) suggested its use over sc-PDSI.
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2.6.3 Standardized Precipitation Index (SPI)

McKee et al. (1993) developed the SPI. The index has been widely praised for its

ability to predict severity of droughts. The analysis on several drought indices done

by Keyantash and Dracup (2002) concluded the superior ability of SPI to correctly

forecast the severity of droughts in spatial as well as temporal terms. Unlike PDSI,

SPI is spatially and temporally comparable (Guttman, 1998; Hayes et al., 1999). Its

relative ease of calculation makes it able to be calculated on real time basis hence,

making it an invaluable tool for drought management.

The normalization of SPI makes it an index that is equally capable of monitoring

wet spells just like dry spells. Depending on the timescale for which it is calculated,

it can be used to deduce conclusions on various aspects of the hydrological cycle.

Short timescales (2-3 months) can be used to draw conclusions about soil moisture

and streamflow, whereas, long timescales (12 to 24 months) can be used to draw

conclusions about groundwater levels (Hayes et al., 1999).

SPI was developed in such a way that it could better account for the moisture

supply than PDSI. As it is a multiscalar index, SPI can quantify droughts at different

timescales. It is determined by computing the probability of observed precipitation

at any given location for any chosen duration and hence, is simply a statistical index.

The World Meteorological Organization accepted SPI as the reference drought index

because of all its qualities (Vicente-Serrano et al., 2011).

Even though the SPI is a relatively new index, it has been used either in research

or operational mode in more than 60 countries. It has been growing in popularity in

the US with more and more studies using it every day. Some countries where it has

been used so far are Spain (Lana et al., 2001; Vicente-Serrano et al., 2007), India (Pai

et al., 2011; Chaudhari and Dadhwal, 2004), South Korea (Min et al., 2003), Turkey

(Komuscu, 1999), Greece (Livada and Assimakopoulos, 2006), Hungary (Domonkos,

2003), Germany (Khadr et al., 2009), China (Wu et al., 2001; Zhang et al., 2009),
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Mexico (Giddings et al., 2005) and Poland ( Labedzki, 2007). Because of its pragmatic

applications, Guttman (1999) suggested SPI to be made the primary drought index

and to be considered at least on equal level with the Palmer indices.

The calculated SPI values can vary according to the process used to normal-

ize the data. National Drought Mitigation Center uses gamma distribution for this

normalization. However, Guttman (1999) concluded that the Pearson Type 3 dis-

tribution is the best probability distribution function to use for the computation of

SPI. Initially, an incomplete gamma distribution was used in the computation of SPI

(McKee et al., 1993 and 1995).

Positive SPI values indicate moist conditions and negative values indicate drought

conditions (Edwards and McKee, 1997). SPI values are influenced by the number of

years of data available. At least 30 years of data is desired for calculating the SPI.

The criticism faced by SPI is mostly because it’s solely based on precipitation data

(Vicente-Serrano et al., 2007). However, several studies (Chang and Cleopa, 1991;

Heim, 2002) suggest that precipitation is the driving force in the identification of

onset, severity, and end of droughts.

The SPI is often considered to be a comparatively better index than the PDSI

(Guttman, 1998; Steinemann, 2003; Paulo and Pereira, 2007) not just because of its

relative ease to calculate but also because of its capability to detect droughts early

(Wu et al., 2001). SPI successfully identified the start and severity of the 1996 drought

in Texas at least a month before PDSI. PDSI and SPI were observed to be highly

correlated for timescales of 5 to 12 months and strongest correlation was observed

around 6 months (Hayes et al., 1999).

2.6.4 Standardized Precipitation Evapotranspiration Index (SPEI)

Even with a few flaws, the PDSI always did a reasonably good job of forecasting

droughts because it was sensitive to the evapotranspiration and the available water
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in the soil apart from precipitation. SPEI is basically a modification of SPI. It was

developed with the intention of adding one more dimension of water cycle (evapo-

transpiration) while still keeping the calculation easy and maintaining the multiscalar

nature SPI possessed so that it could overcome the flaws of PDSI (Vicente-Serrano,

2007).

Even though the SPEI is in its nascent stage, it has found popularity amongst

many researchers and is widely used in studies encompassing from drought monitoring

systems and drought impacts (Fuchs et al. 2012; McEvoy et al., 2012; Wolf 2012) to

climate change (Wolf and Abatzoglou, 2011; Soo-Jin et al., 2013; Yu et al., 2014).

SPEI has also been used to assess the change in frequency and severity of droughts

(Yu et al. 2013). Its acceptance is expected to grow over the next few years because

of its robustness and ability to monitor droughts of different timescales.

Although the theoretical possible values of both these indices range from −∞ to

∞, the typical values of range from -3 to +3. Depending on the magnitude of these

indices, droughts are classified into moderate, severe and extreme.

SPI and SPEI Values Category

2.00 and above Extremely Wet
1.50 to 1.99 Very Wet
1.00 to 1.49 Moderately Wet
0.99 to -0.99 Near Normal
-1.50 to -1.99 Very Wet
-2.00 and less Extremely Wet

Table 2.1: Classification scale for SPI and SPEI values

2.7 Climate Change and Droughts

A general increasing trend in temperature (0.5-2◦C) has been witnessed over the

world since mid-nineteenth century (Jones and Moberg, 2003). The forecast from cli-

mate models indicate significant increase in temperature during this century (Solomon

et al. 2007). Also, the precipitation is predicted to decrease as much as 15 percent
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in some regions (IPCC, 2007). These changes in climatic parameters are bound to

change the characteristics of droughts. With increasing evapotranspiration, the wa-

ter demand is expected to rise, which will stress the water resources and influence

droughts (Sheffield and Wood, 2008). There is no denying that there has been drastic

changes in the climate of the Southeast US. The area experiencing moderate to se-

vere droughts during spring, summer and fall has increased by 12, 14 and 9 percent,

respectively, in the region since mid-1970s (Karl et al., 2009). However, despite these

alarming increases, there is still lack of detailed study relating droughts to climate

change in the Southeast US. Several studies (Li et al., 2008; Burke and Brown, 2010;

Dai, 2011; Milano et al., 2012) have assessed future drought conditions using pro-

jected climate data and different indices. All of these studies have been done at a

very coarse resolution and for areas other than the Southeast US. Detailed informa-

tion on droughts is required to know more about how climate change is influencing

droughts in the region. Studies must quantify the spatial variability of droughts at

high resolution so that they can be better monitored in the region.

2.8 Climate Change Scenarios

The Special Report on Emission Scenarios (SRES) defined four possible sets of

future climate change scenarios, which were driven by population, economy, technol-

ogy, energy, agriculture and land-use. The scenarios were called A1, A2, B1 and B2.

A1 scenario was based on the assumptions of rapid growth of economy, technological

innovation and GDP with a balanced energy sector and proper management of re-

sources. A2 scenario was based on the assumptions of rapid population growth, slow

technological innovation, low growth of GDP, energy demands fulfilled by fossil fuels

and irrational use of resources. B1 scenario was contingent on the assumptions that

population growth would be low, GDP growth and technological innovation would be

rapid, renewable resources would be used to fulfill energy demands and biodiversity

17



and resources would be conserved. B2 scenario was contingent on the assumptions of

intermediate growth of GDP, population and technology in a mixed energy scenario

and conservation of resources.

Climate change projected according to A2 emission scenario presents a changed

world wherein most of the conditions are different from the present world. Figure

2.2 depicts how various climate change emission scenarios project the global surface

warming to change.

Figure 2.2: Surface warming projections according to different emission scenarios.
Source: http://www.narccap.ucar.edu/about/emissions.html

2.9 General Circulation Models

The forecast from various climate change scenarios are based on the assumptions

that temperature will increase and precipitation will decrease in the future (IPCC,

2007). Coupled Model Inter-comparison Project Phase 3 (CMIP3) dataset was pro-

duced from the outputs of more than 20 General Circulation Models (GCMs) from all
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over the world (Meehl et al., 2007). There exist differences in various model outputs

because of the underlying assumptions and methods used by the models.

2.9.1 Community Climate System Model

This model is based at National Center for Atmospheric Research (NCAR) in

Boulder, Colorado and is funded by the National Science Foundation (NSF) and De-

partment of Energy. It is a sophisticated model that couples atmosphere, land, ocean

and sea ice components (Gent et al., 2009). The model is capable of producing results

at multiple spatial resolutions. Collins et al. (2005) provides detailed descriptions on

the intricacies of the model.

2.9.2 Geophysical Fluid Dynamics Laboratory Model

In 1995, National Oceanic and Atmospheric Administration (NOAA) introduced

the GFDL model. This model is also an atmosphere and ocean coupled model with

comparatively simpler formulation of respective processes. Delworth et al. (2002),

Dixon et al., (2003) and Bender et al. (2007) provide informative details about the

model in depth.

2.9.3 Hadley Center Coupled Model Version 3

This model was developed at the Hadley Center in the United Kingdom by Gor-

don et al. (2000). The model is based on coupled atmospheric and oceanic interactions

wherein the atmospheric component has 19 levels and the oceanic component has 20

levels. The resolution of the atmospheric component is 2.50 degrees latitude by 3.75

degrees longitude thereby producing an output of 96 x 73 grid cells. The resolution of

the oceanic component is 1.25 degrees latitude by 1.25 degrees longitude. This high

resolution enables proper depiction of oceanic current (Mishra and Singh, 2008).
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2.10 Regional Downscaling

GCMs lack the capability to supply information at fine spatial resolutions. Hence,

they cannot be used for studies to evaluate impacts at regional scale (Carter et al.,

1985). GCMs typically have horizontal spatial resolution between 250 km and 600 km.

To enable them to be used for regional climate studies, the results from various GCMs

are regionally downscaled at finer resolution using different downscaling procedures.

Downscaling can either be statistical or dynamic. Statistical downscaling involves the

use of mathematical and statistical functions like regression to relate large climatic

features to local climatic features. It can often just be simple interpolation of coarse

resolution data. Dynamic downscaling is done using regional climate models with

finer spatial resolution that contain detailed regional features like topography (Déqué

et al., 2007). Usually, very fine data is required to run hydrological models. Regional

downscaling provides fine resolution data and can also provide results for locations

without any observations. This allows detailed regional assessment and provide better

information.

2.11 Potential Evapotranspiration (PET)

Potential evapotranspiration (PET) is an essential component in computation of

certain drought indices. Various methods like Penmann-Monteith, Thornthwaite and

Hargreaves can be used to compute PET. Penmann-Monteith method is dependent on

many variables like solar radiation, relative humidity, wind speed and temperature.

Although it has a tedious computation methodology, it has been widely accepted

by major organizations including Food and Agricultural Organization (FAO) and

American Society of Civil Engineers (ASCE). Vicente-Serrano (2007) suggests that

the method of computation of PET is not of much concern in case of drought indices

as the main objective is to make a relative temporal estimation of PET. Furthermore,
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the use of both simple and complex methods in calculation of PET resulted in similar

values of drought indices (Mavromatis, 2007). However, some studies argue that

the method of calculation of PET does impact the drought index values (Sheffield

et al., 2012). Yu et al. (2013) used Thornthwaite method in estimating PET to

calculate SPEI and assess if the frequency and severity of droughts were changing with

climate change. They successfully quantified the increase in frequency and severity

of droughts in China using this method.

2.12 Severity-Area-Frequency (SAF) Curves

The shortcomings and dubiety of GCMs coupled with the complex nature of

droughts restricts the analysis of droughts on an event basis. Historical and projected

droughts can be better analyzed by seeing the variation in respective Severity-Area-

Frequency (SAF) curves (Mishra and Singh, 2009). This useful drought assessment

technique was proposed by Henriques and Santos (1999). This technique has been

improved and used by many others (Akhtari et al., 2008; Mishra and Singh 2009;

Alemaw et al., 2013) conducting drought assessment studies. As studies on drought

frequency cannot quantitatively link droughts to its other important characteristics,

like severity and spatial extent, such studies lack in elaborateness (Mishra and Desai,

2005).

2.13 Thesis Organization

This thesis is primarily centered on the stated objectives. It has a total of six

chapters. Chapter 1 is the introduction and it provides an insight and background

information on droughts, especially in the context of the United States. It also gives

an overview of the problem statement and states the objectives of this study. Chapter

2 is the review of literature. It discusses the written available studies that have been

performed before and the findings of those. The chapter provides the basis for choice
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of various methods used in the study. The three objectives are presented in Chapters

3, 4, and 5, respectively, with details about the study area, data, methodology and

discussion of results. Chapter 6 discusses the findings and conclusions made from this

study. Finally, possible future research is stated in Chapter 7.
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Chapter 3

Projected future changes in frequency, severity and spatial extent of droughts in

Alabama

3.1 Abstract

Droughts, often considered the costliest natural disaster, are triggered by severe

shortage of water, mainly in the form of precipitation. The Southeast US has been af-

fected by frequent severe droughts in recent years and this calls for a more pragmatic

approach to better manage their consequences. The primary objective of this study

was to analyze how droughts in Alabama would change in future as a result of pro-

jected climate change. Commonly used drought indices were computed to quantify

the changes in droughts.

Historical and future droughts were quantified by the means of Standardized

Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration In-

dex (SPEI) to study the change in frequency, severity and spatial extent of future

droughts. Precipitation and temperature data, regionally downscaled for the South-

east US for high emission scenario (A2) by Regional Spectral Model (RSM) at the

Florida State University (FSU) - Florida Climate Institute (FCI), from three General

Circulation Models, Hadley Centre Coupled Model Version 3 (HadCM3), Geophysical

Fluid Dynamics Laboratory (GFDL) Model and Community Climate System Model

(CCSM), from the Third Coupled Model Inter-comparison Project (CMIP3) archive

were used for this study. Data from 1969 to 1999 were used for historical simulation

and that from 2039 to 2069 were used for future projections.

The Severity-Area-Frequency (SAF) curves for droughts with different recurrence

intervals were analyzed. Both SPI and SPEI from the GFDL and the HadCM3 model
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indicated droughts in the future to be more severe, frequent and widespread. The

SPI from the CCSM model suggested more moderate droughts in the future but fewer

severe and extreme ones. This model also indicates the severity to decrease and the

spatial extents to remain similar. The SPEI from CCSM model suggested increased

frequency of extreme droughts in the future with the overall severity and spatial

extent to be similar to that in the past.

The results of this study provides insight about expected changes in drought

characteristics in Alabama. The results can be used by policymakers to plan better for

drought years and mitigate the socioeconomic and environmental effects of droughts.

3.2 Introduction

People from different professions define drought in different ways. Meteorologists

simply define drought as shortage of precipitation. Agriculturists define drought as

scarcity of ample moisture in the soil to sustain crop growth during growing season.

Economists define drought as a period wherein shortage of water supply cripples

the economy. No matter in which way one may define droughts, they are, without

any doubt, one of the most detrimental environmental hazards. Globally, the average

annual losses from droughts are as high as $6-$8 billion. Climate change coupled with

rampant increase of population has stressed available water resources all around the

globe. Water demand has increased substantially in many regions in recent years due

to excessive agricultural and industrial expansion. Drought directly affects water and

food availability and may often lead to famine, desertification and loss of biodiversity.

United States is not new to the problems surfacing from droughts. The persis-

tence of droughts in many regions in the US is a major setback for its socioeconomic

development and ecosystem balance. Many regions are being affected by droughts

each year. Almost 81 percent area of contiguous US was under at least abnormally

dry condition when the 2012 drought peaked. The total loss from this disaster was
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estimated to be around $30 billion. The West, Southwest and the Midwest are the

regions in US that are affected by droughts the most. Presumably because of this

reason, most studies about North American droughts are based in the semi-arid re-

gions in Western US. Droughts in the Southeast US haven’t been studied as much,

possibly because the severity of their effects is comparatively smaller in the region.

The droughts of 1986-88, 1998-02 and 2006-09 were notably the most severe ones suf-

fered by the Southeast US since record keeping began. The recent droughts reiterate

the need of more drought-related studies based in the region. Studies pertaining to

droughts in the Southeast will definitely assist in long term regional planning.

The Southeast US is prone to a wide range of extreme weather and climate

events. It frequently witnesses natural disasters in the form of severe thunderstorms,

floods, tornadoes and droughts. The southeastern droughts are relatively short in

duration when compared with those in the Western and the Central US, which can

even last for decades. The climate of the southeastern region is highly influenced by

its nearness to water bodies apart from the latitude and topography. The effects of

climate change in the region have been quantified by different studies and reports

(KC et al, 2015; NCA, 2013). As a result of the change in climate in the region,

the average temperatures are expected to increase in several places, the air quality is

projected to deteriorate and the water resources are predicted to be strained.

Although Alabama usually receives ample yearly precipitation, the vulnerability

of several parts of the states to drought cannot be undermined. The economy of

Alabama is highly influenced by the agricultural activities in the state. Almost half of

its area is used for agriculture. Hence, the effects of droughts can often be immediately

visible in the state’s economy. Population of Alabama has increased almost by a

million since 1980. The demand for water resources is clearly increasing. It is difficult

to counter the point that a drought of magnitude similar to that of the 1980s would
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affect Alabama equally or more if it occurred today. It is, hence, essential to be

prepared against any sort of event that is likely to strike upon us.

Although extreme droughts are rare in the region, their changing characteristics

in recent years force us to contemplate more about them. Are droughts going to be

more frequent in the future? If yes, how rapidly is the frequency increasing? How

widespread would those droughts be? Would they be more severe? Are the droughts

a direct consequence of climate change? Are the droughts associated with anoma-

lies in the sea surface temperature or are they caused by unexplained atmospheric

abnormalities? There are many questions that need to be answered.

3.3 Objective

Analyze the changes in frequency, severity and spatial extent of droughts in Al-

abama using Severity-Area-Frequency Curves.

3.4 Study Area

The area under consideration for this study is the state of Alabama. The south-

eastern state of Alabama is surrounded by Tennessee in the north, Georgia in the

east, Mississippi in the west and Florida and the Gulf of Mexico in the South. The

total area of the state is 52,419 square miles. It has four physiographic regions: Gulf

Coastal Plain, Piedmont Plateau, Ridge and Valley section, and Appalachian Plateau.

The highest elevation in the state is Cheaha Mountain at 2407 feet and the lowest

point is at sea level. The state frequently experiences natural hazards in the form of

hurricanes, floods, tornadoes and droughts.

Droughts in Alabama are usually the outcome of reduced precipitation in winter

and spring. On average, Alabama receives about 55 inches of yearly rainfall. In

regions close to the Gulf of Mexico, it can often be as high as 65 inches whereas

it is usually about 50 inches in the central and west-central parts. Usually, more

26



Figure 3.1: The average annual rainfall in Alabama.
Source: Department of Geography, University of Alabama

than half of the total precipitation occurs between the months of December and

May. Inadequate precipitation during these months causes insufficient recharge of soil

moisture in the region. Summer follows these months and almost no precipitation

coupled with excessive evapotranspiration during the summer months causes drying of

the soil. The average annual temperature in Alabama is about 64◦F. During summer,

the average temperature rises to about 90◦F increasing water loss to evaporation and

transpiration.
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Figure 3.2: The average annual temperature in Alabama.
Source: Department of Geography, University of Alabama

The recording of droughts in Alabama and Georgia were started since the begin-

ning of the twentieth century. It was around this time that droughts started to be

quantified by drought indices. Before the droughts of 1980s intensified drought issues

in Alabama, the droughts of 1954-55 and 1960-63 were the ones that were most severe

and persisted statewide. Besides these, the drought of 1929-32 affected the northeast

portion of the state, and those of 1938-45 and 1964-70 affected nearly the entire state

(USGS, 1988-89). The severe statewide droughts of the 80s were all a result of re-

duced precipitation. Some severely affected regions suffered from precipitation deficit
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higher than a year’s worth of rain. Droughts began to become a major concern in

the state only after the occurrence of these droughts. The droughts of 2007 worsened

the condition in Alabama and it was considered to be the worst drought in over one

hundred years (B. Riley, State of Alabama, Governor’s office press release, July 30,

2007). It is evident from the drought patterns that droughts have continuously been

increasingly severe.

3.5 Data and Methodology

Many climate variables from three different models were downscaled to 10 km res-

olution over the Southeast US by the Regional Spectral Model (RSM) at the Florida

State University (FSU) - Florida Climate Institute (FCI) with the methods adapted

from Kanamitsu et al. (2010). As part of the COAPS (Center for Ocean-Atmospheric

Prediction Studies) Land-Atmosphere Regional Ensemble Climate Change Experi-

ment for Southeast US at 10 km resolution (CLAREnCE10), three Coupled Model

Inter-comparison Project (CMIP3) coupled General Circulation Models (GCMs) were

downscaled for the A2 emissions scenario of the Fourth Assessment Report (IPCC,

2007). The two timeslices used in this study was between 1969 and 1999 for the

historical simulations and 2039 and 2069 for the future simulations. The models

used were Community Climate System Model (CCSM), Geophysical Fluid Dynamics

Laboratory (GFDL) Model and Hadley Centre Coupled Model Version 3 (HadCM3).

Precipitation and temperature data were used from these three general circulation

models to compute the indices. As the spatial resolution of the data used in this

study is 10 km, it was chosen over the data produced by North American Regional

Climate Change Assessment Program (NARCCAP), which is at a spatial resolution

of 50 km. The resolution of 10 km makes the data ideal for hydrologic assessment

over the region.
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In this study, droughts were quantified by the use of SPI and SPEI as both

possess the capability to monitor and forecast droughts effectively.

3.5.1 Standardized Precipitation Index (SPI)

Long-term precipitation data is required to compute the SPI. Data of at least

30 years is desired. First, the mean and standard deviation for the long record of

precipitation at any given location is calculated. The data is transformed into log-

normal values to obtain the U-statistic, shape and scale parameter. Using these

parameters, the cumulative gamma probability distribution can be calculated. The

cumulative probabilities are obtained from this distribution. This probability is fur-

ther transformed to standardized normal probability distribution using probability

transformation techniques suggested by Abramowitz and Stegun (1965). A step-by-

step procedure to calculate the index is described in Appendix A.

SPI was computed for timescales of 1, 3, 6 and 12 months using precipitation

data from CLAREnCE-10 dataset. A total of 1417 points existed across Alabama for

which the time series of SPI values were calculated.

3.5.2 Standardized Precipitation Evapotranspiration Index (SPI)

SPEI calculation procedure is very much similar to that applied in calculating

SPI. It takes into account evapotranspiration apart from the precipitation. This index

is basically derived based on the moisture value at any given location. The moisture

departure is obtained as the difference between the precipitation and potential evap-

otranspiration. Moisture departure is then transformed into log-logistic probability

distribution. This probability distribution is further transformed to standardized nor-

mal probability distribution using probability transformation techniques suggested by

Abramowitz and Stegun (1965) to obtain the SPEI. A step-by-step procedure to cal-

culate the index is described in Appendix B.
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SPEI was computed for timescales of 1, 3, 6 and 12 months using precipitation

and temperature data from CLAREnCE-10 dataset. A total of 1417 points existed

across Alabama for which the time series of SPEI values were calculated. PET was

calculated from temperature using Thornthwaite Method. The difference between

precipitation and PET was calculated as the moisture balance, which was used to

compute the SPEI.

3.5.3 Potential Evapotranspiration

Potential evapotranspiration (PET) is an important component in calculation of

SPEI. The PET is subtracted from the precipitation to obtain the moisture balance.

It is the moisture balance that is processed to compute the SPEI. In this study, Thorn-

thwaite method was used to calculate PET. Studies show that Penmann-Monteith is

the most reliable method to compute PET. However, Mavromatis (2007) showed that

the choice of method for estimation of PET doesn’t affect the drought index signifi-

cantly. The primary idea of this study is to analyze drought events during two time

slices. Therefore, the choice of method for PET calculation is not likely to affect the

results as the method chosen would equally affect the values during both time slices.

The method applied to calculate PET is described in detail in Appendix C.

3.5.4 Severity-Area-Frequency (SAF) Curves

Severity-Area-Frequency (SAF) curves are very effective in analyzing droughts.

Although it is a relatively long procedure to construct them, they give detailed and

informative description about droughts. Droughts can be compared with standard

droughts with specific recurrence intervals to assess their severity, frequency and spa-

tial extent at the same time. To see changes in the frequency and severity of droughts

at individual locations, the time series of the index can be studied. However, com-

paring droughts at individual locations to comment on overall drought characteristics
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across a region is not the wisest method. SAF curves make it easier to discern the

subtle difference in drought severity across different percentage area while associating

them with various return intervals simultaneously.

To construct SAF curves, the drought variable of a suitable timescale (3-SPI,

6-SPI or 12-SPI) must be identified. For the selected drought variable, the drought

severity, which is simply the sum of negative values during a dry spell, was calcu-

lated. Then, for different areal extent of the droughts, the aggregated mean of drought

severity was calculated by taking various areal thresholds into account. The drought

severities across various areal extents were all fitted according to a probability distri-

bution. In this study, Extreme Value Type I distribution was used. Then, frequency

analysis was performed to generate respective severities across different areal extents

for different return intervals. Finally, these severities were plotted against the areal

extents to obtain the SAF curves.

3.5.5 Timescale of Indices

SPI and SPEI can be analyzed for different timescales depending on what kind of

droughts one wants to quantify and assess. SPI and SPEI from shorter timescales like

2-3 months can provide information about the soil moisture condition or streamflow.

Similarly, longer timescales of 12-24 months can be used to assess information about

groundwater level. SPI less than -1 indicate drought conditions. Hence, for analysis,

all the values of SPI greater than this were omitted. In this study, SPI and SPEI

computed using a timescale of 6 months was used to construct SAF curves. This

particular drought variable was chosen to analyze general droughts in the region.

Droughts usually take up 2-3 months to make a mark and can exist for periods ranging

from months to years. Hence, minor temperature fluctuations over a month or two

are not likely to instigate a drought. It is, therefore, expected that the timescale of 6

months ensures that all major droughts were covered and minor ones were eliminated
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in the analysis. SPI at a timescale of 6 months has been used by many other studies

to analyze their results (Reddy and Ganguli, 2012; Tsakiris and Vangelis, 2004).

3.6 Results and Discussion

Droughts in the state were assessed by SPI and SPEI from three GCMs for

historical and projected simulations by the means of SAF curves. The results from

the respective indices are discussed below:

3.6.1 SPI

The results of SPI from various models are presented below:

CCSM

Initially, the results of SPI from CCSM were used to obtain basic information

about drought duration and frequency. The total number of drought incidences at

all points across Alabama is shown in Figure 3.3. It shows an increase in moderate

droughts whereas a decrease in severe and extreme droughts in the future period being

considered. Moderate droughts increased by 10.0 percent, severe droughts decreased

by 13.7 percent and extreme droughts decreased by 39.5 percent. However, when

the overall occurrence of droughts was considered, droughts were reduced by only

1.5 percent. When the drought durations were compared, it was seen that droughts

observed in past lasted as long as 24 months whereas among those in the future,

maximum duration was of 12 months.

SAF curves were used to compare the severity of droughts of specific return in-

tervals in the past and future. The historical and future SAF curves are presented in

Figure 3.4. It was observed from the curves that for droughts with all return inter-

vals, past droughts are more severe for majority of the area. As the percentage area

considered is increased, droughts in past and future tend to be of similar severity.
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Figure 3.3: Total number of different kind of drought incidences according to SPI
from CCSM.

Recurrence
Interval

2
years

5
years

10
years

25
years

50
years

75
years

100
years

Percentage
Decrease

-10.95 -5.94 -4.63 -3.65 -3.18 -2.97 -2.83

Table 3.1: Average percentage decrease in overall drought severity according to SPI
from CCSM.

When smaller percentage area of the state is considered, past droughts usually are of

higher severity. On average, droughts with all recurrence intervals decreased in sever-

ity. The average decrease in severity for droughts with different recurrence intervals

is shown in Table 3.1. It was observed that 2-year droughts in the future would be on

average 10.9 percent less severe than the ones in future and 100-year droughts would

be 2.8 percent less severe. From the SAF curves, the maximum drought severity can

be observed to be around 23.7, spread across 5 percent of the area for a 100-year
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Figure 3.4: SAF curves for droughts with different recurrence intervals during
historical and future periods (SPI from CCSM).

drought in the past. The severity gradually decreases with increase in areal extent

being considered.

GFDL

As evident from Figure 3.5, GFDL model indicated that there would be more

incidences of all kinds of droughts in the future. Moderate droughts increased by 6.7

percent, severe droughts increased by 8.3 percent and extreme droughts increased by

15.7 percent. On average, the droughts increased by 8.1 percent in the future. The

droughts in the future are often as long as 20 months whereas the longest one in the

past was of 16 months.

The future droughts were clearly seen to be more severe from the SAF curves

shown in Figure 3.6. The SAF curve for droughts with any given recurrence interval

in the future was much higher than its corresponding curve in the past. A 50-year
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Figure 3.5: Total number of different kind of drought incidences according to SPI
from GFDL.

drought in the future almost appears like a 100-year drought in the past. For future

droughts, the severity is going to be higher and they are going to be more widespread

too. The average increase of severities for droughts of different recurrence intervals

Recurrence
Interval

2
years

5
years

10
years

25
years

50
years

75
years

100
years

Percentage
Increase

8.01 9.43 9.79 10.09 10.27 10.33 10.38

Table 3.2: Average percentage increase in overall drought severity according to SPI
from GFDL.

are presented in Table 3.2. The average percentage increase vary by as much as 8.0

percent for 2 year droughts and 10.4 percent for 100-year droughts. From the SAF

curves, the highest severity can be observed to be 27.6 across 5 percent area for a

100-year drought in the future. The overall severity, according to SPI, from GFDL
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Figure 3.6: SAF curves for droughts with different recurrence intervals during
historical and future periods (SPI from GFDL).

was indicated to be higher than that from CCSM. This could either imply more severe

droughts or similar droughts spanning a longer duration.

HadCM3

SPI from this model indicated the highest increase in droughts. An increase

in the occurrence of all kind of droughts can be seen in Figure 3.7 with moderate

droughts increasing by 5.4 percent, severe droughts increasing by 18.6 percent and

the extreme droughts increasing by a whopping 74.2 percent. Overall, droughts were

seen to increase by 17.3 percent. The longest drought during both periods (past and

future) was 15 months.

From the SAF curves shown in Figure 3.8 for SPI from HadCM3, severity of

droughts in the future can be observed to be much more severe than those in the

past. For any given areal threshold and recurrence interval, droughts in future would

37



Figure 3.7: Total number of different kind of drought incidences according to SPI
from HadCM3.

be substantially more severe than the past ones. It can be seen that even a 50-year

drought in the future is going to be more severe than a 100-year drought in the past.

The results of this model indicate future droughts to increase in frequency, severity

and spatial extent than those in the past. Droughts of all recurrence intervals are

expected to increase in severity by more than 20 percent as shown in Table 3.3.

Drought severity is expected to increase by 22.8 percent for 2-year droughts and by

23.7 percent for 100-year droughts. However, the severity is still lesser than that

Recurrence
Interval

2
years

5
years

10
years

25
years

50
years

75
years

100
years

Percentage
Increase

22.77 23.33 23.49 23.60 23.65 23.68 23.69

Table 3.3: Average percentage increase in overall drought severity according to SPI
from HadCM3.
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Figure 3.8: SAF curves for droughts with different recurrence intervals during
historical and future periods (SPI from HadCM3).

indicated by the GFDL model. The maximum severity for a 100-year future drought

can be seen to be 25.0 for 5 percent of the area from Figure 3.8.

3.6.2 SPEI

For the analysis of SPEI too, only the values of the index below -1 was considered.

The results of SPEI from various models are presented below:

CCSM

The comparison of drought incidences across Alabama with results of SPEI from

CCSM is depicted in Figure 3.9. It shows an increase in extreme droughts but a

decrease in moderate and severe droughts in the future. Extreme droughts increased

substantially by 58.9 percent whereas moderate and severe droughts decreased by 3.5

percent and 8.9 percent, respectively. The total number of droughts decreased by 2.4
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percent. The overall change in droughts from SPI as well as SPEI calculated from

this model isn’t very different from each other. Droughts as long as 19 months can

be observed in the future period. In the past period, the longest drought was of 14

months.

Figure 3.9: Total number of different kind of drought incidences according to SPEI
from CCSM.

The SAF curves from the results from this model is shown in Figure 3.10. It can

be seen that for droughts of any given recurrence interval in the past and the future

appear to be roughly similar. For lower thresholds of area, droughts are slightly more

severe in the past whereas for higher thresholds, droughts in future are slightly more

severe. As the curves are not significantly different, it can be said that this model

doesn’t predict droughts to change significantly in the future. Table 3.4 shows average

increase or decrease in severity for droughts with different recurrence intervals. The

average severity of droughts is expected to decrease by 11.5 percent for 2-year droughts

but it is expected to increase by 1.7 percent for 100-year droughts. The SAF curves
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Figure 3.10: SAF curves for droughts with different recurrence intervals during
historical and future periods (SPEI from CCSM).

indicate that the maximum severity would be 24.3 for a 100-year drought across 5

percent of the area in the future. This is smaller than the severity values indicated by

other models. Both the indices computed from CCSM suggests that climate change

won’t affect droughts significantly.

Recurrence
Interval

2
years

5
years

10
years

25
years

50
years

75
years

100
years

Percentage
Increase or
Decrease

-11.47 -3.39 -1.26 0.36 1.10 1.44 1.67

Table 3.4: Average increase(+) or decrease (-) in overall drought severity according
to SPEI from CCSM.
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GFDL

The results from GFDL model indicated increase in moderate and severe droughts

whereas a decrease in extreme droughts in the future. This can be observed in Figure

3.11. Moderate droughts increase by 11.6 percent and severe droughts increase by 5.2

percent but extreme droughts decrease by 21.2 percent. In totality, droughts increase

by 7.1 percent across the state. The longest drought in the past lasted for 14 months.

In the future period, droughts as long as 18 months are projected.

Figure 3.11: Total number of different kind of drought incidences according to SPEI
from GFDL.

Droughts in the future are again seen to be more severe from the SAF curves

in Figure 3.12. Among the SPEI from various models, this one suggests drought

properties to change most significantly in the future. Droughts with all recurrence

intervals are distinctly seen to be more severe in the future. Table 3.5 indicate increase

in drought severity for droughts with different recurrence intervals. The severity
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Figure 3.12: SAF curves for droughts with different recurrence intervals during
historical and future periods (SPEI from GFDL).

Recurrence
Interval

2
years

5
years

10
years

25
years

50
years

75
years

100
years

Percentage
Increase

11.77 9.85 9.39 9.05 8.90 8.82 8.78

Table 3.5: Average percentage increase in overall drought severity according to
SPEI from GFDL.

increases by 11.8 percent on average for 2-year droughts and by 8.8 percent for 100-

year droughts. The maximum severity for a 100-year future drought at 5 percent

threshold area is as high as 27.4. As it is evident from Figure 3.12, for any chosen

percentage area, future droughts will be more severe and for any chosen severity,

future droughts will be more widespread.
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HadCM3

HadCM3 indicated an increase in all kinds of droughts. As seen in Figure 3.13,

moderate, severe and extreme droughts increased by 6.7 percent, 8.5 percent and 7.6

percent respectively. The total number of drought incidences across Alabama was

seen to increase by 7.3 percent. The longest drought in the past period was observed

to be of 15 months duration whereas the longest drought was of 14 months in the

future time period.

Figure 3.13: Total number of different kind of drought incidences according to SPEI
from HadCM3.

Again, the SAF curves in Figure 3.14 indicate future droughts to be more severe

than those of the past. However, they don’t appear to be as severe as that indicated

by the SPI from this model. It can be seen that the future curve for droughts of

any recurrence interval is higher than their corresponding curve in the past. This

implies droughts in the future will be more severe for any area considered and for

any chosen severity, droughts will be more widespread. Table 3.6 summarizes the
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Figure 3.14: SAF curves for droughts with different recurrence intervals during
historical and future periods (SPEI from HadCM3).

Recurrence
Interval

2
years

5
years

10
years

25
years

50
years

75
years

100
years

Percentage
Increase

11.79 8.14 7.18 6.47 6.12 5.96 5.87

Table 3.6: Average percentage increase in overall drought severity according to
SPEI from HadCM3.

average percentage increase in drought severities for droughts with different recurrence

intervals. 2-year droughts are predicted to increase in severity by about 11.8 percent

and 100-year droughts are predicted to increase by 5.9 percent.

3.7 Summary and Conclusion

This study used two common drought indices, SPI and SPEI to quantify the

effect of climate change on droughts in Alabama. The indices were analyzed using

SAF curves. It is widely known that the effects of climate change can be observed
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fastest on water resources. Climate change is bound to stress available water resources

at any place. As a consequence of limited water supply, the characteristics of droughts

are likely to change too because of climate change.

In general, droughts in Alabama are expected to increase in frequency as a result

of climate change. The results for two drought indices calculated from two out of

three GCMs (GFDL and HadCM3) used in this study showed that droughts in future

are expected to be more severe, more frequent and also more widespread in the future

than in the past. CCSM model indicates droughts to be similar in both time periods

being considered in this study. The increase in severity indicated by this study could

imply longer droughts that are moderately severe or relatively shorter droughts that

are exceptionally severe.

With droughts increasing in severity by as much as 23.7 percent, there is defi-

nitely the need for better preparedness against them. The characteristics of droughts

are being influenced by climate change to a certain extent. Our preparedness for

the future should be influenced by anticipation of worst droughts in future and far-

reaching consequences from those droughts.

The results of this research can be used by policymakers to plan ahead of time

for better preparation to the drought years. If droughts can be projected well ahead

of time, their consequences can be tackled more appropriately. The results of this

study also helps us to understand expected changes in droughts in the Southeast US

better and exposes the need to prepare better to mitigate the economic, social and

environmental effects of droughts.
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Chapter 4

How would frequency, severity and spatial extent of future droughts change in the

Apalachicola-Chattahoochee-Flint River Basin?

4.1 Abstract

Droughts are natural disasters that cannot be prevented, but forecasting and

quantifying them before their occurrence can reduce their impacts. Recurring droughts

in the Southeast US have called for a more pragmatic approach to manage their con-

sequences. The focus of this study was to analyze how droughts in the Apalachicola-

Chattahoochee-Flint (ACF) River Basin will change in future as a result of projected

climate change. Commonly used drought indices were computed to quantify the

change in droughts.

Two commonly used drought indices, Standardized Precipitation Index (SPI)

and Standardized Precipitation Evapotranspiration Index (SPEI) were used to quan-

tify and assess historical and future droughts. The change in frequency, severity

and spatial extent of future droughts were analyzed. Precipitation and temperature

data, regionally downscaled for the Southeast US for high emission scenario (A2)

by Regional Spectral Model (RSM) at the Florida State University (FSU) - Florida

Climate Institute (FCI), from three General Circulation Models, Hadley Centre Cou-

pled Model Version 3 (HadCM3), Geophysical Fluid Dynamics Laboratory (GFDL)

Model and Community Climate System Model (CCSM), from the Third Coupled

Model Inter-comparison Project (CMIP3) archive were used for this study. Data

from 1969 to 1999 was used for historical simulation and that from 2039 to 2069 was

used for future projections.
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Severity-Area-Frequency (SAF) curves were analyzed for droughts with different

recurrence intervals. SPI from HadCM3 and GFDL model indicated droughts in

future to be more severe, frequent and widespread. SPI from CCSM suggested more

moderate droughts in the future but fewer severe and extreme ones. The model also

indicated that severity and spatial extent didn’t change much. SPEI from CCSM

suggested increased extreme droughts in the future but the overall severity and spatial

extent was again seen to be similar. Again, SPEI from HadCM3 and GFDL model

indicated increase frequency, severity and spatial extent of future droughts.

The results of this research helps us understand projected changes in the nature

of droughts in the ACF River Basin. The analysis of drought trends can be applied in

a drought monitoring or early warning system and can be used to mitigate the effects

of droughts proactively. If droughts can be projected well ahead of time, their con-

sequences can be tackled more appropriately and socioeconomic and environmental

impacts can be lessened.

4.2 Introduction

The problems of droughts are on the rise, mainly due to increasing population

and alarming effects of climate change. It is often considered to be the costliest

environmental disaster and, hence, draws the attention of people from various walks

of life. Farmers get affected as droughts reduce agricultural production. Economists

are concerned because droughts often hampers economical growth in the region where

it occurs. Environmentalists are concerned because of the enormous harm it causes

to the environment and the diverse species. Drought is a disaster that affects millions

directly or indirectly, causing a global annual average loss between $6 and $8 billion.

Droughts directly affects water resources, reduce food availability and may lead

to famine, desertification and loss of biodiversity. The severity of a drought is heavily

influenced by the water demand in the region. Managing and mitigating the effects of
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droughts is dependent on managing water resources efficiently. The extensive losses

caused by droughts speak volume about the necessity to manage them better.

Droughts are a feature of the North American climate. They will continue to exist

in the future as they have in the past. The losses they bring about are in billions and

hence are considered to be the costliest natural disaster in economic terms. Plenty of

resources are at stake because of droughts. The problems of droughts have increased

significantly over the last few decades in the US. Almost 81 percent area of contiguous

US were under at least abnormally dry condition when the 2012 drought was peaking.

The total loss from this disaster was estimated to be around $30 billion.

Considering the droughts in Western and Central US, which often last decades,

southeastern droughts are relatively short. However, the Southeast US has been

witnessing extreme weather and climate events since centuries ago. Severe thunder-

storms, floods, tornadoes and droughts are not uncommon in the region. The effects

of climate change are often distinct in the region and have been quantified by some

studies and reported already (KC et al, 2015; NCA, 2013). Projected data predict

water resource problems to be more pronounced due to changing climate.

ACF has 16 dams present in its mainstem rivers and these regulate the flow in

the rivers. As these rivers in the region fulfill most of its water resource demands, the

dams control the hydrology of the entire region to a great extent. The population

of the region, which was 2.64 million in 1990, has increased enormously over the last

couple of decades. Also, the irrigational agricultural activities have increased in the

southern part of the region. Increasing demand for water resources point towards the

problems the region may face in future. The severity of the 2007 and 2012 droughts

are indications that we must be prepared for worse droughts in the future.

The unfavorable consequences droughts bring need to be tackled well to minimize

the socioeconomic losses. The fact that extreme droughts are not frequent in the

region does not mean that they won’t be in the future either. The changing nature of
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droughts in the recent years questions our knowledge about droughts suggesting that

more research is needed to know them better. More studies can definitely assist in

developing models and information systems that can correctly forecast droughts and

analyze its properties. There are huge gaps that need to be filled regarding droughts

in the Southeast US. The problems of increasing droughts can be mitigated with more

research that can help stakeholders and policymakers make wise decisions. There are

many questions that need to be answered with regards to droughts and only extensive

research can help us answer them.

4.3 Objective

Analyze the changes in frequency, severity and spatial extent of droughts in the

Apalachicola-Chattahoochee-Flint River Basin using Severity-Area-Frequency Curves.

4.4 Study Area

The area under consideration for this study is the Apalachicola-Chattahoochee-

Flint (ACF) River Basin. It sprawls across the southeastern states of Alabama,

Florida and Georgia covering about 5 degrees of latitude. The basin drains across an

area of about 19,800 square miles. About 75 percent of the basin is in Georgia and

the remaining 25 percent is shared by Alabama and Florida roughly equally. The

mainstem of the three rivers consists of 16 dams that cause a large portion of river

to be in the form of backwater, hence, influencing water quality and quantity in the

basin. Water issues frequently trouble the region.

The Chattahoochee River originates in northeast Georgia in the Blue Ridge

Mountains and runs along the southern half of Alabama-Georgia border. It is about

430 miles long and drains an area of about 8770 square miles. The Flint River is

about 344 miles long and drains a total area of about 8460 square miles. These two

rivers join to form the Apalachicola River, which is approximately 112 miles long.
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Figure 4.1: Apalachicola-Chattahoochee-Flint River Basin with all the locations for
which the indices were calculated.

The confluence of the rivers lies close to the Georgia-Florida state line and it is sub-

merged in Lake Seminole. The Apalachicola River flows into the Apalachicola Bay

and then the Gulf of Mexico.

The climate in the basin is warm and humid, typically portraying temperate

conditions. The annual rainfall for the region is about 55 inches. The northern part

of the basin receives orographic rainfall because of the mountains and the southern

side receives convective rainfall because of its proximity to the Gulf of Mexico (Couch

et al., 1996). The average temperature is about 60◦F in the north and about 70◦F
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in the south. Evapotranspiration generally increases from north to south, basically

because of increasing temperatures. It ranges between 32 inches to 42 inches per

year. Groundwater in the basin is basically stored in six different kinds of aquifers.

The crystalline-rock aquifers dominate the northern part of the basin, the Providence

aquifer, the Clayton aquifer, the Claiborne aquifer and the Floridan aquifer exist in

the central part and the surficial aquifer exists close to the coastal plains. Over the

Figure 4.2: Aquifers contained in the ACF River Basin.
Source: http://ga.water.usgs.gov/nawqa/basin/gw-hydrology.html

last 50 years across the region, the average precipitation decreased between 9 percent
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and 16 percent, soil moisture declined between 3 percent and 6 percent, the water-

shed runoff decreased between 16 percent and 27 percent and the evapotranspiration

increased between 1 percent and 3 percent causing intensification of droughts. Be-

tween 1986 and 2007, the Apalachicola-Chattahoochee-Flint River Basin witnessed 8

drought years out of which 4 were severe drought years (USCoE, 2011). The record-

low precipitation received by northern Georgia coupled with increasing temperatures

in 2007 gave rise to a massive reduction of water quantity in the lakes and rivers

in the region. Lake Lanier was only about half of its capacity in spring 2008. Pro-

jected climate data indicate water problems in the basin to deepen over the next few

decades.

The enormity of water issues in the region is vividly exemplified by the tri-state

water wars going on since decades between Alabama, Florida and Georgia regarding

water usage in the basin. Out of 16 dams in the region, 13 exist along the Chat-

tahoochee River. These dams mostly regulate the flow along both Chattahoochee

and Apalachicola rivers. Damming the Chattahoochee River by Buford Dam created

Lake Lanier. Most of the water demand of Atlanta and Columbus metros is met from

the Chattahoochee River, its tributaries and Lake Lanier. As the basin is subject of

riparian water rights, Alabama and Florida filed lawsuit in early 1990s against the

US Army Corps of Engineers (USCOE) and Georgia for diverting water from Lake

Lanier for consumption in Atlanta. Also, increasing irrigated agriculture consumes

copious amount of water in southwest Georgia. Most of this demand is met from the

Upper Floridan Aquifer, which is connected to the Flint River. This regulates flow

along Flint River and its tributaries as well. The dispute is still going on and the

lawsuits are still pending in courts (as of June 2015).
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4.5 Data and Methodology

Many climate variables from three different models were downscaled to 10 km res-

olution over the Southeast US by the Regional Spectral Model (RSM) at Florida State

University (FSU) - Florida Climate Institute (FCI) with the methods adapted from

Kanamitsu et al. (2010). As part of the COAPS Land-Atmosphere Regional Ensem-

ble Climate Change Experiment for Southeast US at 10 km resolution (CLAREnCE10),

three Coupled Model Inter-comparison Project (CMIP3) coupled General Circulation

Models (GCMs) were downscaled for the A2 emissions scenario of the Fourth Assess-

ment Report (IPCC, 2007). The models used were Community Climate System Model

(CCSM), Geophysical Fluid Dynamics Laboratory (GFDL) Model and Hadley Centre

Coupled Model Version 3 (HadCM3). Precipitation and temperature data were used

from these three general circulation models to compute the indices.

In this study, droughts were quantified by the use of SPI and SPEI for timescales

of 1, 3, 6 and 12 months. Both appear to be rational choices, as both possess the

capability of to monitor and forecast droughts effectively.

4.5.1 Standardized Precipitation Index (SPI)

Long-term precipitation data for duration lasting at least 30 years is required

to compute the SPI. First, the mean and standard deviation for the long record

of precipitation at any given location is calculated. The data is then transformed

into lognormal values to obtain the U-statistic, shape and scale parameter. Using

these parameters, the cumulative gamma probability distribution can be calculated.

The cumulative probabilities are obtained from this distribution. This probability is

further transformed to standardized normal probability distribution using probability

transformation techniques suggested by Abramowitz and Stegun, 1965. A step-by-

step procedure to calculate the index is described in Appendix A.
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SPI was computed for timescales of 1, 3, 6 and 12 months using precipitation

data from CLAREnCE-10 dataset. A total of 529 points existed across ACF River

Basin for which the time series of SPI values were calculated.

4.5.2 Standardized Precipitation Evapotranspiration Index (SPI)

SPEI calculation procedure is very much similar to that applied in calculating

SPI. Besides precipitation, this index considers evapotranspiration too. This index

is derived based on the moisture balance value at any given location. The mois-

ture departure is obtained as the difference between the precipitation and potential

evapotranspiration. Moisture departure is then transformed into log-logistic probabil-

ity distribution. This probability distribution is further transformed to standardized

normal probability distribution using probability transformation techniques suggested

by Abramowitz and Stegun (1965) to obtain the SPEI. A step-by-step procedure to

calculate the index is described in Appendix B.

SPEI was computed for timescales of 1, 3, 6 and 12 months using precipitation

and temperature data from CLAREnCE-10 dataset. A total of 529 points existed

across ACF River Basin for which the time series of SPEI values were calculated.

PET was calculated from temperature using Thornthwaite Method. The difference

between precipitation and PET was calculated as the moisture balance, which was

used to compute the SPEI.

4.5.3 Potential Evapotranspiration

Potential evapotranspiration (PET) is an important component in calculation of

SPEI. The PET is subtracted from the precipitation to obtain the moisture balance.

It is the moisture balance that is processed to compute the SPEI. In this study, Thorn-

thwaite method was used to calculate PET. Studies show that Penmann-Monteith is

the most reliable method to compute PET. However, Mavromatis (2007) showed that

55



the choice of method for estimation of PET doesn’t affect the drought index signifi-

cantly. The primary idea of this study is to analyze drought events during two time

slices. Therefore, the choice of method for PET calculation is not likely to affect the

results as the method chosen would equally affect the values during both time slices.

The method applied to calculate PET is described in detail in Appendix C.

4.5.4 Severity-Area-Frequency (SAF) Curves

Construction of Severity-Area-Frequency (SAF) curves enables droughts to be

analyzed effectively. They are pretty informative and allow droughts to be compared

across their entire spatial extent. Regional droughts can be compared with standard

droughts with specific recurrence intervals to assess their severity, frequency and

spatial extent at the same time. Comparison of drought indices at specific locations

allows the changes in frequency and severity at that particular location to be studied.

However, comparing droughts at specific locations to comment on overall drought

characteristics across a region would not be considered wise. SAF curves make it

easier to discern the subtle differences in drought severity across different percentage

area being considered by associating them with various return intervals.

To construct SAF curves, firstly, the drought variable of a suitable timescale

(3-SPI, 6-SPI or 12-SPI) must be identified. For the selected drought variable, the

drought severity, which is simply the sum of negative values during a dry spell, is

calculated. Then, for different areal extent of the droughts, the aggregated mean of

drought severity is calculated by taking various areal thresholds into consideration.

Drought severities across various areal extents are all fitted according to a probability

distribution. In this study, Extreme Value Type I distribution was chosen. Then,

frequency analysis is performed so that different return intervals can be quantified by

respective severities across different areal extents. Finally, these severities are plotted

against the areal extents to obtain SAF curves.
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4.5.5 Timescale of Indices

Different kinds of droughts can be quantified and assessed from SPI and SPEI

depending on the timescale used for their calculation. SPI and SPEI from shorter

timescales like 2-3 months can provide information about the soil moisture condition

or streamflow. Similarly, longer timescales of 12-24 months can be used to assess

information about groundwater level. Droughts in the basin were assessed by SPI

and SPEI from three GCMs for historical and projected simulations by the means

of SAF curves. In this study, SAF curves were constructed from SPI and SPEI of 6

months timescale. Droughts usually take up 2-3 months to make a mark and can exist

for periods ranging from months to years. Hence, minor temperature fluctuations over

a month or two are not likely to instigate drought. It is, therefore, expected that the

timescale of 6 months will include all major droughts and eliminate minor ones in the

analysis.

4.6 Results and Discussion

Droughts in the ACF River Basin were quantified by SPI and SPEI from three

GCMs for historical and projected simulations and analyzed using SAF curves. The

results from the respective indices are discussed below:

4.6.1 SPI

As SPI less than -1 indicate drought conditions, all the values of SPI greater than

this were omitted for analysis. The results of SPI from various models are presented

below:

CCSM

Initially, drought incidences were studied to assess the drought frequency and

duration across the basin for the two time periods in consideration. Comparison of
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Figure 4.3: Total number of different kind of drought incidences according to SPI
from CCSM.

drought incidences from 6-SPI from CCSM is shown in the Figure 4.3. In the future,

moderate droughts are observed to increase by 4.3 percent and severe droughts and

extreme droughts to decrease by 5.9 percent and 10.0 percent, respectively. However,

the overall reduction in droughts was by a minimal 0.25 percent. The comparison of

drought durations indicated them to be similar for both time periods. The longest

ones in the past and future were about 14 months and 15 months, respectively.

Droughts with standard recurrence intervals of 5, 25, 50 and 100 years were

compared for the two time slices. The SAF curves, shown in Figure 4.4, indicated

future droughts to be very similar to the ones in the past. The results presented in

Table 4.1 show slight increase in the overall severity of droughts. 2-year droughts

increase in severity by 4.27 percent and 100-year droughts increase by 0.14 percent.

The spatial extent of droughts appears to be very similar in the past and the future.

From the SAF curves, the maximum drought severity can be observed to be around
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Figure 4.4: SAF curves for droughts with different recurrence intervals for future
and past (SPI from CCSM).

Recurrence
Interval

2
years

5
years

10
years

25
years

50
years

75
years

100
years

Percentage
Increase

4.27 1.61 0.97 0.52 0.30 0.20 0.14

Table 4.1: Average percentage increase in overall drought severity according to SPI
from CCSM.

22.5 for a 100-year drought in both past and future across an area of 5 percent. The

decrease in severity is gradual as the area under consideration is increased.

GFDL

The results from GFDL model indicated an increase in moderate and extreme

droughts but a slight decline in severe droughts in the future. The comparison

is shown in Figure 4.5. Moderate droughts increased by 4.2 percent and extreme

droughts increased by 49.2 percent while severe droughts decreased by 0.2 percent.
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Figure 4.5: Total number of different kind of drought incidences according to SPI
from GFDL.

Overall, the droughts increased by 7.7 percent. Droughts were also observed to persist

for a longer time in the future. The droughts in the future are often as long as 21

months whereas the longest one in the past was of 15 months.

Recurrence
Interval

2
years

5
years

10
years

25
years

50
years

75
years

100
years

Percentage
Increase

5.93 8.59 9.28 9.79 10.04 10.15 10.22

Table 4.2: Average percentage increase in overall drought severity according to SPI
from GFDL.

The SAF curves are presented in Figure 4.6. They show future droughts to

be more severe and widespread. In general, the severity was seen to increase as the

recurrence interval of droughts increased. Table 4.2 shows average percentage increase

in drought severities for droughts with different recurrence intervals. The severity
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Figure 4.6: SAF curves for droughts with different recurrence intervals during
historical and future periods (SPI from GFDL).

increased by about 5.9 percent for 2-year droughts and by about 10.2 percent for 100-

year droughts. A 50-year drought in the future appears like a 100-year drought in the

past when the entire area of the basin is considered. The overall severity, according

to SPI, from GFDL was indicated to be higher than that from CCSM. This could

either imply more severe droughts or similar droughts spanning a longer duration.

HadCM3

The results from HadCM3 indicated a very high increase in droughts. The general

increase in drought occurrences can be observed in Figure 4.7. A slight decrease of 0.1

percent was observed among moderate droughts while severe droughts increased by

45.7 percent and extreme droughts increased colossally by 321.1 percent. In average,

droughts increased by 28.9 percent. The longest drought in past was of 22 months

while it was only of 13 months in the future.
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Figure 4.7: Total number of different kind of drought incidences according to SPI
from HadCM3.

The SAF curves are presented in Figure 4.8. Huge increase in the severity and

spatial extent of the droughts in the future can be observed. The average increase in

drought severities are presented in Table 4.3. On average, 2-year droughts increase

by 33.1 percent and 100-year droughts increase by 36.7 percent in the future. 25-year

future drought closely resembles 100-year past drought. However, the severity is still

slightly lower to that indicated from GFDL Model.

Recurrence
Interval

2
years

5
years

10
years

25
years

50
years

75
years

100
years

Percentage
Increase

33.11 35.25 35.87 36.31 36.55 36.62 36.70

Table 4.3: Average percentage increase in overall drought severity according to SPI
from HadCM3
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Figure 4.8: SAF curves for droughts with different recurrence intervals for future
and past (SPI from HadCM3).

4.6.2 SPEI

SPEI values lesser than -1 indicate drought conditions. Values indicating non-

drought conditions were omitted for analysis. The results from 6-SPEI from different

models are presented below:

CCSM

SPEI from CCSM model indicated a decrease in moderate and severe droughts

but an increase in extreme droughts. The bar chart is presented in Figure 4.9. Mod-

erate and severe droughts decreased by 7.7 percent and 5.4 percent respectively. Ex-

treme droughts increased by 72.6 percent. Overall, droughts decreased by 4.0 percent

in the region. Droughts as long as 27 months lasted in the past whereas the longest

drought in the future is only 13 months.
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Figure 4.9: Total number of different kind of drought incidences according to SPEI
from CCSM.

The SAF curves are presented in Figure 4.10. There exist vivid similarities

between SAF curves for droughts of any given recurrence interval in the past and the

future. Droughts with shorter return intervals can be seen to be roughly identical.

The average change in severities for droughts is presented in Table 4.4. The severity

for 2-year droughts increases slightly in future by about 1.58 percent. Even for more

rare drought events, the differences are not drastic or distinct. The average severity

for a 100-year drought is seen to decrease by 0.54 percent. This model predicts

Recurrence
Interval

2
years

5
years

10
years

25
years

50
years

75
years

100
years

Percentage
Increase or
Decrease

1.58 0.17 -0.15 -0.35 -0.45 -0.51 -0.54

Table 4.4: Average percentage increase (+) or decrease (-) in overall drought
severity according to SPEI from CCSM.
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drought characteristics to remain similar in the future too. Besides severity, spatial

extents appear to be virtually similar too. Drought incidences are fewer in the future.

Both indices computed from this model indicate droughts to remain indifferent in the

ACF River Basin. Although the droughts are not seen to change much, this model

indicates droughts to be the most severe in both the periods considered.

Figure 4.10: SAF curves for droughts with different recurrence intervals for future
and past (SPEI from CCSM).

GFDL

GFDL indicated an increase in moderate and extreme droughts but a slight

decrease in severe droughts. As evident from Figure 4.11, moderate droughts are

observed to increase by 6.7 percent and extreme droughts by 28.4 percent. Severe

droughts are seen to decrease by 3.3 percent. The total number of droughts increased

by 5.3 percent. The longest drought in the past lasted for about 15 months. In the

future, droughts as long as 19 months are projected.
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Figure 4.11: Total number of different kind of drought incidences according to SPEI
from GFDL.

From the SAF curves in Figure 4.12, droughts in the future are observed to be

more severe. Droughts with any chosen recurrence interval greater than 5 years are

Recurrence
Interval

2
years

5
years

10
years

25
years

50
years

75
years

100
years

Percentage
Increase

5.26 4.27 4.02 3.85 3.76 3.72 3.70

Table 4.5: Average percentage increase in overall drought severity according to
SPEI from GFDL.

seen to be more severe and widespread in the future. The maximum severity for

a 100-year future drought at 5 percent threshold area is as high as 26.1. For any

chosen percentage area, the respective severity will be higher in the future. Table 4.5

summarizes the average increase in drought severities in the future. Average severity
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Figure 4.12: SAF curves for droughts with different recurrence intervals for future
and past (SPEI from GFDL).

increases by about 2.3 percent for 2-year drought and by 3.7 percent for more extreme

100-year droughts.

HadCM3

HadCM3 indicated an increase in moderate and severe droughts but a decrease in

extreme droughts in the future. As shown in the bar chart in Figure 4.13, moderate

and severe droughts increased by 13.0 percent and 24.4 percent, respectively, and

extreme droughts decreased by 29.1 percent. The total number of drought incidences

across the ACF increased by 13.5 percent. The longest drought in past was observed

to be of 20 months duration whereas the longest drought in future are seen to last as

long as 16 months.

Again, the SAF curves in Figure 4.14 indicate future droughts to be more severe

than those in the past. The change in severity, however, is not as high as SPI from
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Figure 4.13: Total number of different kind of drought incidences according to SPEI
from HadCM3.

this model predicts. The maximum severities for past and future droughts appear

to be similar in the SAF curves. The gradual decrease in severity with increase in

areal extent is faster in past droughts as compared to future droughts. Across the

total spatial extent of droughts in the basin, the severity of a 50-year future drought

is similar to that of a 100-year past drought and 25-year future drought to 50-year

past drought. This indicates that although the maximum severities of droughts are

unlikely to change, the average severity will change across the region. The average

Recurrence
Interval

2
years

5
years

10
years

25
years

50
years

75
years

100
years

Percentage
Increase

7.78 8.50 8.69 8.82 8.88 8.91 8.93

Table 4.6: Average percentage increase in overall drought severity according to
SPEI from HadCM3.
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Figure 4.14: SAF curves for droughts with different recurrence intervals for future
and past (SPEI from HadCM3).

increase in drought severities are given in Table 4.6. The average severity increases in

future by 7.8 percent for 2-year droughts and by 8.9 percent for 100-year droughts. In

general, droughts will be more severe in the future. Similarly, for any chosen severity,

droughts in the future will be more widespread. Also, it can be observed that the

predicted future increase in severity is proportional to the increase in return interval

of the droughts.

4.7 Summary and Conclusion

The characteristics of extreme events are evidently changing in the recent years.

More frequent flood and drought events have been observed in the recent years in

the ACF River Basin. The plausibility of these changes in characteristics of natural

calamities because of climate change cannot be denied. It has been widely predicted
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that climate change shows its effects on water resources the fastest. Climate change

is aiding the inability to fulfill water supply demands and hence, it can be predicted

that the characteristics of droughts are likely to change too because of climate change.

It can be concluded from the results of this study that the characteristics of

droughts in the ACF are expected to change over the future. The frequency and

severity of drought events are expected to increase in general and it can also be said

that droughts will increase in spatial extent too. Both indices from two out of three

GCMs (GFDL and HadCM3) indicate a general increase in the frequency and severity

of the droughts. These also indicate that for any given severity, the spatial extent

will be much higher for future droughts. Both indices from CCSM indicate similarity

in droughts in past and future. Slight reduction in the frequency of droughts can be

observed according to CCSM. ACF needs to have better preparations for droughts.

Climate change is influencing droughts to change their characteristics to a certain

extent. To assure protectiveness against droughts, it would be beneficial if we can

prepare against the worst of predicted droughts.

The results from this study can be used to increase our understanding of droughts

in the ACF. Policymakers and stakeholders can use the results to come up with

better plans for drought management. Accurate drought forecasting can alleviate

the plausible effects from droughts. The results also give us an understanding about

the expected changes in drought characteristics, which can be used to prepare better

against droughts and reduce their socioeconomic and environmental impacts.

70



Chapter 5

Applicability of Standardized Precipitation Index for monitoring groundwater

conditions in the lower ACF River Basin

5.1 Abstract

Groundwater is a very important water source supplying a large proportion of the

total water demand in the United States. Groundwater quenches most of the water

needs in the Apalachicola-Chattahoochee-Flint (ACF) River Basin too. The river

basin has been characterized by water wars amongst Alabama, Florida and Georgia

because of water allocation from the basin. Frequent hydrological droughts in the

region worsens the situation. Monitoring groundwater levels can prove to be a part

of the strategy to manage water resources in the region.

The goal of this study is to determine the association of groundwater levels to

Standardized Precipitation Index (SPI) and find if it can be used as an index to

monitor groundwater conditions in the lower ACF River Basin. Long term historical

precipitation data were obtained from National Oceanic and Atmospheric Administra-

tion’s National Centers for Environmental Information (NCEI) for various locations

in the study area. SPI was calculated at different timescales for various locations.

Daily groundwater level observations at various observation wells were obtained from

the United States Geological Survey, Georgia.

The results showed strong correlation between SPI at time scales between 9 to

12 months and the groundwater levels at the wells close to the rain gauging stations,

thereby indicating that SPI at these timescales can be used to monitor groundwater
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conditions in the region. Accurate gridded observed precipitation forecasts and pro-

jections can be used to estimate groundwater levels in the corresponding locations.

This can also be extended to monitoring hydrologic droughts in the region.

As most of the irrigation water demand in the lower ACF River Basin is met

from groundwater resources, keeping track of groundwater conditions is of utmost

importance to monitor droughts and mitigate their effects. The results of this study

can be applied to monitor groundwater levels and hydrologic droughts in the region.

5.2 Introduction

Groundwater is the water that exists beneath the ground surface in pores, cracks

and crevices in soil and rocks, which is often considered a large subsurface reservoir.

The geologic formations containing groundwater are called aquifers. More than 90

percent of the total freshwater supply on earth exists in the form of groundwater

(USGS, 2009). It occurs almost everywhere on earth in varying amounts beneath the

ground surface. Almost half of the water demands in the US is met from ground-

water. It is also a major source for recharge of surface water bodies and wetlands.

Precipitation is the biggest source of recharge for groundwater.

The ACF River Basin is about 19,800 square miles in area and sprawls across

the states of Alabama, Florida and Georgia. Alabama, Florida and Georgia have

equal rights to water from the basin because of riparian water rights in the basin.

The states have been involved in a tristate water war regarding the allocation of the

basin’s water resources. The water war, which was primarily initiated because of

Georgia’s inability to maintain fair streamflow levels in the rivers and tributaries of

the ACF River Basin during droughts, has been going on for more than two decades

now with a number of failed negotiations and litigations still pending in courts (as of

June 2015).

72



Population is burgeoning in the region and so is the agriculture and industries.

This has increased the water demand in the ACF River Basin by many folds. The

increasing frequency and severity of droughts in the region in recent years exacer-

bates the already serious problems relating to water resources across the entire basin.

Droughts directly restrict water and food availability in any region they occur. They

often cause loss of wetlands and biodiversity. Decrease in groundwater levels signify

hydrologic droughts. It is essential to monitor and forecast the groundwater levels

early to predict droughts and mitigate their consequences.

Agriculture is a flourishing activity in southwest Georgia. Most of the water

demands to sustain the requirements of this massive agricultural region is met from

groundwater resources. The region contains more groundwater wells than surface

water wells. The lower ACF contains a lot of land area, which contributes to the

recharge of groundwater in the area. Groundwater is contained mostly in the Upper

Floridan Aquifer in this region. The Upper Floridan Aquifer possesses about 100,000

cubic miles of karst limestone wherein most of the groundwater is stored. The aquifer

is hydraulically connected to the principal rivers and the tributaries in the lower

ACF River Basin and hence, reduction in the groundwater level in the region is often

associated with decrease in streamflow levels along the Flint River and its tributaries.

The interdependency of groundwater and surface water systems are worsened during

drought conditions in the region (Mosner, 2002).

This goal of this study is to check the association of SPI at different timescales

to the groundwater levels at various wells in the lower ACF River Basin. SPI has

gained popularity as an effective drought index especially because of its capability

to be used in drought early warning systems and to assess droughts. Its relative

simplicity and ease to calculate compared to other drought indices makes it able to

be used as an index that can be used in real time monitoring of droughts. This index

when computed at long timescales has shown significant correlation to groundwater
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levels in the area for which it is computed. If the index can be applied to estimate

groundwater conditions in the region, forecasted precipitation data can be used to get

early information about groundwater levels. It can also be used to monitor hydrologic

droughts.

The urgency to effectively manage the water resources in this area is increasing

every day. To better manage the detrimental consequences of droughts, there should

be efficient methods and techniques to monitor and forecast water resource availability

during any given time. The interconnection between groundwater and surface water

systems in the region necessitate monitoring both groundwater and surface water

conditions to develop better understanding of the relationship between the streams

and the aquifers and use results from those for water-budgeting in the region.

5.3 Objective

Determine the applicability of Standardized Precipitation Index for monitoring

groundwater conditions in the lower Apalachicola-Chattahoochee-Flint (ACF) River

Basin.

5.4 Study Area

The area for which this study is based is the lower Apalachicola-Chattahoochee-

Flint (ACF) River Basin. The lower ACF drains across an area of about 4632 square

miles. Most of it lies in southwestern Georgia and small parts lie in southeastern

Alabama and northwestern Florida as shown in Figure 5.1.

The climate in the lower ACF is warm and humid with subtropical conditions.

Summers are long and winters are short and mild in the region. The average annual

precipitation received by the region is about 50 inches and the average temperature is

about 64◦F. Precipitation is roughly equally distributed throughout the year. How-

ever, most of the recharge to the aquifer occurs between the months of December
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Figure 5.1: The lower Apalachicola-Chattahoochee-Flint River Basin with the
location of the groundwater observation wells and the rain gauging stations.

and March. Winter rainfall are associated with high infiltration rate and low surface

runoff.

The stream-lake-aquifer flow system in this part of the basin comprises of the

surficial aquifer system, upper semiconfining unit, Upper Floridan Aquifer and lower

semiconfining unit. The thickness of upper semiconfining unit ranges from a few feet

to about 400 feet. Groundwater levels in this unit have been observed to respond

to infiltration of precipitation. Water in the Upper Floridan Aquifer is mostly held
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in over 100,000 cubic miles of karst limestone and it is used for agricultural use and

public supply in the region.

Water management is a huge problem in the basin that is clearly exemplified

by the tristate water wars that has been going on for decades between Alabama,

Florida and Georgia. This region has obtrusively witnessed decreasing groundwater

levels due to increased agricultural pumpage since mid-1970s and frequent droughts

since the 80s. Mostly groundwater fulfills the irrigation demand in this region for

the irrigation of almost half a million acres. Hence, the importance of monitoring

groundwater conditions cannot be stressed enough.

5.5 Data and Methodology

Rainfall data from Global Historical Climatology Network maintained by NOAA

were obtained at four rain gauging stations in the lower ACF River Basin. The

climatology network is a collection of data from 30 sources. Monthly precipitation

time series was obtained for the four gauging stations from beginning of 1970 to May

2015.

Daily groundwater data for observation wells in the lower ACF River Basin were

obtained from United States Geological Survey, Georgia. The observation wells were

all located in the Upper Floridan Aquifer. The data used was between 1975 and 2012

for a total of 38 years. From the available daily data, time series of average monthly

groundwater levels for each of the well was calculated.

5.5.1 Standardized Precipitation Index

Standardized Precipitation Index was computed at four rain gauging stations for

various timescales. The rain gauging stations are Colquitt 2 W GA, Camilla 3 SE

GA, Albany 3 SE GA and Crisp Co Power Dam GA. Long-term monthly precipitation

data from January 1970 to May 2015 was used to compute the SPI. SPI is computed
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by transforming long-term precipitation data into gamma probability distribution and

further transforming this into standard normal probability distribution. The stepwise

method to compute the SPI is given in Appendix A. SPI between January 1975 and

December 2012 was used to correlate to the groundwater levels.

5.5.2 Pearson’s Correlation

Pearson’s product-moment correlation was used to study the strength of associa-

tion between the SPI at various timescales to the groundwater levels. The values can

range from +1 to -1. Positive values imply positive correlation and negative values

imply negative correlation between the variables. The strength of association implied

by different values of Pearson’s correlation coefficient are shown in Table 5.1.

Value of correlation coefficient Strength of correlation

0.70 and above Very strong (positive)
0.40 to 0.69 Strong (positive)
0.30 to 0.39 Moderate (positive)
0.20 to 0.29 Weak (positive)
0.19 to -0.19 Negligible
-0.20 to -0.29 Weak (negative)
-0.30 to -0.39 Moderate (negative)
-0.40 to -0.69 Strong (negative)
-0.70 and less Very strong (negative)

Table 5.1: Range of correlation coefficients and their strengths.

5.6 Results and Discussion

SPI at timescales of 6, 9, 12, 15 and 18 months were correlated with the ground-

water levels for different rain gauging stations and the observation wells close to it.

All the stations for which the SPI was computed lie in Georgia. The groundwater

levels at the wells close to the location of these gauging stations was correlated with
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the SPI values. Strong correlation was observed between SPI and monthly ground-

water levels at most of the locations and nearby wells. Very strong correlation was

observed in a few places.

Groundwater levels were plotted as a function of SPI at timescales of 9 and 12

months for various locations. All of the plots, in general, depict a positive slope,

indicating that groundwater table rose higher with increasing SPI.

SPI at different timescales at Albany 3 SE GA was correlated with groundwater

levels in wells 12L028, 13L049, 12L030, 13L012, 11K003, 12K014 and 13K014. The

values of the Pearson’s r coefficient along with 95 percent confidence interval is pre-

sented in Table 5.2. Very strong correlation was observed in many wells and strong

correlation was observed in the remaining ones. In most of the cases, the correlation

was seen to be maximum for SPI timescales between 9 and 12 months.

Groundwater levels in each of the wells were plotted as a function of SPI for

timescales of 9 and 12 months. Figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 show

groundwater levels plotted as a function of SPI of 9 and 12 month timescales at Albany

in Wells 12L028, 13L049, 12L030, 13L012, 11K003, 12K014 and 13K014, respectively.

A positive slope can be observed in the trend for all cases. This indicates that as SPI

increases, the groundwater water level increases.

All the plots imply that groundwater levels show significant association with the

SPI at both timescales of 9 and 12 months. Upon checking the Pearson product-

moment correlation coefficient, we can see that the two have strong association in

most cases.

SPI at different timescales at Camilla 3 SE GA was correlated with groundwater

levels in wells 11J012, 13J004, 10G313 and 12K014. Very strong correlation was

observed in for groundwater level in well 10G313 and 12 month SPI. The correlation

was strong in all the other wells. Here, SPI of timescales between 9 and 15 months

show strong correlation. Figures 5.9, 5.10, 5.11 and 5.12 show groundwater levels
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plotted as a function of SPI of 9 and 12 month timescales at Camilla 3 SE GA in

Wells 11J012, 13J004, 10G313 and 12K014, respectively.

Again, a positive slope can be observed for all cases at Camilla, indicating that as

SPI increases, the groundwater water level increases. The values of Pearson product-

moment correlation coefficient indicates that the two have a very strong association

in Well 10G313 and strong correlation at Wells 13J004 and 12K014. Well 11J012

doesn’t show strong correlation at SPI timescale of 12 months.

SPI at different timescales at Colquitt 2 W GA was correlated with groundwater

levels in wells 08G001, 09G001, 09F520 and 06F001. The values of the coefficient

along with 95 percent confidence interval are presented in Table 5.4. All the wells

show significant strong correlation between SPI and groundwater levels.

Figures 5.13, 5.14, 5.15 and 5.16 show groundwater levels plotted as a function

of SPI of 9 and 12 month timescales at Colquitt 2 W GA in Wells 08G001, 09G001,

09F520 and 06F001, respectively. Again a positive slope can be observed in all cases

signifying the correlation between groundwater level and SPI.

SPI at different timescales at Crisp Co Power Dam GA were correlated with

groundwater levels in Well 13M007. Table 5.5 shows the coefficient of correlation and

the confidence intervals for different correlations at Crisp County Power Dam. It can

be seen that the correlation is pretty strong.

Groundwater at Well 13M007 is plotted as a function of SPI at different timescales

in Crisp County Power Dam in Figures 5.17. The positive trend is visible indicating

rise of groundwater level with increasing SPI.

All of the locations for which the association of the two parameters was checked

indicate a significant strong correlation with at least one of the nearby wells. Hence,

it can be concluded that an increase in SPI calculated at a timescale between 9 and

12 indicates rising groundwater tables in the region.
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Well ID SPI
Pearson’s r
Coefficient

95 % confidence interval p-value

Upper
Limit

Lower
Limit

12L028

6-SPI 0.7042 0.7579 0.6411 0.0000
9-SPI 0.7630 0.8073 0.7103 0.0000
12-SPI 0.7517 0.7978 0.6968 0.0000
15-SPI 0.7119 0.7644 0.6500 0.0000
18-SPI 0.6661 0.7256 0.5967 0.0000

13L049

6-SPI 0.6930 0.7456 0.6318 0.0000
9-SPI 0.7621 0.8042 0.7124 0.0000
12-SPI 0.7700 0.8109 0.7217 0.0000
15-SPI 0.7412 0.7865 0.6878 0.0000
18-SPI 0.7106 0.7606 0.6522 0.0000

12L030

6-SPI 0.6439 0.7030 0.5759 0.0000
9-SPI 0.7574 0.8000 0.7073 0.0000
12-SPI 0.7701 0.8109 0.7217 0.0000
15-SPI 0.7412 0.7865 0.6878 0.0000
18-SPI 0.7106 0.7606 0.6522 0.0000

13L012

6-SPI 0.6358 0.6894 0.5753 0.0000
9-SPI 0.6412 0.6941 0.5813 0.0000
12-SPI 0.6142 0.6703 0.5512 0.0000
15-SPI 0.5754 0.6359 0.5079 0.0000
18-SPI 0.5639 0.6256 0.4952 0.0000

11K003

6-SPI 0.6495 0.7027 0.5891 0.0000
9-SPI 0.7485 0.7886 0.7021 0.0000
12-SPI 0.7847 0.8196 0.7440 0.0000
15-SPI 0.7890 0.8233 0.7490 0.0000
18-SPI 0.7802 0.8158 0.7388 0.0000

12K014

6-SPI 0.6258 0.6843 0.5593 0.0000
9-SPI 0.6438 0.7001 0.5797 0.0000
12-SPI 0.6236 0.6824 0.5568 0.0000
15-SPI 0.5753 0.6400 0.5025 0.0000
18-SPI 0.5515 0.6189 0.4760 0.0000

13K014

6-SPI 0.6479 0.7041 0.5836 0.0000
9-SPI 0.6335 0.6916 0.5673 0.0000
12-SPI 0.5890 0.6527 0.5172 0.0000
15-SPI 0.5392 0.6087 0.4616 0.0000
18-SPI 0.5159 0.5879 0.4357 0.0000

Table 5.2: Pearson’s r coefficient for SPI at different well locations and Albany
Station.
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Well ID SPI
Pearson’s r
Coefficient

95 % confidence interval p-value

Upper
Limit

Lower
Limit

11J012

6-SPI 0.5091 0.5801 0.4304 0.0000
9-SPI 0.5076 0.5787 0.4288 0.0000
12-SPI 0.4657 0.5411 0.3830 0.0000
15-SPI 0.4345 0.5128 0.3491 0.0000
18-SPI 0.4269 0.5059 0.3408 0.0000

13J004

6-SPI 0.4625 0.5349 0.3833 0.0000
9-SPI 0.5423 0.6069 0.4706 0.0000
12-SPI 0.5840 0.6441 0.5168 0.0000
15-SPI 0.5994 0.6578 0.5340 0.0000
18-SPI 0.6131 0.6700 0.5493 0.0000

10G313

6-SPI 0.5741 0.6338 0.5077 0.0000
9-SPI 0.6751 0.7231 0.6206 0.0000
12-SPI 0.7022 0.7468 0.6513 0.0000
15-SPI 0.6829 0.7300 0.6294 0.0000
18-SPI 0.6575 0.7079 0.6006 0.0000

12K014

6-SPI 0.5515 0.6189 0.4760 0.0000
9-SPI 0.5475 0.6154 0.4716 0.0000
12-SPI 0.5047 0.5773 0.4243 0.0000
15-SPI 0.4617 0.5386 0.3771 0.0000
18-SPI 0.4510 0.5290 0.3655 0.0000

Table 5.3: Pearson’s r coefficient for SPI at different well locations and Camilla
Station.

81



Well ID SPI
Pearson’s r
Coefficient

95 % confidence interval p-value

Upper
Limit

Lower
Limit

08G001

6-SPI 0.5870 0.6459 0.5213 0.0000
9-SPI 0.6020 0.6592 0.5380 0.0000
12-SPI 0.5768 0.6368 0.5099 0.0000
15-SPI 0.5365 0.6008 0.4654 0.0000
18-SPI 0.5143 0.5808 0.4410 0.0000

09G001

6-SPI 0.4917 0.5642 0.4117 0.0000
9-SPI 0.5314 0.5998 0.4554 0.0000
12-SPI 0.5303 0.5987 0.4541 0.0000
15-SPI 0.5065 0.5775 0.4279 0.0000
18-SPI 0.4794 0.5531 0.3982 0.0000

09F520

6-SPI 0.5346 0.5985 0.4640 0.0000
9-SPI 0.5795 0.6389 0.5133 0.0000
12-SPI 0.5637 0.6249 0.4955 0.0000
15-SPI 0.5195 0.5855 0.4466 0.0000
18-SPI 0.4813 0.5510 0.4049 0.0000

06F001

6-SPI 0.6014 0.6617 0.5334 0.0000
9-SPI 0.5909 0.6525 0.5216 0.0000
12-SPI 0.5406 0.6078 0.4656 0.0000
15-SPI 0.4957 0.5677 0.4162 0.0000
18-SPI 0.4588 0.5344 0.3759 0.0000

Table 5.4: Pearson’s r coefficient for SPI at different well locations and Colquitt
Station.

Well ID SPI
Pearson’s r
Coefficient

95 % confidence interval p-value

Upper
Limit

Lower
Limit

13M007

6-SPI 0.6504 0.7096 0.5958 0.0000
9-SPI 0.6602 0.7129 0.6001 0.0000
12-SPI 0.6326 0.6888 0.5688 0.0000
15-SPI 0.5739 0.6371 0.5031 0.0000
18-SPI 0.5190 0.5882 0.4423 0.0000

Table 5.5: Pearson’s r coefficient for SPI at different well locations and Crisp
County Power Dam Station.
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(a) (b)

Figure 5.2: Groundwater level at Well 12L028 as a function of (a) 9-SPI and (b)
12-SPI at Albany.

(a) (b)

Figure 5.3: Groundwater level at Well 13L049 as a function of (a) 9-SPI and (b)
12-SPI at Albany.
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(a) (b)

Figure 5.4: Groundwater level at Well 12L030 as a function of (a) 9-SPI and (b)
12-SPI at Albany.

(a) (b)

Figure 5.5: Groundwater level at Well 13L012 as a function of (a) 9-SPI and (b)
12-SPI at Albany.
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(a) (b)

Figure 5.6: Groundwater level at Well 11K003 as a function of (a) 9-SPI and (b)
12-SPI at Albany.

(a) (b)

Figure 5.7: Groundwater level at Well 12K014 as a function of (a) 9-SPI and (b)
12-SPI at Albany.

85



(a) (b)

Figure 5.8: Groundwater level at Well 13K014 as a function of (a) 9-SPI and (b)
12-SPI at Albany.
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(a) (b)

Figure 5.9: Groundwater level at Well 11J012 as a function of (a) 9-SPI and (b)
12-SPI at Camilla.

(a) (b)

Figure 5.10: Groundwater level at Well 13J004 as a function of (a) 9-SPI and (b)
12-SPI at Camilla.
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(a) (b)

Figure 5.11: Groundwater level at Well 10G313 as a function of (a) 9-SPI and (b)
12-SPI at Camilla.

(a) (b)

Figure 5.12: Groundwater level at Well 12K014 as a function of (a) 9-SPI and (b)
12-SPI at Camilla.
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(a) (b)

Figure 5.13: Groundwater level at Well 08G001 as a function of (a) 9-SPI and (b)
12-SPI at Colquitt.

(a) (b)

Figure 5.14: Groundwater level at Well 09G001 as a function of (a) 9-SPI and (b)
12-SPI at Colquitt.
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(a) (b)

Figure 5.15: Groundwater level at Well 09F520 as a function of (a) 9-SPI and (b)
12-SPI at Colquitt.

(a) (b)

Figure 5.16: Groundwater level at Well 06F001 as a function of (a) 9-SPI and (b)
12-SPI at Colquitt.
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(a) (b)

Figure 5.17: Groundwater level at Well 13M007 as a function of (a) 9-SPI and (b)
12-SPI at Crisp County Power Dam.
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5.7 Summary and Conclusion

SPI at timescales of 6, 9, 12, 15 and 18 months were correlated with the ground-

water levels at different observation wells. Strong correlations of varying strengths

were observed at all locations. This suggests that SPI can be used to monitor ground-

water conditions in this region of the basin. SPI trends at a timescale between 9 and

12 months can be analyzed to draw conclusions about groundwater conditions at any

particular location in the region.

Besides monitoring groundwater conditions, SPI can also be used to monitor

hydrological droughts in the region. Droughts are a major problem in the region and

precipitation forecasts and projections can be used to compute the SPI and predict

hydrological droughts much earlier. SPI has been used widely to assess and monitor

meteorological droughts. This study can be extended further with more analyses to

develop a tool that can make reasonable estimates of groundwater levels from the

SPI. Water resource managers can use SPI at long timescales to monitor hydrologic

droughts in the region.
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Chapter 6

Conclusions

6.1 Summary and Conclusions

Recurring droughts in the Southeast US are one of the biggest problems in the

region considering the agricultural, economic and environmental damage it does. Fre-

quent droughts in the recent years have consistently questioned water management

strategies in the region and questioned the abilities of the region to easily subdue the

impacts of a major drought event in the future. In this study, future droughts were

quantified and compared with past droughts using two drought indices calculated

based on high-resolution climate data derived from regional climate models. These

indices have successfully been used for assessment of droughts elsewhere. The data

were processed to construct SAF curves to assess past and future droughts.

6.1.1 Objective 1

Analyze the changes in frequency, severity and spatial extent of droughts in Al-

abama using Severity-Area-Frequency Curves.

Drought incidences during two time slices, one in past (1969-1999) and the other

in future (2039-2069), were studied to assess the frequency, severity and spatial ex-

tent of future droughts that are projected to occur. Three GCMs were used and

two drought indices were computed and studied. Number of drought incidences was

compared and SAF curves were constructed to study drought characteristics in past

and future. The major conclusions are:
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1. Both SPI and SPEI from CCSM model suggested that droughts are not likely to

change their characteristics significantly in the future. Both the indices showed

slight reduction in drought occurrences in the future. The severity of future

droughts was slightly less according to the SPI. Other than that, other drought

characteristics weren’t projected to change by much.

2. SPI from GFDL model indicated droughts to relatively increase in frequency,

severity and spatial extent in the future.

3. SPEI from GFDL model shows that the frequency of droughts will increase in

the future. Also, the severity and spatial extent are expected to increase more

than that indicated by SPI from this model.

4. SPI from HadCM3 shows droughts are expected to change their characteristics

significantly. The severity, frequency and spatial extent are all projected to

increase in the future.

5. The frequency, severity and spatial extent of droughts are expected to increase

in the future from the results of SPEI from HadCM3. However, the maximum

drought severity is not seen to change by much.

6. Overall, both indices from two out of three climate models suggest increase in

frequency, severity and spatial extent of future droughts in Alabama.

6.1.2 Objective 2

Analyze the changes in frequency, severity and spatial extent of droughts in the

Apalachicola-Chattahoochee-Flint River Basin using Severity-Area-Frequency Curves.

ACF region recently suffered from some of the worst drought events of the cen-

tury. Droughts are more frequent in the region than ever. Water management is a
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very critical issue in the region, and during times when resources are scarce, man-

agement becomes more difficult. Droughts in this region were analyzed according to

the process applied for analysis of droughts in Alabama. The major conclusions are

listed below.

1. SPI from CCSM indicates drought characteristics to remain similar in the fu-

ture. The frequency, severity and spatial extent are all seen to be highly similar

during both time slices.

2. SPI from GFDL model indicates a mild increase in the frequency of future

droughts. The severity and spatial extent are projected to increase as well. The

increase in these characteristics is seen to be proportional to the return interval

of the droughts.

3. SPI from HadCM3 indicates the maximum increase in frequency of future

droughts. The increase in severity and spatial extent is also seen to be rapid.

4. SPEI from CCSM shows a slight decrease in frequency of droughts in the future.

Severity and spatial extent do not change distinctly.

5. A slight increase was projected in the frequency of future droughts from the

results of SPEI from GFDL model. Slight increases are visible in severity and

spatial extent as well.

6. The frequency, severity and spatial extent of droughts are projected to increase

in the future according to the results of SPEI from HadCM3. However, the

maximum drought severity across the entire region is not changed.

7. Overall, both indices from two out of three climate models suggest increase in

frequency, severity and spatial extent of future droughts in ACF River Basin.
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The findings of National Climate Assessment, 2013 suggest that the mean pre-

cipitation is projected to decrease and the mean temperature is projected to increase

in future in Southeast US. However, droughts are viewed with uncertainty in the

report. The projected changes in precipitation and temperature was extrapolated in

this research to get information about future droughts. The results of this research

for Objectives 1 and 2 are consistent with the observations presented in National

Climate Assessment, 2013.

6.1.3 Objective 3

Check the applicability of Standardized Precipitation Index for monitoring ground-

water conditions in the lower Apalachicola-Chattahoochee-Flint (ACF) River Basin.

SPI at higher timescales can be used to monitor hydrologic droughts. SPI at

different timescales were correlated with groundwater levels in the lower ACF River

Basin. Strong correlation existed among the two parameters in most parts. The

general conclusions are:

1. Groundwater levels show strong correlation with SPI calculated at a timescale

between 9 and 15 months in the lower ACF River Basin.

2. SPI at a timescale between 9 and 12 months would be most applicable to monitor

groundwater conditions in lower ACF River Basin.
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Chapter 7

Future Research

This research analyzed how the frequency, severity and spatial extent of droughts

in Alabama and the ACF River Basin would change with respect to projected changes

in climate. Two drought indices were computed and were analyzed by constructing

SAF curves to study the changes in their characteristics. Also, groundwater levels

were correlated with SPI in lower ACF River Basin. With increasing concerns due to

droughts in the Southeast US, the need of more research and studies are increasing.

The knowledge gaps pertaining to droughts in the Southeast US must be filled sooner

than later. More parameters need to be computed, studied and statistically analyzed

to make meaningful conclusions out of the primitive data we possess. More studies

can lead to development of better models that can temporally and spatially predict

droughts more accurately.

The technique used in the study can be used to project, monitor and assess

droughts elsewhere using similar data. However, the study can still be improved

by researching which GCMs best fit the climate of Southeast US. The results from

those GCMs can be viewed with much higher importance. Also, droughts can be

analyzed using the relatively newer data from CMIP5 projected runs. The climate

change scenarios are modified in the CMIP5 data and it can be studied if results from

CMIP5 archive better represent conditions in the Southeast US. Further, regional

analysis can be done to pinpoint where more droughts are likely to occur. SAF

curves can be constructed and analyzed for the climate divisions of Alabama for this

purpose.
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The changes in droughts resulting from various climate variability cycles like El

Niño Southern Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and

Pacific Decadal Oscillation (PDO) can be studied. This can be of tremendous use in

early forecast of droughts. This can also help in assessing how droughts may affect

the state of Alabama and the region.

As the indices used in this study possess the capability to analyze different types

of droughts depending on the timescale used to calculate the index, they possess

capabilities to draw conclusions about some drought triggers like streamflow and

groundwater level. Hence, these triggers can be applied to study water levels across

different streams in the region and the predicted changes in water levels with respect

to projected changes in the indices. Groundwater levels can further be associated

with more indices at various timescales. Studies can be done to associate the indices

with groundwater and streamflow levels.

More analysis can be done on the computed value of the indices to know more

about the nature of droughts. Construction of Severity-Area-Duration (SAD) curves

is one method that can incorporate drought duration in the analysis. Similarly, other

techniques can be explored to draw rigid conclusion based on available data.
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Appendix A

Standardized Precipitation Index

A.1 Stepwise procedure to calculate the SPI

1. The mean of the precipitation is computed.

Mean,X =

∑
X

N

N is the number of precipitation observations.

2. The standard deviation of the precipitation is calculated.

StandardDeviation, s =

√√√√∑ (X −X)
2

N

3. Then, the skewness of the precipitation is computed.

Skew =
N

(N − 2)(N − 1)

∑(
X −X
s

)3

4. The precipitation is converted into log-normal values to compute the statistic
U and shape parameter β and scale parameter α.

Logmean = X ln = lnX

U = X ln −
(∑

ln(X)

N

)

ShapeParameter, β =
1 +

√
1 + 4U

3

4U

ScaleParameter, α =
X

β

5. From these parameters, the cumulative probability is calculated.
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G(x) =

∫ x
0 x

α−1e
−x
β dx

βαΓ(α)

6. As the cumulative probability will be undefined for x=0 and there may exist
precipitation with values consisting 0, the cumulative probability is modified
as:

H(x) = q + (1− q)G(x)

Where, q is the probability of no rainfall in the timescale used.

7. From H(x), the SPI is calculated as:

SPI = −
(
t− c0 + c1t+ c2t

2

1 + d1t+ d2t2 + d3t3

)
For0 < H(x) < 1

SPI = +

(
t− c0 + c1t+ c2t

2

1 + d1t+ d2t2 + d3t3

)
For0.5 < H(x) < 1

Where,

t =

√√√√ln( 1

(1−H(x))2

)
For0 < H(x) < 0.5

t =

√√√√ln( 1

H(x)2

)
For0.5 < H(x) < 1

c0 = 2.515517 c1 = 0.802583 c2 = 0.010328

d1 = 1.432788 d2 = 0.189269 d3 = 0.001308
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Appendix B

Standardized Precipitation Evapotranspiration Index

B.1 Stepwise procedure to calculate the SPEI

1. Moisture departure (D) is calculated as the difference between the monthly
values of potential evapotranspiration and precipitation.

Di = Pi − PETi

2. In the calculation of SPI, gamma distribution was used to model precipitation
probability. For the calculation of SPEI, log-logistic distribution is used. To
start off with modeling the distribution, probability-weighted moments, w, for
various orders s, is calculated.

ws =
1

N

N∑
i

(1− Fi)sDi

Fi is calculated as:

Fi =
i− 0.35

N

N is the number of data points and i is the range of observations arranged in
increasing order. From the values of ws, the L-moments λ1, λ2, λ3 and λ4 can
be calculated as:

λ1 = w0

λ2 = w0 − 2w1

λ3 = w0 − 6w1 + 6w2

λ4 = w0 − 12w1 + 30w2 − 20w3

3. The probability density function of a three parameter Log-logistic distributed
variable is expressed as:

f(x) =
β

α

(
x− γ
α

)β−1(
1 +

(
x− γ
α

)β)−2

Where α, β and γ are scale, shape and origin parameters respectively. They
can be calculated as:
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β =
λ2
λ3

α =
Γ(1 + 1

β
)Γ(1− 1

β
)

γ = w0 − αΓ

(
1 +

1

β

)
Γ

(
1− 1

β

)

4. Now, the probability distribution function of the D series according to the log-
logistic distribution is given by the following formula:

F (x) =

[
1 +

(
α

x− y

)β]−1

5. The SPEI can now be calculated by the following formula:

SPEI = W −
(

c0 + c1W + c2W
2

1 + d1W + d2W 2 + d3W 3

)
For0.5 < H(x) < 1

W =
√
−2lnP , Where, the probability P of exceeding a given D value is given

by P = 1 − F (x) for P0.5. If P > 0.5, P is replaced by 1 − P which in turn
reverses the sign of the calculated value of SPEI.

c0 = 2.515517 c1 = 0.802583 c2 = 0.010328

d1 = 1.432788 d2 = 0.189269 d3 = 0.001308
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Appendix C

Potential Evapotranspiration

C.1 Thornthwaite Method to compute PET

Potential evapotranspiration is computed as:

PE = 16K

(
10T

I

)m
Where, T is the monthly mean temperature in ◦C; I is a heat index (the sum of 12
monthly index values i, which is derived from mean monthly temperature)

i =

(
T

5

)1.514

m is a coefficient calculated as:

m = 6.75E−7I3 − 7.71E−5I2 + 1.79E−2I + 0.49239

K is the correction coefficient, which is a function of the latitude and month. It
is calculated as:

K =

(
N

12

)(
NDM

30

)
N is the maximum number of sun hours and NDM is the number of days in the month
being considered.

N =

(
24

π

)
ωs

ωsis the hourly angle of sun rising given by ωs = arccos(− tanφ tan δ)
φ is the latitude in radians and δ is the solar declination in radians calculated as:

δ = 0.4093 sin

(
2πJ

365
− 1.405

)

J is the average Julian Day of the month.
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Appendix D

Probability Distributions

D.1 Gamma Distribution

The gamma distribution is a continuous probability distributions with shape and
scale parameters.

D.1.1 Probability Density Function

The general formula for the probability density function of the gamma distribu-
tion is

f(x) =

(
x−µ
β

)γ−1
e−

x−µ
β

βΓ(γ)

x ≥ µ and γ, β > 0

Where, γ is the shape parameter, µ is the location parameter, β is the scale
parameter, and Γ is the gamma function.

The plot for gamma probability density function is given below:

Figure D.1: Gamma probability density function for different values of gamma.
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The gamma function has the following formula:

Γ(a) =
∫ ∞
0

ta−1e−tdt

The case where µ = 0 and β = 1 is called the standard gamma distribution. The
equation for the standard gamma distribution reduces to

f(x) =
xγ−1e−x

Γ(γ)

x ≥ 0 and γ > 0

D.1.2 Cumulative Distribution Function

The formula for the cumulative distribution function of the gamma distribution
is

F (x) =
Γx(γ)

Γ(γ)

x ≥ 0 and γ > 0

Where Γ is the gamma function defined above and Γx(γ) is the incomplete gamma
function.

The following is the plot of the gamma cumulative distribution function with the
same values of γ as the probability density function plots above.

Figure D.2: Gamma cumulative distribution function plots for different values of
gamma.

The incomplete gamma function has the formula

Γx(a) =
∫ x

0
ta−1e−tdt
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D.2 Three Parameter Log-logistic Distribution

The log-logistic distribution is a probability distribution in which the logarithm
has a logistic distribution.

D.2.1 Probability Density Function

The general formula for the probability density function of three parameter log-
logistic distribution is

f(x) =
β

α

(
x− γ
α

)β−1(
1 +

(
x− γ
α

)β)−2

α > 0 , x > γ , γ, β ≥ 1

Where α, β and γ are scale, shape and origin parameters respectively. They can
be calculated as:

β =
λ2
λ3

α =
Γ(1 + 1

β
)Γ(1− 1

β
)

γ = w0 − αΓ

(
1 +

1

β

)
Γ

(
1− 1

β

)
Probability-weighted moments, w, for order s, are calculated as:

ws =
1

N

N∑
i

(1− Fi)sDi

Fi is calculated as:

Fi =
i− 0.35

N

N is the number of data points and i is the range of observations arranged in
increasing order. From the probability-weighted moments of ws, the L-moments λ1,
λ2, λ3 and λ4 can be calculated as:

λ1 = w0

λ2 = w0 − 2w1

λ3 = w0 − 6w1 + 6w2

λ4 = w0 − 12w1 + 30w2 − 20w3
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D.2.2 Cumulative Distribution Function

The formula for the cumulative distribution function of three-parameter log-
logistic distribution is:

F (x) =

[
1 +

(
α

x− y

)β]−1

x ≥ 0 and γ > 0

D.3 Extreme Value Type-I Distribution

Extreme Value Type I distribution can either be based on the smallest extreme
(minimum case) or the largest extreme (maximum case). The distribution is also
commonly known as the Gumbel distribution.

D.3.1 Probability Density Function

The probability density function of the Gumbel (minimum) distribution is gen-
eralized by:

f(x) =
1

β
e
x−µ
β e−e

x−µ
β

Where, µ is the location parameter and β is the scale parameter.

Figure D.3: The plot of Gumbel probability density function for minimum case.
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When µ = 0 and β = 1, it is called the standard Gumbel distribution. Upon
substitution of the values, the general equation for the standard Gumbel distribution
(minimum) reduces to:

f(x) = exe−e
x

The probability density function of the Gumbel (maximum) distribution is gen-
eralized by:

f(x) =
1

β
e−

x−µ
β e−e

x−µ
β

Where, µ is the location parameter and β is the scale parameter. When µ = 0

and β = 1, the distribution is called the standard Gumbel distribution. Substitution
of these values reduce the equation for the standard Gumbel distribution (maximum)
to:

f(x) = e−xe−e
x

D.3.2 Cumulative Distribution Function

The cumulative distribution function of the Gumbel distribution (minimum) is
given by:

F (x) = 1− e−ex

The plot of Gumbel cumulative distribution function for minimum case is shown
below:

Figure D.4: Gumbel cumulative distribution function for minimum case.
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The cumulative distribution function of the Gumbel distribution (maximum) is
given by:

F (x) = e−e
−x

The plot of Gumbel cumulative distribution function for the maximum case is
shown below.

Figure D.5: Gumbel cumulative distribution function for the maximum case.
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