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Abstract

A code was developed that utilizes the discontinuous Galerkin method to solve the

Euler equations while utilizing a modal artificial viscosity sensor developed by Klöckner [12].

The sensor was augmented for the purpose of this research so that it could be run more

quickly as well as having a more robust adaptation to different problems and specifically

for this research the vortex burst problem. The sensor had a number of flops reduced from

its calculation through the use of a different approach for creation of the modes. This new

approach was based off of multiplying through by the Vandermonde matrix built from a one

dimensional system instead of a three dimensional system. This was done by taking the

cube of nodes for a cell and multiplying it by slices of data. The sensor was then made more

robust by changing the value by which baseline decay model was added to the modes. The

baseline decay model is needed to remove white noise from being sensed upon. Both these

changes were reflected in examinations of routine test problems involving the Sod shock tube

and the Kelvin-Helmholtz phenomena. With test cases validating the improvements to the

sensor, the approach was then used against an element of wake vortex flow to show the

sensor’s robustness. Through plotting the pressure, vorticity, and total kinetic energy the

test case was validated against previous research.
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Chapter 1

Introduction

1.1 Motivation

The world is full of highly difficult engineering and scientific problems that cannot be

solved by conventional means such as the Navier-Stokes equations. This is why experiments

are developed to replicate the physics, analyze it and unwrap the physics occurring in these

problems. There is a problem with a pure experimental approach though in that the cost

surrounding the development and running of these experiments can be very high. This

problem has fueled the development of different numerical techniques to supplement these

experiments in solving the partial differential equations that govern physics. This is not to

say that any numerical simulation can replace an experiment. Their usefulness lies in their

ability to provide guided experiments to reduce the cost of running multiple live experiments.

This development has led to a major focus of modern numerical techniques to solve the partial

differential equations that govern the physics of these problems.

The desire to always further the study of numerical techniques has led to many vast

improvements in both their implementation and the types of solvers available. A major

development was moving from the single point finite difference (FD) method into the finite

volume (FV) and finite elements (FE) methods which utilize elements. The goal of all these

methods was centered on being accurate to the physics of the problem while also making itself

faster than previous iterations allowed. To further improve upon these methods accuracy

a 4th method was developed, the discontinuous Galerkin (DG) method . This method has

been introduced relatively recently compared to the other methods. This causes a necessity

to improve the scheme and make it more robust and efficient in order to remove any qualms
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about the method. This is very common with numerical techniques whenever they are

developed.

This thesis utilizes this DG method to model features of wake flow and improves upon

an existing sensor to make it more robust for a multitude of problems. The eventual goal

is to eventually develop a fully realized wake modeling code utilizing these techniques. The

simulation of a full wake is highly important for all types of engineering problems spanning

from airport takeoffs and landings to the development of car drafting techniques. There is

a reason these problems are so crucial and interesting though and that is the problems they

present in order to be correctly modeled. A very large problem is wrapped in the scale of the

problem. It is very difficult to try and capture all of the physics of the problem through a

correctly sized domain because it will always lead to a preference being placed on either the

small or large scale features. This is why not only the DG method can be a vast improvement

but the adaptive DG allows for an even better solution. For the scope of this thesis certain

key features will be examined.

A common feature in the evolution of a wake is the sudden change in a vortex core with

no change in its circulation due to a vortex bursting. This is a well established phenomena

and the problem has been undertaken by many modern day codes utilizing both the large

eddy simulation (LES) and direct numerical simulation (DNS) . These techniques are very

useful but also are very intricate in how they work and thus require a large amount of time

to be run. By studying and comparing the data developed from this current configuration

to the ones already on file the goal is established to prove this method’s effectiveness.

1.2 Background

Since this work is based on a key aspect of wake evolution a brief history of the develop-

ment of wake analysis theory and its applications follows. This is then followed by a general

overview of the history of the DG method.
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1.2.1 A Brief History of Wake Theory

The concept of aircraft wakes has been an important aspect of aviation for a long

time. The wake has strong impacts on a multitude of situations such as aircraft taxiing

and deployment of rotocraft on aircraft carriers. The decay of vortices throughout the wake

plays one of the most important roles in this research especially at airports. On a grander

scale there is a hope that with the development of a better understanding of vortices, the

same will be said of turbulence. Turbulence remains one of the greatest mysteries of the

modern era while also being one of the most divisive topics to discuss. The exact definition

of turbulence is not something that is even unilaterally agreed with.

The analysis of aircraft wakes has been undertaken for as long as aircraft have existed.

Scientists such as Crow [6] spent a lot of time developing analytical theories and models in

the 1970’s. Crow’s work was about an understanding of the vortices contained in the wake of

an aircraft being dispersed through natural means. Crow in fact developed the theory behind

a common instability that has been well validated by todays experiments and simulations.

This instability today is proclaimed as the Crow instability. In the time between 1970

and the mid 1990’s wake modeling had advanced from a dependence on different analytical

models to accepting the use of computational fluid dynamics models to supplement some of

the research. The scientists Lewellen and Lewellen [13] in 1996 developed one of the first

extensive three dimensional models of vortex wakes using a custom version of LES where they

focused on different aspects of the gas dynamics and chemistry. They specifically focused on

the chemistry of the engine wake from the aircraft and it’s interaction with the atmosphere.

The work of Crow and others was then brought together by Spalart [21] in 1998 who

provided an encompassing survey of the knowledge about wakes to that point. He discusses

a multitude of issues concerning the propagation of wakes from aircraft and different aspects

of analyzing them through experimental setups at airports. He makes special note of the

struggles in developing a model due to the limitations of the assumptions needed in CFD of

that era. He also helped develop some of the base theory concerning the vortex bursting,
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challenging a preconceived notion that bursting was the destruction of vortices, which holds

no weight when examining the argument from the standpoint of circulation.

These issues are still being examined and resolved in today’s climate especially concern-

ing CFD and experimental. Multiple programs have been established such as the Aircraft

Vortex Spacing System (AVOSS) used by NASA to study these vortices and establish more

scientifically based parameters especially with the influence of the atmosphere. Gerz et. al.

[8] utilizes the data from AVOSS along with other similar agencies discusses different ways

to discuss further change that can be applied to airports. Their goal was to propose ways to

increase the efficiency of airports by utilizing known data about wakes in order to increase

the number of commercial aircraft that can take off and land over the course of a day.

A common element of all the research is the breakdown of vortices which is explicitly

examined by Holzäpfel[11] et. al. This group examined the effects of primary and secondary

vortices, which are created through moderate turbulence from the ambient flow, have on

each other in the case of decay through numerical simulations. It is also examined by Moet

et. al.[16]. Their research is used as the basis for the vortex bursting validation undertaken

in this research.

1.2.2 Development of Numerical Methods

In engineering, and science in general, the development of suitable numerical techniques

has been a staple of research for many years. Common methods have been used with the

FD, FV, and FE methods. In terms of modern CFD the majority of codes use second

order accurate FV [23] methods or FD methods. While these methods are useful they do

not fulfill the long term goals of the numerical sciences. They are difficult to increase the

order of accuracy as the mesh complexity is increased moving from pure Cartiesian to non-

uniform meshes with triangular elements. They are also expensive computationally for the

spatial discretization of problems. This is not a problem with the Finite Element method

but it has major flaws in that for each time step the entire matrix is solved at once creating
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inconsistencies when applied to the physics of a fluid mechanics problem where information

changes with the flow.

These desires led to the development of a new method of solving PDE’s that gave the

flexibility required for solving two dimensional and three dimensional problems while also

allowing for a higher order of accuracy akin to FE codes. This new method was called the

DG method. This method was first proposed as a new way to solve the neutron transport

equation by Reed, etc. [18]. The method slowly grew in its different applications to different

fields but it was not till the mid 1990’s that this method exploded into applications to CFD.

Advances were made in the development of Runge-Kutta DG methods that provided an

explicit and cheap method to use in the solution of problems. In 1996 [2] and 1997 [3] Bassi

and Rebay published two papers creating the local DG (LDG) method and applying it to the

Euler and Navier-Stokes equations respectively. This method further improved the previous

results because in the previous DG methods only the time discretization was discontinuous

but now both space and time were.

The LDG method quickly became one of the most useful adaptations of the method.

Cockburn and Shu [4] analyzed this method and showed the great promise that comes from

its inherent flexibility. It’s discontinuous nature throughout allows for easy adaptations to

parallel processing which would allow for the code to become much faster. They would

later compare this method against versions of the DG method[5]. Here they found the LDG

method had inherent advantages in adapting to not only elliptical PDE’s but also hyperbolic

and parabolic PDE’s allowing for a more general use of this method to problems even outside

of the realm of CFD. This was further explored by Yan and Osher [24] in the solving of

the Hamilton-Jacobi problems. This was then taken further by Kevin Albarado when he

purposed the DG method to solve the Hamiltonian for the burning of a two dimensional

start solid rocket grain[1].
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1.3 Objective

The purpose of this thesis is to further the development of a robust DG scheme based on

the Euler equations and implementing an artificial viscosity sensor that has been augmented

to make it more applicable to different this problem. Artificial viscosity is a necessity in that

even though the Euler equations are inherently invisicid, the numerical equations solved

have a viscous term when backed into their conservative forms. This is normally taken care

of in the inherent dissipation in the numerical scheme but with the high order of the DG

method this needs to be readdressed. This artificial viscosity sensor will be altered and

improved upon in order to allow for more versatility and robustness on a range of problems

from shocks to vortex interactions while also increasing the speed which is always important

when working with numerical simulations and especially when these problems take place in

three dimensional space. Different test problems will be examined in order to accurately

show the effects of these two changes to these important factors.

After the sensor has been tuned for optimal use on three dimensional problems the

vortex bursting problem will be solved. This will be done by using a complex method for

developing the initial condition that utilizes a pseudo-steady state problem. The mesh size

and polynomial order will be varied to show the effects on the full problem. The helical

instability will be tripped as well to show a more physically accurate problem as well as to

show that the sensor can account for artificial viscosity where needed but not overload the

problem and ”wash out” useful and accurate physics from the problem.
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Chapter 2

Discontinuous Galerkin Method

What follows is the development of the DG method and a process to apply it to a simple

one dimensional problem. This analysis follows a procedure done by Hesthaven et. al. [10].

The DG method is a hybrid of sorts of the FV and FE methods in order to gain the distinct

advantages of each method. This allows the new method to have the geometric flexibility

of a FV code while allowing for much more flexible method of creating a higher order of

accuracy spatially. This is a major problem in many current CFD codes running FV solvers.

The simple one dimensional transport equation will be used as a tool for the application of

this method where u represents the velocity of the wave.

∂u

∂t
+
∂f(u)

∂x
= 0 (2.1)

The first part of any numerical scheme is to take the domain of the problem (Ω) and

discretize it into K number of cells for a new domain (Ωh) . The point of discretization is

to break a domain into something that can be solved computationally. Each of these cells

attaches to surrounding cells at an interface that overlaps. This is an important feature for

the creation of a flux that occurs between the two cells which will be discussed later in this

section. An example of how the discretized domain is represented is shown in Figure 2.1.
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D
k 1 k k+1

Figure 2.1: 1D discretization of a domain into three elements

The global true solution u is then first equated to the computational solution and then

broken up into each cell such that

u(x, t) ' uh(x, t) =
K⊕
k=1

ukh(x, t) (2.2)

where there is now a state for each cell that combines into an approximation with the global

state. A high order local basis function is then applied to each cell’s state in order to create

a nodal state

ukh(x, t) =
N∑
j=0

ũkj (t)b
k
j (x) (2.3)

The residual Rh is then created and with this method it has to vanish for each cell in

a Galerkin sense where the basis function forms the weighting function. This is how this

method differs from a traditional Galerkin FE method where the residual vanishes globally.

This is also what allows the method to be more open to a parallelization which will be

discussed later.

x ∈ Dk : Rk
h(x, t) =

∂ukh
∂t

+
∂fkh
∂x

(2.4)∫
Dk
bkjRhdx = 0 j = 0, ........, N (2.5)
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Here N is the order of the polynomial and for the one dimensional test case the number of

points per cell is equal to one more than the order (Np = N + 1) .

With the distinction that each cell is unique the boundaries of each cell can have multiple

solutions depending on which cell is being examined which leads to Figure 2.2.

D
k 1

D
k

D
k+1

Figure 2.2: Cells having different boundary values

They can then communicate between cells through a numerical flux function which in

terms of CFD is physics based with examples of Lax-Friedrichs or AUSM+.

With the cells decoupled the original function was then solved by an integration by

parts using the divergence theorem to obtain

∫
Dk
bki
∂ukh
∂t

dx+

∫
Dk
bki
∂fkh
∂x

dx = 0 (2.6)

∫
Dk
bki
∂ukh
∂t

dx+

∫
∂Dk

∂

∂x

(
bki f

k
h

)
dx−

∫
Dk

∂bki
∂x

fkhdx = 0 (2.7)

∫
Dk
bki
∂ukh
∂t

dx+

∮
∂Dk

bki f
k
hn

k
xds−

∫
Dk

∂bki
∂x

fkhdx = 0 (2.8)

where nkx is the element normal. Now even though the cells are independent of each other

there is still a piecewise continuous element of the solution concerning the flux. As previously

mentioned this is a problem because all the cells needs to be discontinuous. By using the

previously mentioned flux function the previous equation now allows for the discontinuity at

the cell edge.

x ∈ ∂Dk : fkhn
k
x → f ∗

(
uk,−h , uk,+h ;nk,−x

)
(2.9)
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The flux is designed such that the flux coming from one cell is equal to the negative of the

flux leaving the adjacent cell at the same boundary.

f ∗
(
uk,−h , uk,+h ;nk,−x

)
= −f ∗

(
uk,+h , uk,−h ;nk,+x

)
(2.10)

∫
Dk
bki
∂ukh
∂t

dx+

∮
∂Dk

bki f
∗
(
uk,−h , uk,+h ;nk,−x

)
ds−

∫
Dk

∂bki
∂x

fkhdx = 0 (2.11)

This gives Np ∗K unknowns and equations which can be solved cell by cell. Here lies

the main question of the DG method which is to find ukh ∈ PN such that bi ∈ PN . Where

PN stands for a function space on the standard interval of order less than or equal to N and

vanishes everywhere else. This leads to a need for a strong basis function.

2.1 Polynomials for Cells

2.1.1 Cell Mapping

An important aspect of a Galerkin model is a strong basis function to work with.

Polynomials are widely used here because of their relative simplicity over Fourier modes.

There is an exception in the case of spectral methods due to Fourier models providing a

simpler model to work with. They also follow closely with how people tend to think about

data in the first place. A standard interval, x → ξ ∈ (−1, 1), is used to develop a mapping

function which can be extrapolated to any standard cartesian cell.

x ∈ Dk : x =Mk(ξ) (2.12)

Mk(ξ) = xka +
1 + ξ

2

(
xkb − xka

)
(2.13)
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2.1.2 Basis Functions

The basis functions were correlated with the state such that

ukh(ξ) =
N∑
m=0

ũkmπm(ξ) =
N∑
n=0

ûkn`n(ξ) (2.14)

Where ũkj corresponds to the modal state and ûkj the nodal state. This is particularly useful

because both nodal and modal analysis have different strengths for analysis. This ability to

move between the two gives this method another advantage over traditional FV methods.

Modal Analysis

A traditional thought in the creation of a modal analysis is the development of a mono-

mial based on the given polynomial order to set the basis function. Then using an L2-

projection to recover the state ũkm leads to

Mũ = u (2.15)

The problem is that this system fails due to the matrix M being very poorly conditioned

and thus the modal state cannot be recovered from an inverse of M . This led to the idea

of using a L2 based Gram-Schmidt orthogonalization in order to develop a basis that was

orthonormal. √
βm+1πm+1(ξ) = (ξ − αm)πm(ξ)−

√
βm−1πm−1(ξ)

π−1
.
= 0, π0

.
= 1/

√
β0

(2.16)

This resulted in the choice of the Legendre polynomials which is found by selecting certain

values for αm and βm. The Legendre coefficients are listed as

αm = 0, βm =

 2 if m = 0

1/(4−m−2) if m ≥ 1
(2.17)
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An important property of these legendre polynomials is that

∫ 1

−1
πi(ξ)πj(ξ)dξ = δij

.
=

 1 if i = j

0 if i 6= j
(2.18)

A modal basis is not as useful though in a direct analysis of the data due to the extra

calculations that will need to be undertaken to translate the boundary conditions and initial

conditions to a modal system. It is though a great system that works well for the development

of the sensor which will be detailed later. A transformation matrix is used to move between

nodal and modal values for the state.

Nodal Analysis

An ideal nodal basis function is the Lagrange equation due to it guaranteeing nodal

accuracy for any quadrature which could be used. The Lagrange polynomial is created

through

`h(ξ) =
N∏

i=0,i 6=n

ξ − ξi
ξn − ξi

(2.19)

and contains the following powerful property

`j(ξi) = δij
.
=

 1 if i = j

0 if i 6= j
(2.20)

With a powerful nodal representation the quadrature needs to be established based

around the Legendre polynomials needs. This leads to the Legendre-Gauss-Lobatto quadra-

ture detailed below.

Numerical Quadrature

Quadrature is an important decision in the development of any numerical technique.

This especially holds true if one wants to perform numerical integration which is based on

12



the distribution of the quadrature and is performed as follows.

∫ 1

−1
f(ξ)dξ '

Np∑
j=1

ωjf(ξj) (2.21)

Here ωj represents the weights associated with a particular quadrature Since a nodal basis

has been already chosen for the development of this method Gaussian quadrature seems the

most logical due it being an exact integration technique for polynomials.

In the development of this method the Gauss-Lobatto rule was applied since the Gauss

rule does not include the boundary points thus a Jacobi-Lobato matrix was created.

JLp+2
.
=

 Jp+1

√
β∗p+1~ep+1√

β∗p+1~e
T
p+1 α∗p+1

 (2.22)

where Jp represents the Jacobi matrix

Jp
.
=



α0

√
β1 . . . . . . 0

√
β1 α1

√
β2 . . . 0

. . . . . . . . . . . . 0

0 . . . . . .
√
βp−1 αp−1


(2.23)

The orthonormal property of the modal analysis needs to be kept in place so the application

of the legendre values for α and β were used. This leads to the weights and node locations

being found from the eigenvalues and eigenvectors for the Jacobi-Lobatto matrix where

ξi = λLi , ωi = β0(v
L
(i))

2, i = 0, ..., p+ 1 (2.24)

here λ represents the eigenvalues and v represent the eigenvectors.

The application of the Lagrange basis to these points that satisfy the Legendre polyno-

mial is not a problem and thus the two methods now have a standard quadrature.
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Combining the Two Analysis

The transformation matrix between the modal and nodal states was something needed

and was developed through the application of the Lagrange polynomials to the same points

that the Legnedre polynomials were built around. An example of how these two polynomials

look up to a 5th order can be seen in Figure 2.3.

−1 −0.5 0 0.5 1
−2

0

2

π0

−1 −0.5 0 0.5 1
−2

0

2

π1

−1 −0.5 0 0.5 1
−2

0

2

π2

−1 −0.5 0 0.5 1
−2

0

2

π3

−1 −0.5 0 0.5 1
−2

0

2

π4

−1 −0.5 0 0.5 1
−2

0

2

π5

(a) Modal basis with πm(ξ) ∈ PN

−1 −0.5 0 0.5 1
−1

0

1

ℓ0

−1 −0.5 0 0.5 1
−1

0

1

ℓ1

−1 −0.5 0 0.5 1
−1

0

1

ℓ2

−1 −0.5 0 0.5 1
−1

0

1

ℓ3

−1 −0.5 0 0.5 1
−1

0

1

ℓ4

−1 −0.5 0 0.5 1
−1

0

1

ℓ5

(b) Nodal basis with `n(ξ) ∈ PN

Figure 2.3: Basis Function of PN

By applying the legendre polynomial as the basis function for ũ it is found that

u(ξi) =

Np∑
m=1

ũmPm−1(ξi) (2.25)

Where Pm−1 represents the legendre polynomials which leads to

V ũ = u (2.26)

where V represents a generalized Vandermonde matrix. Now both the Vandermonde matrix

and its derivatives can be related to the legendre polynomials and their derivatives such that

Vij
.
= πj(ξi), (Vξ)ij

.
= π′j(ξi) (2.27)
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This helps to create a bridge between Lagrange and Legendre polynomials so that the

state can be altered between a nodal or modal value. This allows the DG method to take ad-

vantage of the unique properties provided by modal and nodal analysis in the orthonormality

of the modal function with the simplicity of the nodal system.

πj(ξ) =
N∑
i=0

Vij`i(ξ) =
N∑
i=0

(V T )ji`i(ξ) ⇐⇒ `i(ξ) =
N∑
j=0

(V −T )ijπj(ξ) (2.28)

uh(ξ) =
N∑
m=0

ũmπm(ξ) =
N∑
n=0

ûn`n(ξ) ⇐⇒
N∑
m=0

Vimũm =
N∑
n=0

δinûn (2.29)

The Legendre-Gauss-Lobatto quadrature leads to a well-conditioned matrix in the Van-

dermonde matrix. With the basis established the next step entails the manipulation of

Equation 2.11 to be of an operator form that can be solved numerically.

2.2 Operator Form

Returning now to the initial one dimensional problem Equation 2.1 and its discretized

form ∫
Dk
bki
∂ukh
∂t

dx−
∫
Dk

∂bki
∂x

fkhdx+

∮
∂Dk

bki f
∗
(
uk,−h , uk,+h ;nk,−x

)
ds = 0 (2.30)

In order to solve the problem computationally the discretized form of the equations needs

to be broken down into a matrix form based on the application of the basis function to the

state. The flux is then broken up the same way the state is based on the basis function

fkh (x) =
N∑
j=0

f̃kj (t)bkj (x) (2.31)

The time derivative term is broken down through a coordinate transformation between

x and ξ. This transformation is based on

x ∈ Dk : dx = J kdξ, J k =
xkb − xka

2
(2.32)
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and is then inserted into the time derivative term such that

∫
Dk
bki
∂ukh
∂t

dx =

∫
Dk
bki (x)

∂

∂t

(
N∑
j=0

ũkj (t)b
k
j (x)

)
dx

=
N∑
j=0

(∫
Dk
bki (x)bkj (x)dx

)
dũkj
dt

=
N∑
j=0

(∫ 1

−1
bi(ξ)bj(ξ)J kdξ

)
dũkj
dt

= J k

N∑
j=0

Mij

dũkj
dt

(2.33)

The same method is then applied to the spatial derivative term in order to break it

down into a derivative matrix which can be applied ot the flux term

∫
Dk

dbki
dx

fkhdx =

∫
Dk

dbki (x)

dx

(
N∑
j=0

f̃kj b
k
j (x)

)
dx

=
N∑
j=0

(∫
Dk

dbki (x)

dx
bkj (x)dx

)
f̃kj

=
N∑
j=0

(∫ 1

−1

dbi(ξ)

dξ
bj(ξ)dξ

)
f̃kj

=
N∑
j=0

(
ST
)
ij
f̃kj

(2.34)

The boundary term is trickier in that specific nodes based on faces and edges have to be

used in the application of the flux. This does not encompass the global flux running through
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the system.

∮
∂Dk

bki f
∗
(
uk,−h , uk,+h ;nk,−x

)
ds

=
[
bki f

∗
(
uk,−h , uk,+h ;nk,−x

)]
xka

+
[
bki f

∗
(
uk,−h , uk,+h ;nk,−x

)]
xkb

= bki (x
k
a)

N∑
m=0

(̃f ∗a )
k

mb
k
m(xka) + bki (x

k
b )

N∑
n=0

(̃f ∗b )
k

nb
k
n(xkb )

=
N∑
m=0

(
bki
(
xka
)
bkm
(
xka
))

(̃f ∗a )
k

m +
N∑
n=0

(
bki
(
xkb
)
bkn
(
xkb
))

(̃f ∗b )
k

n

=
N∑
m=0

(bi(−1)bm(−1)) (̃f ∗a )
k

m +
N∑
n=0

(bi(1)bn(1)) (̃f ∗b )
k

n

=
N∑
m=0

(La)im (̃f ∗a )
k

m +
N∑
n=0

(Lb)in (̃f ∗b )
k

n

(2.35)

This leads to the original discretized form of the equation going from

∫ k

D

bki
∂ukh
∂t

dx−
∫
Dk

∂bki
∂x

fkhdx+

∮
∂Dk

bki f
∗
(
uk,−h , uk,+h ;nk,−x

)
ds = 0 (2.36)

to

J k

N∑
j=0

Mij

dũkj
dt
−

N∑
m=0

(
ST
)
ip
f̃kp +

N∑
m=0

(La)im (̃f ∗a )
k

m +
N∑
n=0

(Lb)in (̃f ∗b )
k

n (2.37)

Where there are now mass, stiffness, and lifting matrices for the development of the method.

This can further be reduced into a matrix vector form.

J kM
dũk

dt
− ST f̃k + La(̃f ∗a )

k
+ La(̃f ∗a )

k
(2.38)

2.3 Elementwise Operator

As previously mentioned the nodal method has been chosen in this research due it

having an advantage in dealing with boundary data as well as nonlinear flux functions. But,
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there is no reason not to exploit some of the greater properties of the modal transformation

in its orthonormal basis and its hierarchal construction.

The ability of the Vandermonde matrix to manipulate the state between the two basis

is a huge advantage in the development of the mass, stiffness, and lifting matrices. This can

be seen in the development of the mass matrix

Mij
.
=

∫ 1

−1
`i(ξ)`j(ξ)dξ

=

∫ 1

−1

N∑
m=0

(
V −T

)
im
πm(ξ)

N∑
n=0

(
V −T

)
jn
πn(ξ)dξ

=
N∑
m=0

N∑
n=0

(
V −T

)
im

(∫ 1

−1
πm(ξ)πn(ξ)dξ

)(
V −1

)
nj

=
N∑
m=0

N∑
n=0

(
V −T

)
im
δmn

(
V −1

)
nj

=
N∑
m=0

N∑
n=0

(
V −T

)
im

(
V −1

)
mj

⇐⇒ M =
(
V V T

)−1

(2.39)

Then with the fore knowledge that there are recursion-based formulas for Legendre

derivatives, the creation of a derivative matrix can easily be accomplished from the derivative

of the Jacobi matrices.

Dij
.
= `′i (ξj)

=
N∑
m=0

(
V −T

)
jm
π′m (ξi)

=
N∑
m=0

(
V −T

)
jm

(Vξ)im

=
N∑
m=0

(Vξ)im
(
V −1

)
mj

⇐⇒ D = VξV
−1

(2.40)

The stiffness matrix for a nodal basis is built by

Sij
.
=

∫ 1

−1
`i(ξ)`

′
j(ξ)dξ ⇐⇒

(
ST
)
ij

.
=

∫ 1

−1
`′j(ξ)`i(ξ)dξ (2.41)

18



which when applied to the mass matrix and derivative matrix gives

N∑
n=0

MinDnj =
N∑
n=0

(∫ 1

−1
`i(ξ)`n(ξ)dξ

)
`′j (ξn)

=

∫ 1

−1
`i(ξ)

(
N∑
n=0

`′j (ξn) `n(ξ)

)
dξ

=

∫ 1

−1
`i(ξ)

(
N∑
n=0

(̂
`′j
)
`n(ξ)

)
dξ

=

∫ 1

−1
`i(ξ)`

′
j(ξ)dξ

= Sij ⇐⇒ S = MD

(2.42)

There is a powerful property here due to the need of the transpose of the stiffness matrix.

By applying the transpose and through manipulation using the Vandermonde matrix the

development of the stiffness matrix can be found through just the Vandermonde matrix and

tis derivatives in the necessary directions.

S = MD ⇐⇒ ST = DTMT

=
(
VξV

−1)T (V −TV −1)T
=
(
VξV

−1)T (V −TV −1)
=
(
VξV

−1)T (V V T
)−1

(2.43)

The development of the lifting Matrices are difficult though because they have to ex-

trapolate the flux from the edge of a cell to the rest of a cell. The suffix a and b will be

applied ot the Lifting matrices to denote which the cell walls in any direction.

(La)ij
.
= `i(−1)`j(1) (Lb)

.
= `i(1)`j(1)

= `i (ξ0) `j (ξ0) = `i (ξN) `j (ξN)

= δ0iδ0j = δNiδNj

(2.44)
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The numerical flux is then defined by the same procedure to each cell wall

(f ∗a )kij =
N∑
j=0

(̂f ∗a )
k

j `j(−1) (f ∗b )kij =
N∑
j=0

(̂f ∗b )
k

j `j(1)

=
N∑
j=0

(̂f ∗a )
k

j `j(ξ0) =
N∑
j=0

(̂f ∗b )
k

j `j(ξN)

=
N∑
j=0

(̂f ∗a )
k

j δ0j =
N∑
j=0

(̂f ∗b )
k

j δNj

= (̂f ∗a )
k

0 = (̂f ∗b )
k

N

(2.45)

This all leads to the combination of the lifting matrices and cell fluxes such that.

N∑
i=0

(La)ij (̂f ∗a )
k

j =
N∑
i=0

δ0iδ0jδ0j (̂f ∗a )
k

j =
N∑
i=0

δi0(̂f ∗a )
k

0 (2.46)

La(̂f ∗a )
k

=



1 0 . . . 0

0 0 . . . 0

...
. . .

...

0 . . . 0





(̂f ∗a )
k

0

0

...

0


= (̂f ∗a )

k

0



1

0

...

0


= (̂f ∗a )

k

0~e0 (2.47)

N∑
i=0

(Lb)ij (̂f ∗b )
k

j =
N∑
i=0

δNiδNjδNj (̂f ∗b )
k

j =
N∑
i=0

δiN (̂f ∗b )
k

N (2.48)

Lb(̂f ∗b )
k

=



0 0 . . . 0

0 0 . . . 0

...
. . .

...

0 . . . 1





0

0

...

(̂f ∗b )
k

N


= (̂f ∗b )

k

N



0

0

...

1


= (̂f ∗b )

k

N~eN (2.49)

These new matrices are then plugged into the local matrix form in Equation 2.38 giving

a complete system to create the spatial derivatives for the problem.
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Chapter 3

Implementation of Euler Equations

For this project the Euler equations were chosen due to the large scale eddies being

the important factors. Therefore the small scale turbulent structures and the turbulence of

the problem is not as important especially since any structure that needed to be developed

can be tripped in the initial condition with an input to the velocity of some kind instead of

by turblence. The Kelvin-Helmholtz problem is a prime example of this where a sinusoidal

velocity in the y direction is used to cause the instability to emerge in the jet. The Euler

equations are

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0 (3.1)

∂ρu

∂t
+
∂ρu2 + p

∂x
+
∂ρuv

∂y
+
∂ρuw

∂z
= 0 (3.2)

∂ρv

∂t
+
∂ρuv

∂x
+
∂ρv2 + p

∂y
+
∂ρwv

∂z
= 0 (3.3)

∂ρw

∂t
+
∂ρuw

∂x
+
∂ρvw

∂y
+
∂ρw2 + p

∂z
= 0 (3.4)

∂E

∂t
+
∂u(E + p)

∂x
+
∂v(E + p)

∂y
+
∂w(E + p)

∂z
= 0 (3.5)

An assumption is made that the air can be represented as an ideal gas such that the specific

heat leads to γ = Cp/Cv. This assumption also leads to a constant ideal gas constant R

which will be important for normalization. A constant γ was chosen of 1.4. This also

causes a simple relationship between the energy of the problem and the pressure, density

and velocities.

E =
p

γ − 1
+
ρ

2

(
u2 + v2 + w2

)
(3.6)
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For simpler analysis the state and fluxes can be stored into vectors so that the Euler

equation breaks down into one vector equation

∂u

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0, (3.7)

Where each vector represents

u =



ρ

ρu

ρv

ρw

E


, F =



ρu

ρu2 + p

ρuv

ρuw

u(E + p)


, G =



ρv

ρuv

ρv2 + p

ρvw

v(E + p)


, H =



ρw

ρuw

ρvw

ρw2 + p

w(E + p)


(3.8)

A common choice for the flux is the Lax-Friedrichs Flux function but this is not the

best choice especially when working in CFD. The AUSM+-up for all speeds flux function

developed by Meng-Sing Lou[14][15] was chosen due to its capabilities for both high and low

speed flows and its dependence on the physics of the problem.

3.1 Normalization

The variables for this research were all normalized by standard values. The assumption

of the air being an ideal gas as previously stated allows for the constant specific heat and

gas constants. A reference length was chosen which depends on the problem. For the shock

tube and Kelvin-Helmholtz instability the length factor can be chosen indiscriminately due

to the nature of the problem, but for the vortex problem this reference length plays great

weight in the development of the vortex bursts initial condition. Thus the radius core length

rc was chosen. Finally a reference speed was chosen as the speed of sound of stagnant air
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which is a constant. This led to the major variables being nondimensionalized as

x∗ =
x

rc
, y∗ =

y

rc
, z∗ =

z

rc
,

u∗ =
u

a∞
, v∗ =

v

a∞
, w∗ =

w

a∞
,

ρ∗ =
ρ

ρ∞
, p∗ =

p

p∞
, T ∗ =

T

T∞
,

c∗p =
γ

γ − 1
, e∗ =

e

a2∞
Γ∗ =

Γ

Γ0

(3.9)

After this point the superscript ∗ will be dropped and all variables unless otherwise

specified will be nondimensional.

3.2 AUSM+-up for all speeds

The AUSM flux function family was developed with the goal of building a better flux

function that captures the accuracy of flux differencing methods with the efficiency of flux

vector splitting methods. This method was advanced substantially in [14][15] becoming first

the AUSM+ method and then the AUSM+-up method. The first improvement gave this flux

function the ability to exactly capture a shock or discontinuity as well as an improvement

in accuracy with an easier adaptation to other conservation laws. The AUSM+-up for all

speeds method was then created 10 years later with a goal that as M → 0 the method

provides accurate solutions therefore creating a function that works for all speeds improving

the AUSM+ even further.

For the development of this method the flux is broken up into a convective and pressure

fluxes such that

F = ṁ~ψ + P (3.10)

where

ψ = (1, u,H)T (3.11)
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Here the left state which corresponds to the state from the left cell will be upheld by a

subscript L and the right state will have a subscript R. The mach number M is found

ML/R =
uL/R
a1/2

(3.12)

where a1/2 represents a common speed of sound found by

a1/2 =
aL + aR

2
(3.13)

A common speed of sound is very useful because through the use of a common speed of

sound the exact capturing of both shocks and discontinuities becomes possible.

The Mach number at the interface is represented by a function M(m) where m represents

the order of the function

M±
(1)(M) =

1

2
(M± |M|) (3.14)

M±
(2)(M) =

1

4
(M± 1)2 (3.15)

M±
(4)(M) =


M±

(1)(M), if |M| ≥ 1,

M±
(2)(M)(1∓ 16βM∓

(2)(M)), otherwise,

(3.16)

here β represents a constant value. With the Mach functions set the Mach number at the

interface is then found by applying

M1/2 = M+
(4)(ML)−M−

(4)(MR) + Mp (3.17)

where Mp represents the pressure diffusive terms effects on speed. The pressure diffusive

term is represented by

Mp =
Kp

fa
max(1− σM̄2, 0)

pR − pL
ρ1/2a21/2

, ρ1/2 =
ρL + ρR

2
(3.18)
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where fa is a scaling function and Kp and σ are constants. The mean local mach number

(M̄) is found through

M̄2 =
(u2L + u2R)

2a21/2
(3.19)

Which is then used to find a reference mach number

M2
0 = min

(
1,max

(
M̄2,M2

∞
))
∈ [0, 1] (3.20)

which gives the scaling function used above

fa(M0) = M0(2−M0) ∈ [0, 1] (3.21)

Using the new Mach number at the interface and the common speed of sound the mass

flow rate is found

ṁ1/2 = a1/2M1/2


ρL if M1/2 > 0,

ρR otherwise

(3.22)

The pressure term at the interface is then found by use of a P(n) function which is of

varying degree n like the Mach function previously.

P±
(5) =


1
M

M±
(1) if |M| ≥ 1,

M±
(2)[(±2−M)∓ 16αMM∓

2 ] otherwise

(3.23)

where α is a function based on the scaling function fa. This function is then used to develop

the new pressure term for the function where

p1/2 = P+
(5)(ML)pL + P+

(5)(MR)pR − pu (3.24)
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pu represents the velocity diffusion term effecting low velocity flow and is

pu = KuP
+
(5)P

−
(5)(ρL + ρR)(faa1/2)(uR − uL) (3.25)

here Ku is a user defined constant.

The previous variables α and β are then found through

α =
3

16
(−4 + 5f 2

a ) ∈ [−3

4
,

3

16
],

β =
1

8

(3.26)

where β is left as a constant and now α has become a function which differs from the AUSM+

method. Finally the flux is returned as

f1/2 = ṁ1/2


~ψL, if ṁ1/2 > 0

~ψR otherwise

+ p1/2 (3.27)

For supersonic flows the pressure term in the Mach number calculation and the velocity

term in the pressure calculation fall away revealing the method to be the same as the AUSM+.

Therefore the method is only being adjusted for low speed flows.

3.3 Integration through time

The DG method allows for a superb method for finding the derivatives in the spatial

direction but the problem remains with integrating these with respect to time. Before a

scheme can be built for this a time step needs to be established. A reasonable time step is

the basis for any numerical calculation. Here the time step can be found by

∆t ∼ C

(
λmax

N2

h
+ ‖ν‖L∞

N4

h2

)
(3.28)
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where λmax represents the maximum characteristic velocity λmax =
√
γp/ρ+

√
u2 + v2 + w2,

h is the minimum length, and ν is the maximum applicable viscosity. The maximum viscosity

coefficient is be found by using a simple relationship where

ν = λmax
h

N2
(3.29)

With the time step established a system for integrating through time needs to be found.

The most common and useful method for doing this is through a Runge-Kutta integration. A

total variation diminshing (TVD) Runge-Kutta was used in order to remove any superfluous

oscillations caused by the integration through time. This is a common method of applying

the Runge-Kutta for a more accurate solution.

For this simulation a 3rd order TVD Runge-Kutta integration was used such that

u(1) = un + ∆tR (un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tR

(
u(1)
)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tR

(
u(2)
) (3.30)

where R represents du/dt.

3.4 Artificial Viscosity Sensor

The DG method has a large advantage over traditional FV codes due to it being able

to achieve a high order of accuracy. There is a problem though. Inherent in any high

order scheme are oscillations created by the Gibb’s phenomena. This phenomena can lead

to instabilities. Therefore a need is found for a scheme to develop artificial viscosity to be

used for discontinuities. Traditional finite volume schemes use two different methods for

this implementation. The first is to allow the inherent numerical dissipation of the problem

to remove these problems. This is only applicable to linear first order systems and are not

useful for solving problems. The second is applied to second order and higher methods which
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is accomplished by making the scheme nonlinear. This is done by either applying a limiter

to reduce the order of the simulations so that the inherent numerical dissipation to affect the

solution or by creating an explicit viscosity term based on the state and applying it. The

concept of limiters were dropped in order to allow for a representation of the physics to be

the base upon which the viscosity is applied. This is artificial damping.

A simpler way would be use a global viscosity on all cells much like the inherent dis-

sipation present in lower order methods but this can cause the erasing of important small

scale physics that should not have been affected if this were a real world experiment. If

global viscosity is not useful, other traditional codes apply a type of limiting [17] where the

DG method is scaled back in certain areas to lower the order of accuracy and insert some

of that numerical dissipation. This is also not a useful method because it lowers the overall

accuracy of the solution for those cells even if the cells are small enough to capture the

”sharp” features. Therefore a sensor approach is much more useful in that it senses which

cells need to have viscosity applied for them to function without any reduction in accuracy

for those cells. The current sensor being used was developed by Andreas Klockner [12] as an

extension to DG codes and can be used with the Euler equations. Some improvements have

been made to this code and will be noted below.

The governing equations are listed below where the right hand side contains an artificial

viscosity with ν representing the viscosity coefficient of unknown value.

∂tρ+∇x · (ρu) = ∇x · (ν∇xρ) , (3.31)

∂t (ρu) +∇x · (u⊗ (ρu)) +∇xp = ∇x · (ν∇x (ρu)) , (3.32)

∂tE +∇x · (u (E + p)) = ∇x · (ν∇xE) (3.33)

In the development of this sensor density was used as the sensing variable upon but it is a

choice of the programmer in selecting which variable to sense upon. Here q will represent

the chosen state.
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Once the choice is made the Vandermonde matrix is applied to transform from a nodal

basis into a modal basis. Here q̂ represents the given state after having been transformed

into a modal form. It is assumed that the decay can be approximated as

|q̂n| ∼ cn−s (3.34)

which by taking the logarithm

log|q̂n| ∼ log (c)− s log (n) (3.35)

gives an algebraic system of equations to solve. The coefficients are found by a least squares

fit through utilization of the normal equations where

ATAx = AT b (3.36)

A =



1 −log(1)

1 −log(2)

...
...

1 −log(n)


, b =



log|q̂1|

log|q̂2|
...

log|q̂n|


, x =

log(c)

s

 (3.37)

s represents the decay coefficient and is key in determining how much viscosity should be

applied to a cell. The problem is this can be misled very easily by white noise in the data or

for a ”kink” where certain modes fall to zero leading to the data being misinterpreted and

giving a very high decay coefficient value.

To help fix this two different fixes were applied to the modes before the normal equa-

tions were solved. The first fix was by applying skyline pessimization which changes the

modes so that they follow a monotone mode profile by eliminating spurious nodes. Skyline
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pessimization is implemented such that

qn := max
i∈{min(n,Np−2),...,Np−1}

|q̂i| forn ∈ {1, 2, . . . , Np − 1} (3.38)

Thus producing a new set of modal coefficients.

The small white noise perturbations are removed by adding a representation of scale to

the model in the form of baseline decay

|b̂n| ∼
1√∑Np−1

i=1
1

n2N

1

nN
(3.39)

Np−1∑
n=1

|b̂n|2 = 1 (3.40)

Which is then added to the original modal array by

|q̃n|2 := |q̂n|2 + ‖qN‖2L2(Dκ)
|b̂n|2 for ∈ {1, . . . , Np − 1} (3.41)

This addition drowns out the floating point white noise in the system allowing for only the

data to be examined.

With the value of s determined it is noted that an analogy can be shown between Fourier

decay and this modal decay leading to the knowledge that s ≈ 1 for a discontinuous solution,

s = 2 for a C0 solution, s = 3 for a C1 solution, etc. This leads to the artificial viscosity

being determined by

ν(s) = ν0


1 s ∈ (−∞, 1) ,

1
2

(1 + sin (− (s− 2)π/2)) s ∈ [1, 3] ,

0 s ∈ (3,∞).

(3.42)

where ν0 is the maximum viscosity coefficient discussed previously.
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Their method only included details up to the second dimension so in order to use

Klöckner’s sensor in three dimensional space some new implementations had to be added.

These changes caused both an increase in the speed of the sensor by augmenting the process

where the inverse Vandermonde matrix was applied. A change was implemented that moved

the two dimensional application from using the Vandermonde based off of a two dimensional

system to that based off of a one dimensional system. The state vector q was split from a

vector of Np points to a NfpxNfp matrix allowing for application of the Vandermonde matrix

based off of a one dimensional system. This was done through a manipulation of pointers in

fortran 90. The norm was also no longer used because as the number of dimensions increased

the norm increased and with this increase the norm could buffer out some of the important

data by making the baseline decay normalization too big. Another problem exists because

for some data like, axial velocity in the burst problem, the norm would go to zero removing

a key piece of the sensor’s development. A ”fix” was made to allow for sensing on this data

and is implemented in Chapter 4.

3.5 Improving the Efficiency of the Code to Increase its Speed

With all these other implementations two small but major changes were implemented

in order to drastically increase the speed of the code as it was developed and moved from

one dimension to a three dimensional problem. These two ideas were the creation of sparse

matrices for stiffness and lifting matrices as well as the implementation of parallelization.

3.5.1 Sparse Matrix

The point of sparse matrix multiplication is to remove any cells that are zero or roughly

equate to zero in terms of double precision for computers. These matrices had a vast number

of points where the stiffness matrix for two dimensional problems had dimension [N2
fp, N

2
fp]

with only N3
fp points having values. Here Nfp represents the number of points to a edge or

Nfp = N + 1. In terms of numbers this lays out to a 9th order polynomial having a matrix
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of 10,000 points but only 1000 points having needed data. This data emerges into patterns

of numbers as seen in the stiffness and lifting matrices in the figures below.
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Figure 3.1: Location of all non zero values in stiffness matrices
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Figure 3.2: Location of all non zero values in lifting matrices

This is also only for two dimenisonal problems, the number of wasted data points,

thus leading to pointless calculations, only grows larger when applied to three dimensional

problems.
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Therefore a method had to be and was developed in order to take advantage of this

and speed up the code. A module was created in Fortran that searched the matrix for all

pertinent data that resided above a tolerance and stored that into a new data array. This

allowed for a speed up of the code due to a smaller flop count in the multiplication.

3.5.2 Parallel Processing

To obtain a faster code parallel processing was implemented such that the full power

of the processor could be achieved. Parallel processing occurs when a series of loops is

compressed and then broken up and sent into a user defined number of threads in a processor

or graphics processing unit. For these simulations a built in method called openmp was

utilized to process the parallized code. A simple experiment was done in order to determine

the optimal number of threads that should be implemented for the xenon processor in the

workstation used. The data can be seen in the figure below.
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Figure 3.3: Wall time for utilizing multiple threads for the Isentropic Vortex Test Case.

This data shows that seven threads gives an optimal solution but this could also be

weighed by the fact that during these simulation the computer had a user logged into it.

Nothing was running but the eighth thread was occupied with the operating system and
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running the standard desktop functions slowing down the system. Therefore if the user is

logged in seven threads is optimal but for use on something like a cluster the maximum

number of threads or 8 will be more optimal.
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Chapter 4

Sensor Improvement

With the substantial cost in terms of time of the burst problem along with the different

improvements made to the artificial viscosity sensor multiple test cases were run for validation

to lead to the full scale problem. Previous research accomplished at Auburn University by

Reitz [19] and Favors [7] provided insight into some 2D applications. For Reitz it was the

implementation of the 9th order polynomials as well as the importance of domain size being

most favorable for speed and accuracy while Favor’s thesis showed some of the benefits that

comes with the Klöckner sensor used here versus an entropy physics based model.

4.1 Test Cases

For the development of the system two separate two dimensional test cases as well as

a three dimensional test case were examined with the sensor. These cases are a shock tube

adjusted to two dimensional space and the Kelvin-Helmholtz phenomena. Then before the

implementation of the full three dimensional problem the shock tube was extrapolated to

three dimensions to validate the changes that were made to the sensor as well as work with

some new changes specifically in how the baseline decay is applied.

4.1.1 Kelvin-Helmholtz

The Kelvin Helmholtz phenomena was used as a simple 2D model in order to validate

the changes as well as show an increase in the speed of the new implementation of the sensor.

Another advantage to using this as a check, is that the Kelvin-Helmholtz phenomena is a

naturally occurring phenomena that can occur in wakes giving one more example of the DG

method modeling wake flow components. This test case also gives a special situation where
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the sensor can be checked against numerical instabilities that are developed through time

and are not abrupt like a shock is.

In creating the initial state U constant values are assumed for ρ = 1 and p = 1/γ.

Constants ε = π/15, δ = 0.1/4.9, and M = 0.25 are used in the development of the velocity

profile for the system which is found through

s =

 tanh
(

3π/2−y
ε

)
, y > π

tanh
(
y−π/2
ε

)
, else

(4.1)

u = 0.5 (s+ 1) M

v = Mδ (1. sin (1. x/3.)− 1. sin (2. x/3.) + 1. sin (3. x/3.))
(4.2)

The vertical velocity here is developed with the purpose of perturbing the first three modes

to allow for consistently reproducible simulations in order to compare results back and forth.

A fifth state is added to the governing equation concerning the concentration factor s. This

state is used both in the sensor and in the plotting of the initial conditions as seen in Figure

4.1. This allows for an easy comparison to other codes and experiments. The bounds for

this problem are x ∈ [0, 4π] and y ∈ [−π, 3π].
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Figure 4.1: Initial condition showing the concentration s

4.1.2 Sod Shock Tube

The burst problem also deals with a direct shock like discontinuity when the vortices

core radius changes due to the burst. Therefore an examination of a shock tube provides

ample benefits in how the sensor handles such an abrupt change in the state. A shock tube

is established in experiments by creating a cylinder with two different states for pressure and

density on either side of a burst disk. At time t=0 the burst disk is then popped and the gases

mix sending a shock wave and other cascading effects through the system. This problem

from a CFD sense is a simple one dimensional problem that can easily be extrapolated to

three dimensional space.

The problem here examines the common test case of the Sod shock tube and is set up

for multiple dimensions by choosing a single direction and then declaring the location of the
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burst disk between the two ends of the domain to exist in this direction. For this simulation

a bounds of [−1, 1] for both x and y. The computational burst disk was placed at 0 which is

the center. The values on either side are

ρ =

 1. x ≤ 0.

0.125 x > 0.
(4.3)

p =

 1. x ≤ 0.

0.1 x > 0.
(4.4)

and an image of the initial condition can be found in Figure 4.2.
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Figure 4.2: Initial Condition of density (ρ)
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With the sensor fully validated the shock tube was then expanded into three dimensions

in order to troubleshoot as well as develop the extrapolation of the sensor into three dimen-

sional space. The same format for the development of the initial condition was followed for

converting the two dimensional shock tube to a three dimensional shock tube.

4.2 Results for Sensor Validation

4.2.1 Sensor Validation in Two Dimensions

The modal sensor is a very useful tool, but for an optimal use in three dimensions it

needs to be retooled to increase it’s speed. This is an important concept when running three

dimensional simulations which are already very costly concerning time. Before moving into

the three dimensional problems, the sensor was first altered in the two dimensional space

in order to troubleshoot as well as see if it altered the sensor’s abilities. These changes can

be found in algorithms 1 and 2. Here the original algorithm, algorithm 1, has a matrix

multiplication that costs N4
fp flops. This is due to it involving a matrix multiplication of a

N2
fpxN

2
fp matrix to a Nfpx1. The method is altered by using the inverse of the Vandermonde

matrix based off of a one dimensional system instead of the current two dimension system.

This Vandermonde matrix was then applied by matrix multiplication in the x or y direction

while looping through all the nodes. This resulted in 2 NfpxNfp by Nfpx1 calculations inside

of a loop over Nfp creating a flop count of 2 ∗ N3
fp for the two dimensional case. For the

3D case the savings are bolstered even higher. This case used to cost flops on the order of

N6
fp but with the use of the smaller Vandermonde matrix it only costs 3 ∗ N4

fp flops. This

translates to a savings in two dimensional of Nfp/2 and savings in three dimensional space

of N2
fp/3 flops which shows exponential savings between the two cases.

With proof that the sensor provides a substantial increase in the speed of the simula-

tion the validity of the new application of the modal sensor was checked using the Kelvin-

Helmholtz problem. This was done to prove the modes were still the same. The kinetic

energy in the Kelvin-Helmholtz instability is a constant. Therefore the kinetic energy was
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integrated using the gauss-lobatto quadrature and then was normalized by the initial kinetic

energy. This was plotted in Figure 4.3. Global viscosity, or the application of viscosity to

all locations, was also plotted to show how much more effective using a sensor is. The figure

shows both the new approach and old approach giving an identical integrated kinetic energy

over time while providing leaps and bounds better results than a global viscosity method

proving the validity of the sensor while also showing how it obtains similar results.

The sensor was then compared as it activated in both x and y direction as seen in

Figures 4.4 through 4.7. As can be seen in the figures the sensor turned on in the same

spots with the exact same weight for both the new and old implementations which aligns

with information found in Figure 4.3. This all logically follows since the modes are the same

regardless of the method for finding them.
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Figure 4.3: Total kinetic energy over time
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Figure 4.4: Sensor in X Direction at time 49.49 s
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Figure 4.5: Sensor in Y Direction at time 49.49 s
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Figure 4.6: Sensor in X Direction at time 76.99 s
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Figure 4.7: Sensor in Y Direction at time 76.99 s
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(a) Kelvin-Helmholtz New (b) Kelvin Helmholtz Old

Figure 4.8: Comparison of the two states at time 76.99 s

With validation that the new implementation returns the same amount of artificial vis-

cosity for both implementations a cost comparison was done by utilizing both the Sod shock

tube and the Kelvin-Helmholtz phenomena. Tables 4.1-4.3 show the new implementation of

the sensor saves time for each case. In each of these tables the total time for running each

simulation is what is recorded. Tables 4.2 and 4.3 also compare an increase in the order of the

polynomial and how that affects the new method. For each fo the sod shock tube test cases

a constant ∆t was used in order to compare the results for the varying polynomial order.

For the data stored in Table 4.2 the ∆t was 0.00005 and for Table 4.3 it was 0.0002. For

the Kelvin-Helmholtz there is a 4.0858% savings in time while for the Sod shock tube there

is a 3.9611% savings in wall clock time for a ninth order polynomial. This shows a decrease

in time but questions remain due to the small difference when comparing the sensor for the

test cases of table 4.2. Based on polynomial order the decrease in time varies from 5.318

s. Therefore with the domain specifications of Ni = 99Nj = 1 the order of the polynomial

was increased in order to judge whether or not the method did allow for more savings as

polynomial order increased. For the tenth order polynomial the savings amounted to 7.278 s

or 5.10 %, the eleventh order polynomial is 11.015 s or 6.24 %, the twelfth order polynomial
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is 15.873 s or 7.83 %, and the thirteenth order polynomial gives 22.17 s or 9.06 % in savings.

This proves that as the order of the polynomial is increased the savings also increase. Since

the sensor is implemented for each cell and the new implementation saves on the order of

Nfp/2 flops per iteration the number of cells was increased to Ni = 50NJ = 50 in order to

see how substantial the savings can be for more realistic two dimensional meshes.

The results for these new runs can be seen in Table 4.3. Here there is a savings in time

of 14.256 s or 2.20% for the ninth order polynomial, 30.507 s or 3.79 % for the tenth order

polynomial, 41.649 s or 4.09 % for the eleventh order polynomial, 68.24 s or 5.58 %for the

twelfth order polynomial, and 96.433 s or 6.31 % for the thirteenth order polynomial. This

proves the trend found in the previous shock tube experiment where as the order of the

polynomial is increased there are more savings from the augmentation to the sensor. The

decrease in the percentage of time can be attributed to the increase in mesh size and the

sensor not being the most costly part of the simulations.

Algorithm 1 Old Sensor Implementation

1: for i = 1, Ni do

2: for j = 1, Nj do

3: Q = U(:, 5, i, j)/U(:, 1, i, j)

4: Q = abs(matmul(invV,Q(:, 1)) + 1.0e− 17) . N4
fp flops

5: for iii = 1, Nfp do

6: qx(iii) = sqrt(sum(Q(Kcell(:, iii), 1) ∗ ∗2.))

7: qy(iii) = sqrt(sum(Q(Kcell(iii, :), 1) ∗ ∗2.))

8: end for

9:
...

10: end for

11: end for
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Algorithm 2 New Sensor Implementation

1: for i = 1, Ni do

2: for j = 1, Nj do

3: call wrapper(din, U, uhat)

4: um = apply-along-all(din, invV 1D, uhat) . 2 ∗N3
fp Flops

5: um = um ∗ um

6: qx1 = sqrt(sum(um, 2))

7: qy1 = sqrt(sum(um, 1))

8:
...

9: end for

10: end for

Sensor Implementation Wall Clock Time

New Method 545.3109 s

Old Method 568.5409 s

Table 4.1: Kelvin Helmholtz, N=9, Ni=27, Nj=18

Wall Clock Time

Sensor N=9 N=10 N=11 N=12 N=13

New Method 107.232 s 135.144 s 165.39 s 204.752 s 222.661 s

Old Method 112.55 s 142.422 s 176.405 s 220.393 s 243.831 s

Table 4.2: Sod Shock Tube, Ni=99, Nj=1
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Wall Clock Time

Sensor N=9 N=10 N=11 N=12 N=13

New Method 634.739 s 775.489 s 977.014 s 1154.97 s 1431.889 s

Old Method 648.995 s 805.996 s 1018.663 s 1223.21 s 1528.322 s

Table 4.3: Sod Shock Tube, Ni=50, Nj=50

4.2.2 Implementation into Three Dimensions

With both the validity of the new approach to the modal sensor proven as well as

the savings shown to be substantial, the next step was to extrapolate the sensor into three

dimensional space. When applying the sensor to the vortex bursting problem the sensor

repeatedly failed due to it not activating fast enough on the data. Both density and energy

were sensed to no avail. Therefore the sensor was further augmented to look for the highest

value over all the states and apply that to the relative cell in all 3 directions. A problem

emerges when applying this method though due to the norm for the state ρw will be zero,

therefore the sensor may turn on due to the inherent floating point noise. This can ” wash

out” important aspects fo the physics of the problem. This meant that a new method for

finding the stabilizing factor was needed for the application of the baseline decay to make

the sensor more robust on all states even if it removed some of the simplicity of the sensor.

To validate this new approach the Sod shock tube was returned to due to its simplicity as

well as the speed with which the problem can be run.

The exact, analytical answers for the Sod shock tube problem were found from a NASA

website[20] and used to tabulate RMS errors for each simulation. The new scale for the norm

was originally developed as something manually entered by the user for the simulations. For

these simulations represented in Figures 4.9-4.11 the norm for each state can be found in the

following vector ynorm = [3.0, 0.005, 0.005, 0.005, 5.0]. The values for states two through four
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were chosen in order to see the level of impact the velocity would have. The values for the

first and fifth state were chosen to be close to their norm values for a one dimensional case.

Returning to the problem the test cases were run with an activation just on density and

then on all states in order to provide a good comparison of the data. Table 4.4 shows for

both cases an RMS error of less than 0.02 was found. Figure 4.12 shows that by sensing

on the whole state the results are increasingly smoothed over just sensing on one state due

to the increase in the activation of the sensor. This can be further seen from Figures 4.9-

4.11 which depicts a comparison of the sensor being turned on through time as the shock is

propagated in any of the three directions. Image (b) in each of the Figures shows that the

sensor actively tracks just the shock and keeps a good marker on it when just sensing on

density while Image (a) in the Figures shows a more liberal application of the viscosity over

a wider range of data.

Values Sensed On RMS Error

Sense on ρ 0.0078

Sense on all states 0.0142

Table 4.4: RMS Error for Sod Shock Tube 3D
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Figure 4.9: Sensor through time X
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Figure 4.10: Sensor through time Y
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Figure 4.11: Sensor through time Z
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Figure 4.12: Comparison of Sensor using all states or one
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Figure 4.13: Zoomed in comparison of the baseline decay variation

As previously stated these simulations were all done with a predetermined scale of

ynorm = [3.0, 0.005, 0.005, 0.005, 5.0]. This raised a question though of whether or not

this was the best choice. The simulation was then rerun with a new scale of ynorm =

[3.0, 0.5, 0.5, 0.5, 5.0]. A comparison of the shock tube sensing on all five state can be seen

in Figure 4.14. These images show the sensor being activated much more sparsely due to

the higher value on the scale for the velocity states. This follows the logic of the scale being

used to balance the baseline decay to remove floating point noise. The lower the value for

the norm the higher chance there is for noise to affect the sensor. Table 4.5 validates the

previous reasoning by showing a much smaller RMS value for the new implementation of the

scale versus the old one and being much more in line with RMS value for the sensor only

utilizing density.
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Figure 4.14: Comparison of different preselected weighting vectors

Values Sensed On RMS Error

Velocity norm 0.005 0.0142

Velocity norm 0.5 0.0088

Table 4.5: RMS Error for Sod Shock Tube 3D

All this bears the question of how to derive a system to accurately predetermine values

for this new scale. As shown when discussing the sensor a value for s of 1 or lower leads to

the maximum application of artificial viscosity. Whereas a value for s of 3 lead to the least

amount of artificial viscosity applied. Any values of s over 3 causes no artificial viscosity

to be applied. The question is then posed that for basic phenomena such as floating point

noise or a step function what is the maximum value that can be used to trip the sensor for

either of these situations.

The previous method for deriving the scale was also found to cause different values

for a step function based at 0 and a step function based at any other height. In order to

incorporate this the step function to be used will be based at one. In order to determine this

the first thing that was done was to choose a set of s values to examine. For this research
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the values of s = [1, 2, 3] were chosen. Then three separate polynomial orders were chosen to

be used as a framework for the solution. The polynomial orders chosen were x = [5, 9, 15].

Initial guesses were found for these polynomial orders in order to obtain the desired s value.

These values can be seen in Equation 4.5 where the rows correspond to the distinct s values

and the columns to the polynomial orders.

y =


0.0034 0.012 0.066

0.019 0.22 6.6

0.071 1.72 180

 (4.5)

With the initial conditions built a MATLAB script was run that created an initial

guess by utilizing this data and an intrinsic interpolation function in MATLAB. Then a

minimizing function was used called FZERO. The function being fed to FZERO would take

the polynomial order and determine an initial condition based off of the desired test case and

then run the sensor on it. With the value of s obtained the function would then determine

the cost function with sdesired − ssensor. The system would continually run until it achieved

an s value within a tolerance to the desired value. These values for both the step function as

well as noise can be seen below in Figures 4.15 and 4.16. In these figure’s the average value

needed to activate the sensor was divided by the amplitude to allow for an easy application

to different problems.
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Figure 4.15: The minimum necessary normalized average to trip a specific s value for noise
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Figure 4.16: The minimum necessary normalized average to trip a specific s value for a step
function

As previously stated a standard polynomial order of 9 was used. The values for a 9th

order polynomial fall in Tables 4.6. In order to prevent the sensor from turning on too much

an average of the values for s = 2 for Noise and s = 3 for the step were used. This average

could then by multiplied by the amplitude of the desired state in order .

s Noise Step

1 11.844 0.83421

2 217.75 15.425

3 1717.9 121.47

Table 4.6: s values for 9th order polynomials
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The shock tube was then rerun with these new scales to determine their accuracy.

Figure 4.17 and Table 4.7 show that the new RMS error as well as a plot of the new density

are nearly identical to the values previously decided upon. These show that the new scale

function will provide a good result while removing any guess work previously being utilized.

This is a huge improvement in that the sensor is more applicable to any type of state at a

relatively small cost of being now based on the order of the polynomial while still retaining

it’s independence of the problem which many other sensors struggle with.
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Figure 4.17: Using the new scale derivation to replace ynorm

Values Sensed On RMS Error

Utilizing built in scale 0.0093

Velocity norm 0.5 0.0088

Table 4.7: RMS Error for Sod Shock Tube 3D
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Chapter 5

Three Dimensional Vortex Problems

5.1 Generation of the Initial Condition

The burst vortex is a complicated problem when generating the initial condition. It

requires pseudo steady state simulations as well as extrusions for a two dimensional vortex

into a three dimensional field.

5.1.1 Velocity Profile

In order to establish the real world application of the bursting an accurate representation

of the velocity profile needs to be made. For this problem a Gaussian vortex velocity profile

was chosen that is developed as

vθ =
Γ0

2πr

(
1− e−β(r/rc)

2
)

(5.1)

where Figure 5.1 shows the non-dimensional velocity profiles for the two vortices with cores

sizes of rc1 = 2.6 and rc2 = 5.2.
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Figure 5.1: vθ for the vortices of two different core sizes

With the velocity profile built in radial coordinates it then had to be shifted to Carte-

sian coordinates. This was done by first transforming the velocity equation into a velocity

potential equation by

f =
vθ
r

(5.2)

There is a problem with the profile though. At the center r = 0 the current velocity

profile would reach a singularity, therefore a high order algebraic model was used only at

r = 0. The velocity potential for all radii can then be found from

c =
Γ0

2πa
(5.3)
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f =


c
rc1

(
(r/rc)

2+2γ

((r/rc)2+γ)
2

)
c

rc1(r/rc1)
2

(
1.0− e−β(r/rc)2

) (5.4)

where Γ0 represents the circulation.

5.1.2 Boundary Condition

With a velocity profile the boundary conditions then had to be developed. This way the

pseduo-steady state simulations could be run for the two dimensional slices. This was done

with symmetric boundary conditions in the transverse directions[22]. These are applied by

imagining a ghost set of domains surrounding the vortex and each ”ghost” domain bears

a reflection of the vortex. This reflection is captured in rings around the current domain.

Each ring contains more reflections of the domain due to a larger radius away from the

original domain but, the further out the ring is the less the velocity of this ”ghost” domain

influences the development of the velocity profile. The symmetric boundary condition allows

no velocity to cross its boundaries therefore the domain of the problem is of the utmost

importance.
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Figure 5.2: Example of Symmetric Boundary Condition on a Vortex

For this problem 25 rings were generated and then a Van Wijngaarden transformation

was used in order to accelerate the series and find a more exact solution for the velocity

than simply doing a summation. This is performed by first performing an Euler’s transform

which is accomplished by doing a summation of the array in question

s0,k =
k∑

n=0

(−1)nan (5.5)

here s is a matrix of data for computing the Euler’s transformation. The velocity summations

are then stored in the top row of data of s at which point the Euler’s transformation is

performed where

sj+1,k =
sj,k + sj,k+1

2
(5.6)
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Van Wijngaarden’s contribution lay in noticing that it was pointless to takes this all the way

to the end of the data. Rather by stopping two-thirds of the way through the transformation

a more accurate value for the true summation was found. This contribution allowed for less

rings to be used while obtaining much more accurate results for the velocity.

5.1.3 Two Dimensional Initial Condition

While the velocity field is well represented and the boundary conditions have been

derived, there is no simple way to derive the pressure and density from the velocity. These

values are intrinsically linked in the Euler equations. This led to a need to develop a pseudo-

steady two dimensional initialization algorithm. This is accomplished by creating a standard

flow field with uniform density and pressure with no velocity and then slowly introducing

the true velocity field over a period of time and then running the simulation till the residual

reaches three orders of magnitude below it’s peak to show a steady state solution.

The introduction of the velocity is done through a factor based on a cosine function

going from zero to one. After a certain set time that factor stays at one so that the initial

condition can come to a constant value. This introduction equation is

s = cos

(
t

100
∗ π

2
− π

2

)
(5.7)

so at a time of one hundred seconds the value for s remains at one.

To achieve the introduction of the velocity slowly into the right hand side of the solution

is as follows.

rhs (:, 2) = rhs (:, 2) +
s

τ
∗
(
U (:, 1, i, j) ∗

(
ut (:, 1, i, j)− U (:, 2, i, j)

U (:, 1, i, j)

))
(5.8)

rhs (:, 3) = rhs (:, 3) +
s

τ
∗
(
U (:, 1, i, j) ∗

(
vt (:, 1, i, j)− U (:, 3, i, j)

U (:, 1, i, j)

))
(5.9)
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rhs (:, 4) = rhs (:, 4) +
s

τ
∗
(
U (:, 2, i, j) ∗

(
ut (:, 1, i, j)− U (:, 2, i, j)

U (:, 1, i, j)

))
+
s

τ
∗
(
U (:, 3, i, j) ∗

(
vt (:, 1, i, j)− U (:, 3, i, j)

U (:, 1, i, j)

)) (5.10)

Here i and j corresponds to the cells in the x and y direction, τ is a constant held to one

half here so that there is more weight on the velocity inclusion, and ut and vt represent the

true velocities in the x and y direction respectively This

5.1.4 Three Dimensional Extrusion

The two two dimensional vortices were then generated with the differing core radii

previously mentioned. The ratio of the two core radii was altered in the exponential term

of Equation 5.4. This way the strength of the vortex was unaffected by the changing core

radius allowing for the circulation to be accurately maintained and the vortices to be merged.

With the two dimensional initial conditions made all that was left was the generation of the

three dimensional model.

The two dimensional slices were merged by using a sinusoid function going from [1,−1]

for 5. < z. < 10. and [−1, 1] for 45. < z < 50.. This is represented by the function theta and

can be seen below.

U =



Urc2 z < 5.

θ Urc2 + (1− θ)Urc1 5. < z < 10.

Urc1 10. < z < 45.

θ Urc2 + (1− θ)Urc1 45. < z < 50.

Urc2 z > 50.

(5.11)

θ =


1
2

+ 1
2

sin (−π/5 z + 3π/2) 5. < z < 10.

1
2

+ 1
2

sin (π/5 z − 19π/2) 45. < z < 50.
(5.12)

This generates the initial condition. The velocity in the transverse directions was then

perturbed using a random perturbation applied as u = ubase (1 + εũ) where ε = 1x10−2 and

||ũ|| ≤ 1. This trips the helical instability in the problem. The boundary condition for
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the axial direction of the vortex bursting problem was also a symmetric boundary condition

which due to the velocity being independent of z is more like a reflecting wall boundary

condition.

5.2 Results

The CFL number plays a huge role in the development of the time step for all CFD

applications. For the two dimensional cases this CFL number can approach one for most

problems but this is not the case for three dimensional problems. In order to determine

the appropriate CFL number, the number was varied and the three separate test cases were

run. These test cases had varying CFL numbers of CFL = [0.25, 0.3, 0.35] with a grid size

of 20x20x20. The simulation corresponding to the CFL number of 0.35 failed, therefore to

keep the code running as fast as possible the CFL number was established at 0.3.

The minimum pressure is plotted for varying grid sizes and polynomial order in Figures

5.3-5.8. The plots show that the burst follows the same path as the vortex bursting pressure

field found in Figure 5.9 [16]. These figures all show a constant velocity in the pressure

wave collapsing into each other. In order to compare the time the normalization was shifted

in post processing by a conversion factor of vθmax/(2aπ). The burst is identified by the

sharp increase in pressure as seen in each of the Figures and is found at a constant location.

This lines up with the results in the Moet et. al. paper where they found that a constant

propagation speed existed for all the test cases and the burst occurs at an exact time based

off the ratio of the core radii. There is a difference in the amplitude of the pressure waves but

this is understandable due to the difference in the normalization techniques. This project

was normalized by utilizing the dynamic pressure as the normalization factor where the Moet

paper uses.

p∗ =
p− pmin
p∞ − pmin

(5.13)
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The grid size and polynomial order where varied in order to find the most accurate

solution and see how each change impacts the solution. The Figures show that the amount

of cells in the axial direction do not have a large influence on the pressure wave. Instead the

transverse cells hold the most influence. This is logical because since this plot is based on

the minimum pressure and plotted along the axial direction. A very interesting note is that

even though the 13th order polynomial used less cells and degrees of freedom it obtained

an equally accurate version of the solution when compared to the paper by Moet et. al.

The downside to the this implementation was in the time needed to run the solution. Even

though it had the least degree’s of freedom the solution took the longest to run.

Figure 5.3: Plot of the minimum pressure evolving through time for a polynomial of the 9th

order with a grid Ni=Nj=20 and Nk=25
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Figure 5.4: Plot of the minimum pressure evolving through time for a polynomial of the 9th

order with a grid Ni=Nj=25 and Nk=30

Figure 5.5: Plot of the minimum pressure evolving through time for a polynomial of the 9th

order with a grid Ni=Nj=25 and Nk=35
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Figure 5.6: Plot of the minimum pressure evolving through time for a polynomial of the 9th

order with a grid Ni=Nj=25 and Nk=40

Figure 5.7: Plot of the minimum pressure evolving through time for a polynomial of the 9th

order with a grid Ni=Nj=25 and Nk=45
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Figure 5.8: Plot of the minimum pressure evolving through time for a polynomial of the 13th

order with a grid size of Ni=Nj=17 and Nk=25

Figure 5.9: Temporal evolution of the profile of minimum pressure in the vortex core for
simulation DNS2[16]

Since the pressure plot had poor quality when the transverse number of cells was below

25 in each direction the vorticity for those solutions was not plotted. The vorticity magnitude

is then plotted for each of the remaining cases in Figures 5.10-5.14. They are listed with their
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time being changed to the scale of the paper to allow for better comparisons. Due to the time

step being derived by the simulation the times for each figure could not perfectly match but

the physics still shows the same situations occurring in comparison to Figure 5.15. Image

(c) for all figures shows the initial burst as the two pressure waves meet in the middle of the

simulation. This show the core radius expanding at the point of impact. Image (d) for all

the simulations then show the beginning of the helical instability. This shows that the sensor

allowed for the natural creation of the instability without overpowering it. As the number

of cells are increased in the z direction the instability becomes more clear as can be seen

from Figures 5.12 and 5.13 when compared to Figures 5.10, 5.11, and 5.14. The increased

polynomial order did not show the helical instability as quick as the other examples due to

a lower resolution in the z direction. While image(e) in the figures all show the burst cloud

becoming its own entity in the center of the simulations. The helical instability can easily

be seen in the (e) image for all the figures.

This has all been based on a visual inspection therefore a more quantifiable method was

used to back up the analysis from the figures. Since this is a problem based on the Euler

Equations and the boundary conditions have no flow passing through them the total kinetic

energy should be a constant throughout time. Since artificial viscosity is being applied this

will not hold true completely and therefore if too much viscosity is added the quality of

the solution decreases and it can be tracked. Figures 5.16 and 5.17 show the total kinetic

energy of the problem either normalized by the kinetic energy of the initial condition or the

error when compared to the initial condition. These figures both show that there is only

small incremental improvement with the increase of cells in the axial direction which with

the increase in the time required for simulation makes a solution with around forty cells in

the axial direction seeming to be most optimal. The best error was shown to occur on the

increase in both the axial and radial cells which lines up with the other charts.

These vorticity magnitudes and kinetic energy plots show that this robust adaptation

of the sensor was able to approximate the same viscous physics effects as both a sixth order
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LES and DNS simulations without requiring the solving of the RANS equations and therefore

without the need to utilize a turbulence model. These figures also show that increasing the

axial resolution has only a slight effect in the decrease of the error. This shows the superior

results to be for the 9th order polynomial with a grid of Ni = Nj = 28, Nk = 40 because it

is not only the most accurate.
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(a) t=0. (b) t=1.9064

(c) t=4.0159 (d) t=4.5286

(e) t=6.3687

Figure 5.10: Isosurfaces of vorticity magnitude for a polynomial of the 9th order with a grid
Ni=Nj=25 and Nk=30
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(a) t=0. (b) t=1.8384

(c) t=3.8821 (d) t=4.4949

(e) t=6.3687

Figure 5.11: Isosurfaces of vorticity magnitude for a polynomial of the 9th order with a grid
Ni=Nj=25 and Nk=40
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(a) t=0. (b) t=1.9658

(c) t=3.933 (d) t=4.4694

(e) t=6.3687

Figure 5.12: Isosurfaces of vorticity magnitude for a polynomial of the 9th order with a grid
Ni=Nj=25 and Nk=40
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(a) t=0. (b) t=1.9064

(c) t=3.9727 (d) t=4.6081

(e) t=6.3687

Figure 5.13: Isosurfaces of vorticity magnitude for a polynomial of the 9th order with a grid
Ni=Nj=25 and Nk=45
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(a) t=0. (b) t=1.9205

(c) t=3.9798 (d) t=4.5289

(e) t=6.3687

Figure 5.14: Isosurfaces of vorticity magnitude for a polynomial of the 13th order with a grid
Ni=Nj=17 and Nk=25
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Figure 5.15: Isosurfaces of vorticity magnitude of run DNS2 (Trot = 2πrc/Vθmax).[16]
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Figure 5.16: Plot of the integrated total kinetic energy error versus time for the cases
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N = 13
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Figure 5.17: Plot of the integrated total kinetic energy normalized for each case versus time
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Chapter 6

Conclusions

In conclusion these simulations show the high applicability of the DG method utilizing

the Euler equations to a range of problems. The method was further improved by taking the

Klöckner sensor and augmenting it to improve it’s capabilities and make it more robust. In

devising a new system with which to apply the baseline modal decay to the sensor allowing

for the sensor to work on values with a norm value of zero as well as speed which was one

of the main goals of this thesis and its most important findings. The savings in cost also

reduce the flop count in a two dimensional simulation by N3
fp/2 per cell per timestep and

for three dimensional to reduce it by N4
fp/3 flops.

This sensor was then taken and applied to the three dimensional vortex bursting problem

and provided accurate results in showing the vortex burst occurring as well as the helical

instability developing. This was done without the need to work with either a LES or DNS

simulation saving immensely in the complexity of the code as well as the required number

of arbitrary coefficients that must be utilized in a turbulence model. The number of cells in

the axial direction was shown to be the most important factor in seeing the development of

the helical instability while the resolution in the transverse directions played more of a role

in the pressure distribution charts. The 9th order polynomial was superior to the 13th order

due to the increase in speed it allowed as well as the better overall accuracy.

6.1 Future Work

While this work has shown the use of the DG method for capturing one piece of a wake

future implementation would require some additional research and steps. One improvement

would be to move this code from a Cartesian mesh to either a triangular based mesh or a
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non-uniform Cartesian mesh. Pure Cartesian meshes hold a strong advantage when working

with the far wake or other basic test cases but it has difficulty adapting around wings or

other physical phenomena. They also can place an unnecessary amount of points in locations

where the physics is not occurring. In this problem that would be in the corners. To make

this shift it would require a change to the Jacobian calculation and in converting it from a

scalar calculation to a matrix that needs to be calculated at each cell. Another possibility

would be to change the grid to a nested Cartesian mesh instead of a non-uniform Cartesian

mesh. In a nested mesh some cells share a wall with another cell. For these problems a

number of points would be interpolated to fit the problem and then interpolated back out

to extract the flux for all faces. This can damage the physics but since the point of interest

is the center where the cells would be of uniform size it would not cause too many problems

with the results.

Another improvement would be on implementing the Navier-Stokes Equations with a

turbulence model so that the boundary layer can be modeled and thus the simulations an

the model the formation of the wakes as well as wake phenomena which are basically inviscid

. This change would also require another way to improve these simulations by adjusting the

parallelization techniques to utilize either MPI or CUDA which could substantially increase

the speed of the code. The use of openmp while allowing for some rudimentary parallelization

it also hinders the code in restricting the number of threads available to two CPUs. This

has been implemented by Klöckner actually in an open source system he developed called

PyCUDA.

Finally this sensor is not based on any type of physics so it would be interesting to take

this sensor and apply it to a problem previously solved only using global viscosity such as

the solid rocket grain as seen in Albarado’s thesis. This global viscosity also wasn’t physical

but was used so that the scheme was stable. This problem could then be translated to three

dimensions and then apply the fully modified sensor to it as well.
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