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Abstract 

 

 

 Even with the various surface finishing techniques, all surfaces are rough with different 

structures and geometric characteristics over multiple scales. The roughness impacts 

significantly the friction, wear, and surface fatigue of applications, and also affects the electrical 

and thermal resistance. In this work, a profilometer was utilized to measure the profiles of 

different rough surfaces, and the profiles were characterized using a variety of statistical, 

multi-scale spectrum, and fractal methodologies. Since the fractal dimension, D, is a very 

popular and arguably important parameter in describing the fractal rough surfaces, four 

different methods are implemented in calculating the value and these four methods are then 

compared. The relationship between the fractal dimension, D, and the fractal scaling constant, 

G, is investigated as well. The measured rough surfaces are also compared with W-M function 

generated rough surfaces. After comparing a series of statistical and fractal parameters which 

are calculated based on the surface profile data, it can be found that the Weierstrass-Mandelbrot 

(W-M) function does not appear to be very suitable for characterizing real rough surfaces. 

Another important conclusion is that many surfaces are not consistent with the quality of 

self-affinity that many of the popular fractal models assume. Therefore, a discrepancy exists 

between idealized fractal equations and real surfaces. 
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Chapter 1 

 

1 Introduction 

 

1.1 Surface height distributions 

The surfaces of objects play important roles in natural phenomena. The geometric structure 

of rough surfaces has a great impact on some physical phenomena which are related to many 

engineering areas, such as electrical contact, microelectronics, bearings and seals. Additionally, 

it can be applied to geology and the navigation of autonomous vehicles.  

Regarding the height distribution of engineering surfaces as Gaussian distribution has 

already become the mainstay of surface characterization. Therefore, most of the studies of 

surface roughness effects on the engineering phenomena as lubricant, contact mechanics, and 

thermal contact are obtained by using Gaussian surfaces [1].  

The Gaussian distribution, also called the normal distribution, is a famous probability 

distribution that is wildly used in the field of mathematics, physics and engineering. Its 

probability density function is: 

      )
2

)(
exp(

2

1
)(

2

2

qq R

y

R
xf






                  (1) 

where μ is the mean of the distribution, it determines the central position of the distribution; Rq 

is the standard deviation that describes the dispersion degree, the larger it is , the more 
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dispersive the distribution will be.  

In particularly, the skewness (SK) and kurtosis (K) are two important parameters in 

describing the shape of a distribution. Skewness represents the measure of the degree of 

asymmetry for a distribution. For a Gaussian distribution, the value of skewness is zero. 

Kurtosis determines the degree of peakedness for the height distribution of a surface. It equals 3 

if the height distribution is a Gaussian distribution. The expression of these two parameters will 

be shown in section 1.2. 

However, except for the Gaussian height distribution, many engineering surfaces can also 

be recognized as processing non-Gaussian height distributions, which sometimes is difficult to 

formalize using an equation. Whether the surface height distribution follows the Gaussian 

distribution or non-Gaussian distribution depends on the nature of the processing method [2]. 

Cumulative processes, such as peening and lapping, can make the surface height distribution act 

as the Gaussian distribution because of the final shape of each region is the cumulative result of 

a large number of random discrete local events and irrespective of the distribution governing 

each individual event. Generally, non-Gaussian surfaces can be caused by the single-point 

processes (such as turning and shaping) and extreme-value processes (such as grinding and 

milling) [2].  

1.2 Statistical parameters in describing rough surfaces 

Surfaces are not as smooth as what we observe, there are many asperities on surfaces (see 

Figure 1). The deviation of the surface from its smooth contour is the roughness. The 
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characterization of roughness is very significant in a multitude of engineering problems, such as 

wear, friction and wave scattering.  

 

Figure 1: Schematic illustration of the rough surface 

Note: mean level – the average height of the asperities and the valleys 

mean asperity level - the average height of all the asperities 

 

There are many different statistical parameters in use to characterize the surface roughness. 

Among which Ra (arithmetic average) is the most common one because of its easy measurement 

and explanation: 

                           



N

i
ia y

N
R

1

1
                             (2) 

where N is number of sampling points, yi is the height of rough surface profile. 

For process engineers, the specification of Ra can be used to finish a surface [3]. However, 

the shortcoming of Ra is that it makes no distinction between peaks and valleys, and it cannot 

provide the insight into the spatial structure [3]. Therefore, engineers formulated several other 

statistical parameters, such as Rq (root mean squared roughness or standard deviation), SK 

(Skewness) and K (kurtosis), to make up for the deficiencies of Ra. Rq is another widely used 
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parameter which is similar to Ra and for large deviations from the mean line, Rq is more sensitive 

than Ra [4] and for a surface having a Gaussian statistical height distribution, Rq=1.25Ra: 
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The expressions for SK and K are shown below: 
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wherey is the average height, and the equation ofy is: 


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
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i
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y
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1
                             (6) 

In 1987, McCool [5] described how to use spectral moments, m0, m2 and m4, to obtain the 

statistical parameters: 
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where idx

dy
)(  and i

dx

yd
)(

2

2

 can be calculated by using the central finite difference scheme (see 

Figure 2): 
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   Figure 2: Details of an asperity profile in rough surface profile 

 

From the equations above, it may be found that the expression of m0 is the same as the 

square of Rq, i.e., m0=Rq
2
. m2 and m4 can also be called the mean square slope and curvature 

respectively [6]. 

However, experimental results [4, 7, 8] show that these statistical parameters are 

instrument-dependent, and that they can change with the scan length and the resolution of the 

measuring instrument. They are therefore not intrinsic properties of the surface. Despite this 

defect, these parameters are still very useful. They can be regarded as the numerical 

characteristics of a surface height distribution.  
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1.3 Rough surfaces geometrical characterizations 

According to previous studies [9-12], essentially two different types of geometries were 

utilized in the study of surfaces in nature: Euclidean and Fractal geometry. Euclidean geometry is 

a mathematical system which is a branch of geometry. Normally, Euclidean shapes have some 

characteristic sizes or length scales (e.g. the radius of a circle or the length of the side of a cube) 

[9]. For ages, Euclidean geometry has dominantly been used to describe numerous natural 

phenomena. However, the classical Euclidean geometry merely describes artificial objects and it 

can only work with objects that have integer fractal dimensions (i.e.1-D, 2-D or 3-D).  

With the discovery of “non-Euclidean” geometries, such as the Koch curve shown in [13], 

the Sierpinski fractal shown in [14] and the Menger sponge in [15], the previous concepts of 

mathematics were violated. The dimensions of these geometries are non-integer, so the Euclidean 

geometrical descriptions cannot be used anymore. To better characterize “rough” phenomena in 

the natural and artificial world, new approaches needed to be introduced in addition to the 

Euclidean geometry. 

Mandelbrot first proposed that the fractal geometry seems to fit much of the natural world 

[16] and it can be regarded as a workable geometric middle ground which is between the 

excessive geometric order of Euclid [11] and the geometric chaos of general mathematics [10]. 

Mandelbrot declared a more general definition of a fractal, as “a shape made of parts similar to 

the whole in some way” [17]. Burrough [18] also emphasized that the strictly defined fractal 

refers to a series in which the Hausdorf-Besicovith dimension exceeds the topological dimension. 
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This kind of geometry can be used to describe the profile of objects with non-integer dimensions.  

Fractal geometry is often used to simplify rough surfaces as following a specific 

mathematical definition over many scales. Majumdar [19] emphasized that the essence of the 

fractal definition Mandelbrot [17] has proposed lied in the concepts of self-similarity and 

self-affinity. 

The work by Majumdar provides a description of these two phenomena of self-similarity 

and self-affinity as well. For example, Figure 3 [20] is a typical self-similar shape for which the 

scaling ratio is the same as in all directions. When a local region is enlarged, it appears to be 

exactly the same to the larger regions. In other words, self-similar means the appearance of an 

object is much the same at any the magnification or scale. While Figure 4 [21] shows an 

example of self-affinity, where the scaling ratio is unequal in different directions. Therefore, 

self-affinity is a generalization of self-similar fractals. Russ suggested that many natural 

surfaces as produced by deposition, erosion, wear, fracture, etc., seem to be self-affine rather 

than self-similar [22]. Fractal surfaces are then always classified as by either self-similarity or 

self-affinity. 
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Scrum Self-Similarity: Creating Organizational Fractals 

      Figure 3: Fractal self-similarity [20] 

 

 

 

        

Fractal Geometry  

    Figure 4: Fractal self-affinity [21]  
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1/3 

1
/2

 



9 
 

1.4 Fractal parameters for fractal geometry 

Majumdar and Bhushan [8] characterized fractal surfaces with two parameters: a 

non-integer Hausdorff-Besicovitch dimension (fractal dimension) D and a scaling constant G 

(often referred to as fractal roughness). The fractal dimension, D, provides a description of how 

close a geometry is to being a point (D=0), a perfect line (D=1), a plane (D=2) or a volume 

(D=3). Only the dimensions of surface profiles are considered in the current work, and therefore 

1<D<2. The surface dimension (Ds) can be combined with the profile dimension (D) using 

Ds=D+1. This equation is based on the statement [22] that adding two fractal data sets with 

dimensions Da and Db together can produce a dimension of Da+Db. 

The impact of D when generating surface profiles is shown in Figure 5 (G is kept constant). 

Sometimes G is also called the fractal roughness parameter [23], as it may have influence on 

the height of a fractal rough surface, as shown in Figure 6 (D is a constant). 

Fractal parameters can all be extracted from rough surface data. Compared to the 

scale-dependent parameters discussed in section 1.2, D and G are scale-independent according 

to [7, 24]. These two fractal parameters helped much in studying the surface phenomenon by 

providing the information about the roughness structure over multiple scales.  

Klinkenberg [25] discussed that determining the fractal dimension of a self-similar 

objective is much easier than determining the fractal dimension of a self-affine objective. In the 

current work, four different methods are used in determining the fractal dimension and will be 

discussed in chapter 2. 
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Figure 5: The influence of D on rough surfaces  
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Figure 6: The influence of G on rough surfaces 
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1.5 Method of generating rough surfaces 

Commonly, rough surface data can be obtained using a profilometer. For model evaluation, 

rough surface generation is very important and popular in diverse fields such as tribology, 

geophysics, and computer graphics. It can both simulate and simplify the true rough surfaces 

and the surface-related random phenomena by artificially creating surfaces. By the 

simplification of the surfaces and related phenomena, the research work on the true surfaces can 

be much easier.  

Many methods used in generating rough surfaces can be found in past literatures. Here, 

two popular algorithms of generating fractal surfaces, namely, the random midpoint 

displacement method and the Weierstrass-Mandelbrot (W-M) fractal function, are introduced. 

However, only the W-M fractal function method is discussed in the current work. 

a) Random midpoint displacement 

This method, first introduced by Fournier [26], is one of the simplest algorithms for 

surface generation. It can also be called top-down generation [27]. Based on the method, a 

rough surface profile can be created by displacing the midpoint of a straight line with some 

random amount, then continue the operation in the midpoint of new-generated line. After 

repeating this process for many times until the line segment becomes shorter than can be drawn, 

a simple rough surface profile can be obtained.  

The shortcoming of the random midpoint displacement method lies in that it requires the 
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generation of a large quantity of random numbers [28]. Moreover, since the length of each line 

is halved at each step, after several iterations the line segments to be halved will be very short, 

so that the generated rough surface can be oversimplified and the details of the rough surface 

are not recognizable.      

b) Weierstrass-Mandelbrot (W-M) fractal function 

The Weierstrass-Mandelbrot (W-M) fractal function is the most well-known method in 

characterizing and simulating fractal profiles and has been widely applied in the field of contact 

mechanics and tribology. It has the properties of continuity, non-differentiability and 

statistically self-affinity, which satisfies the characteristics of fractal geometry. The W-M 

function has a fractal dimension which varies between 1 and 2 and the format of it is given 

below [24, 29, 30]: 

                  







2

1

)2(

)1( )2cos(
)(

n

nn
nD

nD xG
xz




    1<D 2              (12) 

where )(xz is the surface height, and γ is the fractal scaling parameter, it determines the density 

of the spectrum and controls the randomization of the phases of frequency modes for the 

generated surfaces [29]. It is shown that 1.5 is a suitable γ value for high spectral density and 

phase randomization [29]. In addition, the power of γ can form a geometric series. n is the 

fractal scale index，n1 and n2 are the lowest and highest cut-off frequencies separately which 

depend on the sampling length L and sampling resolution s. They are given as Ln
/11   

and sn
/12  . Russ described the W-M function as a summation operation that adds 
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non-fractal sinusoidal shapes together to generate a fractal result [28] and he also mentioned 

that the W-M function is an algorithm, as it adds a series of sine waves together such that their 

frequencies are not a linear sequence.  

 For the fractal surface, its spectral density, )(P , and structure function,  S , are: 
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where )(R  is the autocorrelation function (ACF), which will be discussed later, and 
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The autocorrelation function and the structure function can be related to the spectral density 

by using the following equations: 
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Some people believed that the W-M function can be extended into two dimensions. Ausloos 

and Berman [31] tried to extend it using the following function: 
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where 2<D 3, 
















log

)log(
intmax

L
n  is the maximum frequency level, M is the number of 

superposed ridges used to construct the surface and nm ,  is a random variable representing 

phase. 

Whereas, Wu [32] pointed out that by using this equation, the spectrum density function 

   22
yxPP    of a obtained surface cannot hold for all  yx  , , so Ausloos and 

Berman version of the W-M function cannot be used in two dimension of surfaces with 

confidence. 

1.6 Relationship between statistical parameters and fractal parameters 

Majumdar and Tien [24] found that for fractal surfaces, the relationship between the 

statistical parameters and the fractal parameters are: 
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where ωl is the lower wave number limit, ωh is the higher wave number limit, L is sampling 
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length and s is the sampling resolution, 
2)(

dx

dy
 is the mean square slope and 2

2

2

)(
dx

yd
 is the 

mean square curvature. Eq. (19) will be used in later chapter 2 to calculate the G values in the 

experiment.  

Sayles and Thomas [33] found that the statistical parameters can be expressed by the 

structure function and fractal dimension: 
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After comparing with Eqs. (20) and (21), Wu [34] found that Eqs. (25) and (26) are more 

suitable for the calculation of these statistical parameters. 

1.7 Goal of the work 

The goal of this work is to analyze the structure of roughness over multiple scales with 

respect to current fractal and multi-scale techniques. As we know, in characterizing fractal 

geometry, the fractal dimension (D) is a very popular parameter but its usefulness in describing 

real surfaces is questionable. Four different methods are employed to calculate the fractal 

dimension (D) of various surfaces. The results of these methods are then compared and 

discussed. And the applicability of the one dimension W-M function used for generating and 

describing real rough surfaces is also evaluated and analyzed.   
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Chapter 2 

 

  2 Experiment and methodology  

2.1 Experiment 

2.1.1 Preprocessing of surface data 

A Veeco Dektak 150 surface profilometer (scan length=5000μm, scan duration=0.16 sec, 

5000 points, tip radius=2.5μm, vertical resolution<1nm, lateral resolution = 1μm/sample) (see 

Figure 7) was used to measure the surfaces with various finishes of a standard reference surface 

(S-22 Microfinish Comparator Surface Finish Scale as shown in Figure 8).  

In this work, six different surfaces were measured which are classified as 63G, 63M, 63P, 

2L, 4L and 8L, here G(ground), M(milled), P(profiled) and L(lapped) represent different ways 

to process the surfaces. After measuring the surfaces with the profilometer, six surface profile 

data sets were obtained, and then a fitted line needed to be obtained by fitting the data between 

the point position and the point height. Subtracting the fitted value from the measured data, the 

leveled surface profile data can be obtained to help calculate the precise parameters which 

estimate the differences of diverse rough surfaces. Figure 9 shows an example surface profile 

after leveling the surface profile data (the leveled profiles for the other five rough surfaces are 

in the Appendices). 
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Figure 7: Profilometer used in the experiment 

                           

 

Figure 8: Standard reference surface 
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   Figure 9: 8L Rough surface profile after leveling 

 

Rough surfaces are multi-scale in nature, which means surfaces usually have scales of 

roughness that span from the atomic scale to the macro scale (see Figure 10). Archard [35] was 

the first man who developed the initial multi-scale model that can be described as 

“protuberances on protuberances”. However, because of its unrealistic surface structure (i.e. it 

used spheres stacked on spheres), this model cannot be practically used on a real rough surface 

[36].  
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Figure 10: Multi-scale nature of rough surfaces 

 

A Simplified Model of Multi-scale Electrical Contact Resistance and Comparison to Existing Closed Form 

Models 

Figure 11: Multi-scale surface profile [37] 
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For now, another multi-scale model is used which can simplify the complex surface 

structure by superimposing many sine waves (Figure 11). Each wave represents a different scale 

of roughness. By using the multi-scale model the assumption of self-affinity imposed by fractal 

mathematics can be alleviated and how the mechanics are considered is improved [37]. 

Multi-scale rough surface profiles can be characterized using two different types of 

mathematical series – arithmetic series and geometric series. Arithmetic series are the series for 

which every term is computed from the previous one by adding or subtracting a constant. While 

geometric series are the sum of a sequence in which a constant ratio is held between the 

continuous terms. Geometric series are the simplest example of an infinite series with a finite 

sum, and the Grandi’s series (1 − 1 + 1 − 1 + · · ·) is a specific geometric series. The Fourier 

series is an example of an arithmetic series and will be used to characterize the rough surfaces 

in this work in addition to geometric fractal series.  

These two series are used to compute the relationship between the amplitude (Δ) and 

wavelength (λ). Similarly, the connection between the asperity aspect ratio (B), which indicates 

the ratio of the amplitude (Δ) of the sinusoidal surface at a scale to the wavelength (λ) of that 

scale, and the wavelength (λ) is also determined using the same method.  

For a self-similar rough surface, the relationship between the aspect ratio and the 

wavelength is a constant as the sinusoidal geometry is replicated exactly at each scale. If B is 

plotted verse λ, for a self-similar surface, this results in a straight horizontal line. However, for a 

self-affine rough surface, the sinusoidal features are distorted from one scale to the next in a 

http://en.wikipedia.org/wiki/Term_%28mathematics%29
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predictable monotonic trend. Then if B is plotted verse λ, the line will have a slope. For W-M 

function generated surfaces, the slope will be negative. 

Based on the two different types of mathematical series, the measured rough surfaces were 

decomposed into Fourier series (using the fast Fourier transform (FFT)) and into geometric 

series using an equation given as: 

                        





1

)2sin()(
nn

n
nxlAxz                     (27) 

where A describes the amplitude of each scaled sinusoidal wave and l is the self-similar  

fractal scaling parameter, it controls the ‘distance’ between the scales in the geometric series 

and can vary just like γ in the W-M function. When l=1.5, like γ=1.5 in the W-M function, it can 

provide adequate surface separation between scales [38]. In the current work, l was varied from 

a small value of 1.2 to a large value 1.8 (as shown in Figure 12 and Figure 13). After 

implementing the arithmetic and geometric scaling, the resulting amplitude (Δ) versus 

wavelength (λ) for rough surfaces are plotted in a log-log curve and shown in Figure 12 (two 

examples are shown for surfaces 8L and 63P). Then B versus λ for the rough surfaces in this 

experiment can also be obtained (see Figure 13). The plots for the other measured rough 

surfaces about these two relationships are in the Appendices. 
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Figure 12: Δ vs. λ for measured rough surfaces 

(a) 8L rough surface; (b) 63P rough surface 

(a) 

(b) 
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Figure 13: B vs. λ for measured rough surfaces 

(a) 8L rough surface; (b) 63G rough surface 

(a) 

(b) 
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Interestingly, not only the 8L and 63P rough surfaces, but all these rough surfaces shown in 

this experiment appeared to have the same line and follow the same trend as shown in Figure 12 

and Figure 13. The slope in Figure 12 is nearly one which means as the scale of the surface 

feature increases, their relative wavelength increases, and the slope between B and λ are all 

approximately zero with the meaning of that the aspect ratio is nominally constant for all scales 

and series, like the same conclusion in [38]. In addition, the variation of B appears to be less 

than four orders of magnitude, the average B values for all the rough surfaces are also 

calculated and shown in 2.1.4.  

Later, the degree of self-similar of all the measured surfaces will also be characterized by 

finding the average slope, dB/dλ. Since the spectrum nominally stays the same, this also 

suggests that the surfaces possess a continuous spectrum. They also show a random distribution 

around the average B value. 

2.1.2 Different methods in calculating the fractal dimension, D  

(1) Methods description 

The fractal dimension (D) is a popular and arguably important parameter in describing 

fractal rough surfaces, many well-known methods are used in the research of it, e.g. the classic 

Richardson plot [39], the compass method [40, 41] and the variogram analysis [25, 42]. In the 

current work, four different methods were adopted to calculate D: the Fourier analysis [28], the 

roughness-length method [43], the box-counting method [44] and the power spectrum method 
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[42, 45]. 

a) Fourier analysis 

   In analyzing the fractal profile data, Russ [28] used the Fourier analysis, which is based on 

the Fourier series, to plot the relationship between the logarithm of the magnitude
 
squared and 

the logarithm of the frequency after conducting FFT for the profile data (as shown in Figure 

17(a)). It shows a linear variation between these two parameters, and the slope of the line, β, is 

related to the fractal dimension, D, as: 

                                
2

)4( 
D                              

( 2 8 ) 

Russ [28] also emphasized that this method is most often applied to time-varying signals 

and can be applied to self-affine as well as self-similar data sets as it provides one of the most 

direct, easily understood and powerful techniques for the analysis of fractal profiles and 

surfaces. 

b) Roughness-length method 

In this method, the profile roughness is measured as the root-mean-square value of the 

residual on a linear trend fitted to the sample points in a window of length, w, [43, 46] (see 

Figure 14). Then, the root-mean-square roughness including the effect of window length by 

altering Eq. (3) is calculated: 
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where wn is the total number of data points in a window of length w, yj is the surface height or 

residual of the trend and y  is the mean height or residual in the ith window wi , mi is the 

number of points in window wi. 

          

Figure 14: Computational process of roughness-length method 

 

The RMS roughness, Rq, is then plotted as a function of the window length, w, on a log-log 

scale. The slope of the log-log plot between RMS and window length, w, is H, which is called 

the Hurst exponent [16]. It is directly related to the fractal dimension (D): 

                                         D=2-H                                (30) 

In this equation, the value of the Hurst exponent lies between 0 and 1, when the Hurst 

exponent equals to 0.5 (i.e. fractal dimension is 1.5), it indicates the series is a geometric 

random walk (fractional Brownian motion).  
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The roughness-length method is a widely used method and it can also be extended to 2D 

and 3D situations. In 1988, Wilson and Dominic [47] first used this method to evaluate the 

fractal characteristics of topography and structure in the study area of the Appalachian 

mountains. Kulatilake and Um [48] applied this method for calculating fractal dimension of 2D 

profiles. By using 3D laser scan data of rock mass discontinuity surfaces, Fardin [49] originally 

proposed this method to calculate the fractal dimension of 3D surfaces. 

c) Box-counting method 

Schroeder [50] is the first man who proposed the formal definition of box-counting 

method. In this method, the surface profile is first overlapped with a grid or an array of identical 

boxes. Then the box size is changed by the power of 2 and the box number needed to cover the 

surface profile is counted for each size of box. Its basic principle to estimate the D value is 

based on the concept of self-similarity [44]. The D value of a bounded set in Euclidean n-space 

is defined as  

                                   
)1log(

)log(
lim

0

r

N
D r

r
                           (31) 

where r is the side length of box. Nr is the least number of the boxes required to cover the set 

and Nr varies from 1/r for a smooth surface profile to 1/r
2
 for a rough surface profile. By using 

the box-counting method, the values were plotted on a log-log curve and D was exactly the 

slope of the fitted line.  
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            Closed Contour Fractal Dimension Estimation by the Fourier Transform [51] 

 

r=1      log(1)=0 

Nr=71    log(71)=1.851 

r=2       log(1/2)=-0.301 

Nr=32     log(32)=1.505 

r=4     log(1/4)=-0.602 

Nr=12   log(12)=1.079 
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Figure 15: Process of box-counting method 

 

The whole process of box-counting method is illustrated in Figure 15 [51]. After 

calculating all the logarithmic values of the box size and box number, a line was fitted and the 

slope of the fitting equation (i.e. the fractal dimension) was obtained. Since the box size is 

changed as a power of two, the boxes will rapidly cover the data with few points being shown 

in the log-log curve [52] and the box size will be evenly spaced in the log-log plot (see Figure 

17).  

Note again that this method is used unequivocally for self-similar geometries. Only if the 

size of the box is small with respect to the vertical range of the profile data can this method be 

used for self-affine fractals [41, 53]. 

d) Power spectrum method 

The power spectrum method is a method that needs much more data processing than the 

other methods, and was developed by Blackman and Turkey [54] based on the Wiener-Khinchin 

y=1.2824x+1.8643 The slope of fitted line 

is 1.2824, so the fractal 

dimension of the Koch 

snowflake is 1.2824. 
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theorem. In this method, the autocorrelation function (ACF) of the surface profile (see Eq. 32), 

which contains useful spatial information and is the most popular way to represent spatial 

variation [4], was calculated first (see Figure 16).  
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          (32) 

where τ is the changing distance. 

 

Figure 16: Autocorrelation function for 8L rough surface 

 

The FFT algorithm then was implemented on the autocorrelation function to obtain a 

power spectrum, which describes how the power of a signal or time series is distributed with 

frequency [42]:  
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

 cffS )(         1  < 3                  (33) 

where f represents the spatial frequency and c is the scaling parameter.  

Taking the logarithm on both sides of Eq. (33), the slope of the fitted line for the power 

spectrum on a log-log plot can be used to estimate the  value. From  , the D value can be 

calculated according to Eq. (34): 

                              
2

5 
D                              (34) 

(2) Results and discussion 

Examples of these four methods of calculating D for surface 8L are showed in Figure 17 

(the plots for the other measured rough surfaces are in the Appendices). Comparing these four 

different methods, the values calculated from the box-counting method had less variation and 

followed a linear trend more than when using the other three methods (which results in a better 

fit). Therefore, the value of D from the box-counting method is less affected by the resolution 

or length of the surface data and is less ambiguous in evaluating the value of D.  

However, the box-counting method is designed for self-similar surfaces, and as will be 

shown in this chapter categorizes many surfaces. Here D0 represents the fractal dimension with 

the Fourier analysis, D1 corresponds to the fractal dimension calculated using the 

roughness-length method，D2 is the dimension calculated using the box-counting method and 

D3 is from the power spectrum method. The resulting values of fractal dimension, D, for all 

measured surfaces are listed in Table 1.  
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Figure 17: The results of four different ways in calculating D (choosing 8L surface as an 

example). (a) Fourier analysis; (b) Roughness-length method; (c) Box-counting 

method; (d) Power spectrum method 

The lines are fitted to the points calculated from the real surfaces 

  

(c) (d) 

(a) (b) 
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Comparing the fractal dimension values in Table 1, the values of D0, D1 and D2 are much 

smaller than the D3 values from the power spectrum method. D0 have the minimum fluctuation 

around unity and has some values less than one. The D2 values are all larger than 1, but the 

differences with D0 and D1 are not so obvious. D3 has the largest values and all the values are 

around 1.5 and sometimes D=1.5 indicates the fractional Brownian motion. Since D2 is 

relatively close to D1 and D0 and unity, it might indicate that the surfaces are nominally 

self-similar.  

It is obvious that some values of D0 and D1 are less than one which suggests that the 

results stay in somewhere between the dimension of a point (D=0) and the dimension of a line 

(D=1). Since the fractal dimension is a measure of the “space-filling” ability of a system [55], 

the fractal dimension of a straight line will be less than one when holes or spaces exit in it. A 

famous example of the fractal dimension less than one is the Cantor dust [56], which also be 

called Cantor set, it has the fractal dimension of log2/log3 (approximately 0.631). 

2.1.3 Discussion of G value 

In characterizing a multi-scale surface, the fractal roughness parameter (G) is another 

scale-invariant parameter. It was calculated using Eq. (19) based on the W-M function, which is 

also listed in Table 1. It was found that G varies widely over many orders of magnitude between 

the surfaces whose roughness (Rq and Ra which will be shown in Table 2) varies by less than an 

order of magnitude. To explain this 17 order of magnitude spread in G, the relationship between 

D and G was also investigated in the work.  
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Table 1: D and G values for measured rough surfaces 

surface types D0 D1 D2 D3 G (m
-(D-1)

) 

2L 1.0514 0.838 1.1188 1.4733 2.00e-29 

4L 0.8272 0.953 1.1024 1.4740 1.64e-32 

8L 0.9766 1.17 1.1192 1.4732 4.19e-30 

63G 1.0415 1.25 1.1269 1.4985 2.94e-27 

63M 0.9801 1.19 1.1397 1.5018 1.22e-24 

63P 0.8380 1.63 1.2407 1.5311 3.36e-15 

Note: D0-Fourier analysis;  D1-Roughness-length method;  D2-Box-counting method; 

D3-Power-spectrum method.   

 

The D value was changed from 1 to 2 using an increment of 0.01 and the initial Rq value is 

from 8L surface, by using the Eq. (19) the corresponding G value was calculated and the final 

results are showed in Figure 18, in which the black line is the fitted line for the scattered values.   

 

Figure 18: Relationship between D and G 

 

In Figure 18, it appears that the G values are non-linearly proportional to the D values or 

vice-versa. Since the moving average method was used when fitted the data, it can be predicted 
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from the fitted line that G approaches an asymptotic value when D tends to 2, and when D 

approaches 1, G becomes infinitesimal. The data in Table 1 conforms to this trend. Therefore, it 

may be difficult to use G as a characterizing parameter of the rough surfaces. 

2.1.4 Parameters calculated in the experiment 

Additionally, several statistical and multi-scale roughness parameters are also calculated, 

such as Bave, (dB/dλ)ave, Ra, Rq, SK and K. These parameters are computed as references to 

provide further insight into the comparison of different kinds of rough surfaces. They are all 

listed in Table 2.  

Since the degree of self-similarity might be quantified by calculating the slope of B versus 

λ, the average slopes (i.e. (dB/dλ)ave) were calculated and listed in Table 2. In addition, the value 

of dB/dλ for varying l values and the FFT method which are shown in Figures 12 and 13 are 

listed in Table 3. When (dB/dλ)ave equals zero everywhere, the measured rough surfaces could 

be said to be perfectly self-similar. For actual rough surfaces, the slopes will never be exactly 

zero. Due to the trend of all the (dB/dλ)ave values and the values listed in Table 3 being 

relatively close to zero, all the measured surfaces tended to be nominally self-similar. It can also 

be found from Table 3 that not all the values are negative (dB/dλ<0 and will be discussed in 

section 3.2), which would suggests that the surfaces do not exactly follow the self-affine 

structure of the W-M fractal. 
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Table 2: Parameters calculated in the experiment 

surface  

types 

Rq  

(m) 

Ra  

(m) 
m2 m4 SK k Bave 

σB 

(m) 

(dB/dλ)ave 

 (m
-1

) 

2L 1.01e-06 8.76e-07 7.18e-05 -0.824 -0.538 1.98 2.14e-05 1.08e-05 0.0079 

4L 1.28e-06 1.10e-06 6.10e-05 -0.356 -0.631 2.14 3.94e-05 1.68e-05 0.0100 

8L 8.16e-07 7.02e-07 -9.87e-05 -0.592 -0.161 1.99 3.12e-05 1.01e-05 0.0045 

63G 1.17e-06 9.56e-07 4.40e-04 -3.10 -0.507 2.59 9.90e-05 4.60e-05 0.0053 

63M 1.36e-06 1.14e-06 -3.53e-04 2.75 -0.174 2.21 1.11e-04 4.62e-05 0.0120 

63P 2.03e-06 1.68e-06 1.52e-04 7.48 -0.349 2.36 2.91e-04 1.29e-04 -0.0060 

 

Table 3: Values of db/dλ for varying l and FFT method 

surface types l=1.2 l=1.4 l=1.5 l=1.6 l=1.8 FFT 

2L 0.0169 -0.0028 -0.0067 -0.0074 -0.0077 0.0549 

4L 0.0185 -0.0079 -0.0133 -0.0124 -0.0128 0.0907 

8L 0.0083 -0.0062 -0.0098 -0.0095 -0.0082 0.0549 

63G -0.0019 -0.0066 -0.0200 -0.0181 -0.0218 0.0975 

63M -7.91e-04 -0.0125 -0.0211 -0.0199 -0.0246 0.1498 

63P -0.1095 -0.0622 -0.0630 -0.0689 -0.0579 0.3244 

 

2.2 Bearing area curve 

In the field of engineering and manufacturing, sometimes it is needed to estimate the area 

in contact between two rough surfaces, and then the rate of wear can be accessed. The bearing 

area curve (BAC), which was proposed by Abbott and Firestone [57], can give an indication of 

the rate of wear and how the asperity peaks are distributed. It can also help to understand the 

property of sealing area.  
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Figure 19: Bearing area curve for 8L surface  

 

The curve could be established from a profile trace by drawing lines parallel to the datum 

and measuring the fraction of the line which lies within the profile [58], and the bearing area 

curve for a measured rough surface is shown in Figure 19. Mathematically, the bearing area 

curve is the cumulative form of the height distribution, and it can be calculated by integrating 

the profile trace [59].  

Combining Table 2 and Figure 19, it can be found that at the initial height, much rougher 

surfaces have many peaks, so their bearing area ratio are much larger. The peaks of less rough 

surfaces can be worn out quickly because of fewer peaks they have. The less rough surfaces can 

become smooth surfaces much more easily than the rougher surfaces.  
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Specifically, if a height distribution of a surface profile is approximately a Gaussian 

distribution, the bearing area curve becomes the famous cumulative error function of classical 

statistics. Then at any height, the bearing area fraction relative to the mean line can be obtained 

by simple inspection of the tables [4].  
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Chapter 3 

 

3 Generated W-M fractal rough surfaces 

 

3.1 Surfaces generation based on the W-M function 

 

Figure 20: Generated 8L surface by using the W-M function 

 

When the constants ‘G’, ‘D’, ‘γ’, ‘n1’ and ‘n2’ are known, then the surface profile can be 

determined from the W-M function (Eq. (12)) at any length scale. To test the applicability of the 

W-M function used for describing real rough surfaces, rough surfaces have been generated 
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according to the W-M function for each rough surface in Table 1. Since the results from the 

box-counting method appear to be more reliable, so D2 is implemented in generating rough 

surfaces using the W-M function. And the corresponding G values for all rough surfaces were 

used to achieve a matching Rq between the original surfaces and generated surfaces (see Table 

2). An example generated rough surface for 8L is shown in Figure 20 (the rough surface 

profiles for the other generated rough surfaces are in the Appendices).  

3.2 Discussion of parameters in generated rough surfaces 

According to the W-M function, the expression for the aspect ratio (B) is shown below: 
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From the discussion in the last chapter, when the surface is a self-similar surface, B is 

supposed to be a constant. Based on Eq. (35), B varies with n, only when D=1 can B remain 

constant. So for a generated W-M surface profile, the D value must equal to one if rough 

surfaces are self-similar surfaces. As noted in the chapter 1, this relationship between D and 

self-similarity is not true for all fractals (i.e. a fractal surface in general could have a D 1 but 

still be self-similar). That is an unnecessary restraint that is imposed by the W-M function. 

Then four different methods introduced in section 2.1.2 were implemented in evaluating 

the values of the fractal dimension for all generated rough surfaces (the plots for all the 

generated rough surfaces are in the Appendices), and they are listed in Table 4. Other statistical 

roughness surface parameters (as in Table 2) were also computed. They are listed in Table 5. 
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Table 4: Fractal dimension values for generated rough surfaces 

surface types D0 D1 D2 D3 

2L 1.0758 1.0330 1.1137 1.4737 

4L 1.0870 1.1000 1.1009 1.4739 

8L 1.0842 0.9672 1.1036 1.4870 

63G 1.0724 1.2359 1.1136 1.4761 

63M 1.0679 1.2533 1.1036 1.4879 

63P 1.0754 1.1085 1.1530 1.4794 

Note: D0-Fourier analysis;  D1-Roughness-length method;  D2-Box-counting method; 

D3-Power-spectrum method. 

 

Table 5: Parameters calculated based on W-M function 

surface 

types 

Rq  

(m) 

Ra  

(m) 
m2 m4 SK k Bave 

σB 

(m) 

(dB/dλ)ave 

(m
-1

) 

2L 1.02e-06 8.46e-07 -3.55e-04 0.366 -0.6121 2.42 4.53e-05 3.16e-05 0.0851 

4L 1.24e-06 1.02e-06 -4.47e-04 -1.18 -0.0988 2.25 5.72e-05 3.95e-05 0.0864 

8L 8.11e-07 6.76e-07 -6.91e-05 -0.191 0.0366 2.21 4.03e-05 2.06e-05 0.0169 

63G 1.16e-06 9.90e-07 3.68e-04 -0.102 -0.079 1.92 3.58e-05 2.47e-05 0.0071 

63M 1.38e-06 1.14e-06 -6.18e-04 0.564 0.3254 2.60 6.11e-05 3.19e-05 0.0612 

63P 2.06e-06 1.82e-06 -4.97e-04 -4.93 0.5527 1.84 5.13e-05 4.10e-05 0.0777 

 

Again, in generating rough surfaces using the W-M function, D2 in Table 1 was set as the 

inputted values. Comparing all fractal dimension values in Table 4 with the initial set values, D3 

are much greater than the inputted data, so the power spectrum method does not appear to be a 

reliable method for calculating the D value when the rough surfaces seem to be self-similar. 

Simultaneously, the relationshipsΔ vs. λ and B vs. λ for these generated rough surfaces 

were also obtained and are shown in Figure 21 and Figure 22 separately (the plots for the other 

four generated rough surfaces are in the Appendices). Although all the trends appear to be in 
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accordance with the relationship found in the measured surfaces, there are many evenly spaced 

peaks in the trend. These peaks correspond to the discrete frequencies represented in the surface 

by the W-M function (Eq. (12)). Real surfaces do not display this trend because their spectrum 

is continuous. This is one reason the W-M function may not be very suitable for characterizing 

real surfaces or generating artificial surfaces. Table 6 shows the value of dB/dλ with varying l 

values and the FFT method for the generated rough surfaces corresponding to Figure 22. 

In addition, an analytical solution between λ and dB/dλ for different D values is also 

derived according to Eq. (35): 

                              n


1
                                (36) 

After taking the logarithm in both side of Eq. (36), the obtained expression of n can be 

used in Eq. (35). Then Eq. (35) is rearranged as:  

                             
)
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DGB                       (37) 

The derivative of Eq. (37) with respect to λ is taken which is shown in Eq. (35). And the 

trend between λ and dB/dλ based on this analytical solution is shown in Figure 23. 
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 Figure 21: Δ vs. λ for the generated rough surfaces 

 (a) generated 8L surface; (b) generated 63P surface  

(a) 

 

(b) 
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    Figure 22: B vs. λ for the generated rough surfaces 

    (a) generated 8L surface; (b) generated 63P surface 

(a) 

 

(b) 
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Table 6: Values of db/dλ for different l and FFT method of generated surfaces 

surface types l=1.2 l=1.4 l=1.5 l=1.6 l=1.8 FFT 

2L 0.0236 0.0070 -0.0073 -0.0074 -0.0082 0.0043 

4L 0.0287 0.0099 -0.0089 -0.0101 -0.0110 0.0066 

8L 0.0189 0.0070 -0.0068 -0.0080 -0.0081 0.0021 

63G 0.0228 0.0055 -0.0066 -0.0074 -0.0077 0.0116 

63M 0.0262 0.0041 -0.0132 -0.0132 -0.0145 0.0085 

63P 0.0488 0.0088 -0.0096 -0.0101 -0.0039 0.0362 

 

 

Figure 23:  dB/dλ vs. λ 

 

Interestingly, the dB/dλ values in Figure 23 are all negative except as D=1 it is zero. D=1.1 

has the smallest value and D=2 has the biggest value. In contrast, in both Table 3 and Table 6, 

the dB/dλ values are not all negative, especially using the FFT method for all the rough surfaces 
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which shows the opposite trend of the self-affine W-M function. Therefore, the W-M function is 

not an effective way for charactering the rough surfaces.   

3.3 Parameters comparison between measured rough surfaces and generated 

rough surfaces 

Some parameters in Table 2 and Table 5 are also compared graphically. Bar graphs for the 

statistical parameters are shown in Figure 24 and for the multi-scale parameters are shown in 

Figure 25. Rq does not need to be shown here because G is fit such that the Rq values for the 

real and generated surfaces are identical (Eq. (19)). However, for a better comparison, we still 

show Rq and Ra. 

In Figure 24, the compared parameters between these two kinds of rough surfaces are not 

so consistent. The differences between m2 and m4 in Figure 24 are very obvious, and the 

absolute values of m2 and m4 for the generated rough surfaces are much larger than for the 

measured rough surfaces. All the skewness values for the measured rough surfaces is negative, 

which means the rough surface profile data for the rough surfaces lies most on the right side of 

all the average values. However, for the generated rough surfaces it has some positive values. 

As we know, for a standard normal distribution, its kurtosis equals 3. Here, kurtosis for all the 

rough surfaces are smaller than 3, so the distribution of rough surface profile data either for 

original rough surfaces or the generated rough surfaces is flatter than the standard normal 

distribution.  

 



48 
 

 

     

 

     

 

     

Figure 24: Comparison of statistical parameters between original rough surfaces and 

generated rough surfaces 
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Figure 25: Comparison of multi-scale parameters between original rough surfaces and 

generated rough surfaces 

 

The Bave values and the dB/dλ values do not follow the same trend (see previous section for 

the analysis) according to Figure 25. This is because the W-M function does not create a rough 

surface with a continuous spectrum. The measured roughest 63P surface has the highest Bave so 

that its asperities are on average much more acute than the other surfaces. Whereas, for the 

generated rough surfaces, 63M has the highest Bave with lower Rq value compared with Rq value 

in 63P generated rough surfaces. 

Values from Table 3 and Table 6 are also compared and shown as Figure 26. It is obvious 

that all the values of dB/dλ are approximately one, which indicates that both the measured 

rough surfaces and the generated rough surfaces are nominally self-similar surfaces. For the 

measured rough surfaces, the largest absolute values of dB/dλ are from the roughest surfaces 

(i.e. the 63P surface), but this trend did not occur in the generated W-M rough surfaces.  

Values of db/dλ from l=1.5, l=1.6 and l=1.8 for all the surfaces are negative, which follows 

the trend obtained in section 3.2 that dB/dλ should be negative according to the self-affine W-M 
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function. When l=1.2, the dB/dλ values for the measured rough surfaces of 2L, 4L and 8L is 

positive and for the other three measured rough surfaces it is negative. However, the dB/dλ 

values for the generated rough surfaces at l=1.2 are positive. When l=1.4, the dB/dλ value is 

negative for the measured rough surfaces and positive for the generated rough surfaces. For the 

FFT method, all the values of dB/dλ are positive, which is the exact opposite of the result in 

section 3.2. At l=1.5, and values closer to that, the wavelengths being considered by the 

spectrum should better align with the W-M function and therefore better capture the self-affine 

fractal structure.    
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Figure 26: Comparison of dB/dλ calculated with varying l values and FFT method for 

measured rough surfaces and generated rough surfaces   
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  Chapter 4 

 

4 Analysis 

 

4.1 The analysis of the W-M function 

The W-M function z(x) is mathematically self-affine [24, 29, 60, 61], so the generated 

surfaces based on the W-M function in our work are also self-affine but only at discrete 

wavelengths. In terms of Figures 24 and 25, the differences of parameters between the original 

real surfaces and the generated self-affine surfaces are not small, especially the statistical 

parameters, m2, m4 and SK, and the multi-scale parameters, Bave and (dB/dλ)ave , show the most 

disagreement. Moreover, after comparing the dB/dλ values from different l values and FFT 

method (see Figure 26), one may find that not only a inconformity between the measured rough 

surfaces and the generated rough surfaces but not all the dB/dλ values are negative which 

expected to be based on the result obtained in section 3.2. So the W-M function is not 

recommended for characterizing the true rough surfaces which appear to be nominally 

self-similar.  

Another result was also obtained that the D value should equal one if the surface is 

self-similar according to Eq. (35). However, a self-similar fractal surface not described by the 

W-M function is generally not required to follow this rule. For instance, a self-similar surface 
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could have a D between 1 and 2 (such as Korch Curve [13], Sierpinski Triangle [14] and the 

coast lines illustrated in [40]). 

From the above analysis, we know that the popular W-M function cannot be used with 

confidence to characterize real surfaces, and using it to generate surfaces is not practical. Wu 

[32] also derived a similar conclusion in his paper. 

4.2 The analysis of different methods in calculating the fractal dimension, D 

Table 7: Comparison between different methods in evaluating D 

initial values methods calculated values precision /% 

D=1.1 

Fourier analysis 1.0762 97.84 

Roughness-length method 1.0744 97.67 

Box-counting method 1.1030 99.73 

Power-spectrum method 1.4792 65.53 

D=1.3 

Fourier analysis 0.9873 75.95 

Roughness-length method 1.3148 98.86 

Box-counting method 1.2114 93.18 

Power-spectrum method 1.4817 86.02 

D=1.5 

Fourier analysis 1.0488 69.92 

Roughness-length method 1.5296 98.03 

Box-counting method 1.2969 86.46 

Power-spectrum method 1.4999 99.99 

D=1.7 

Fourier analysis 0.9764 57.44 

Roughness-length method 1.6941 99.65 

Box-counting method 1.3990 82.29 

Power-spectrum method 1.6031 94.30 

 

Attention should also be paid to the fractal dimensions in Table 1 and Table 3. As we 

mentioned in 2.1.4, the values of D0, D1 and D2 are all nominally equal to one whereas most of 

the D3 values are much larger than one. And all the D3 values are around 1.5. So it appears that 
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all the measured surfaces and generated surfaces are nominally self-similar only according to 

the W-M function.  

Table 7 shows a comparison of the precision between different methods in evaluating D 

values. One may find that the degree of precision for the roughness-length method always 

results in a relatively precise prediction. The Fourier analysis is only effective on the W-M 

function when D has low values, which means that the rough surfaces are nearly self-similar 

surfaces according to W-M function. Since the box-counting method is used unequivocally for 

self-similar geometries as mentioned before, so with the D value increasing, its accuracy is 

decreasing, as the W-M function produces surfaces that are more self-affine. The variation of D 

values calculated by power spectrum method is very small, and when the D value becomes 

larger, the precision of this method grows higher.  

Therefore, conclusions can be drawn that: (1) The roughness-length method is a good 

choice when evaluating the fractal dimension; (2) The box-counting method needs to be 

avoided to use when the fractal dimension is a little large; (3) The Fourier analysis is not 

effective for the W-M function because the W-M function does not create a continuous 

spectrum, or a spectrum whose wavelengths correlate with the Fourier series; (4) When the 

surfaces are self-similar, the power spectrum method is not reliable in calculating fractal 

dimension, as it can cause a spectrum to appear self-affine. 

In many previous studies and discussions [25, 43, 62], the ACF-based power spectrum 

method is a popular method in evaluating the fractal dimension, and when the initial fractal 



55 
 

dimension value is large enough, this method can have a high accuracy in predicting it. 

However, in the current work, it appears that a value near D=1.5 is consistently predicted. This 

situation is perhaps caused by the use of the discrete form of the autocorrelation function used 

to calculate the power spectrum and the rough surfaces created by the W-M function also have a 

discontinuous spectrum. Then a large difference existed between the calculated fractal 

dimension values and the initial fractal dimension values. Klinkenberg [25] stated briefly that 

every method using in calculating the fractal dimension has one common drawback that 

discretization of the phenomenon being investigated (i.e. the rough surfaces) will result in a 

measured fractal dimension that is different from its theoretical fractal dimension. Therefore, 

the coarser the discretization is, the greater the expected difference will be.  

The Fourier analysis can have higher precision in determining fractal dimension only when 

the surface has a continuous spectrum or one that aligns with the Fourier series. This conclusion 

is not the same as in [28], perhaps this is because the way the surfaces generated are not the 

same (Russ used the midpoint displacement technique) and the input parameters may have 

some impact on the process of generating rough surfaces. Real surfaces may also be more 

effective.  

T. Candela [63] also used a method known as the Fourier power spectrum (FPS) method, 

which is similar to the Fourier analysis, to analyze the fractal property of self-affine surfaces. 

They concluded that this method is the most accurate and reliable method in evaluating the 

Hurst exponent. This is probably because when they used this method, the spectrum of the 
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entire surface is calculated by stacking all 1-D Fourier transforms for the reduction of the noise 

associated with individual profiles.  

In addition, the 1-D surface profiles they used to analyze were extracted from the 2-D 

Digital Elevation Model (DEM) of 2-D surfaces. A set of 1-D parallel profiles in the specific 

direction were extracted, detruded and analyzed for each surface. These 1-D profiles are all 

self-affine and the input exponent in extracting rough surface profiles can also cause the rough 

surface profiles to be absolutely self-affine.  

 

Surface Characterization: Fractal Dimensions, Hurst Coefficients, and Frequency Transforms 

Figure 27: Random fractal outlines generated with varying fractal dimensions [64] 

 

Russ [64] described that the fractal dimension can provide an efficient descriptor of the 
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roughness. This is because the increase in the perceived irregularity of the boundary line can be 

well mapped by increasing the measured fractal dimension of the line. He also showed a figure 

to help illustrate this trend which is shown here as Figure 27. 

From the figure 27, one may find that the larger the fractal dimension is, the rougher the 

outline is. However, from the Table 1 and Table 4, the larger D values do not always correspond 

to larger roughness. So the point of view of Russ is not exactly correct and the role of the fractal 

dimension, D, in describing the real rough surfaces need to be questioned. 

4.3 The analysis of autocorrelation function (ACF) in power spectrum 

method 

The version of the power spectrum used in this work is based on the FFT of the ACF. First 

used in 1946 on surface roughness [65], the ACF is applied to create a spectrum of the surface 

that is smooth by finding the peaks that are correlated laterally. This is required for analyzing 

surfaces generated by the W-M function because their power spectrum is not continuous like a 

real surface.  

However, when the ACF is calculated, the small scales naturally correlate better and 

therefore they are amplified, and larger scales do not match as well at larger wavelengths. This 

is a natural behavior of real rough surfaces [66]. By enlarging the amplitudes at small scales, 

the power spectrum artificially causes the self-affinity of the surface to be amplified.  
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Chapter 5 

 

 5 Conclusions and future work 

 

 

In this work, surfaces with various finishes were analyzed. It is found that all the measured 

rough surfaces are nominally self-similar, and not self-affine as many of the popular fractal 

models assumed. They do show random variation about this self-similar structure. Different 

rough surfaces were generated by using the W-M function. According to the W-M function, the 

fractal dimension, D, must equal to one if rough surfaces are self-similar which has been proved 

to be an unnecessary restraint imposed by the W-M function. 

Since the fractal dimension, D, is a popular parameter for fractal surfaces, four different 

methods were implemented to calculate the value. It is found that the values of fractal 

dimension from the Fourier analysis, box-counting method and roughness-length method are 

mostly consistent with each other, which might indicate that the measured rough surfaces are 

nominally self-similar. However, the values of fractal dimension from the power spectrum 

method are all approximately 1.5, for all the measured surfaces and the W-M function generated 

surfaces. It is much higher than the other three methods, so the power spectrum method can 

cause a spectrum to appear self-affine when it is not. 

The degree of self-similarity of all the measured surfaces is characterized by the average  
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slope, dB/dλ. When it equals zero everywhere, the measured surfaces could be said to be 

perfectly self-similar. In the current work, the values of average slope for all the rough surfaces 

are relatively close to zero (see Table 2 and Table 3), which means that the measured surfaces 

tend to be nominally self-similar.  

The relationship between the fractal dimension, D, and the fractal roughness parameter, G, 

was also analyzed. It appears that when D approaches 2, G becomes an asymptotic value, the 

differences between the G values are not so obvious when D becomes larger than 2. In addition, 

G becomes infinitesimal when D tends to 2. Hence, it demonstrates that G may not be a good 

choice in characterizing the rough surfaces.  

Moreover, the real rough surfaces were compared with the W-M function generated rough 

surfaces. The statistical parameters, m2, m4 and SK, and the multi-scale parameters, Bave and 

dB/dλ, show much disagreement. The relationship between dB/dλ and λ was also investigated 

which shows that the trend of these two parameters in the real rough surfaces is not always 

consistent with the trend derived by the W-M function.   

In analyzing the Bave and (dB/dλ)ave for the generated rough surfaces, one may find that 

there are many spaced peaks in the trend which correspond to the discrete frequencies existing 

in the W-M function generated rough surfaces. This phenomenon can also be found in 

evaluating the fractal dimension by using the Fourier analysis in Chapter 4. In determining the 

fractal dimension, the Fourier analysis can only have higher precision when the rough surfaces 

have a continuous spectrum. Whereas, this method is not effective for the W-M generated rough 
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surfaces (see Table 5) because of the discontinuous spectrum created by the W-M function. 

Therefore, the W-M function does not represent a continuous spectrum that is represented in 

most surfaces.  

When calculating the fractal dimension based on the power spectrum method, the discrete 

type of the autocorrelation function was used. The resulting calculations suggest that the 

autocorrelation function can amplify the amplitude at small scales. Therefore, when using the 

power spectrum method, it can enlarge the self-affinity of the rough surfaces.     

From the above analysis, it can be found that when calculating the fractal dimension for 

self-similar rough surfaces, one should avoid using the power spectrum method because it can 

cause the spectrum to appear self-affine. Moreover, a discrepancy exists between the generated 

rough surfaces and real rough surfaces. Since no real surface follows the W-M function, and the 

measured surfaces in this experiment were self-similar, not self-affine, the W-M function is not 

recommended for charactering rough surfaces. This area of multi-scale surface characterization 

deserves much more work and focus in the future. 
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Appendices  

 

A: The other five measured rough surface profiles after leveling 

    

2L rough surface                       4L rough surface 

  

 

63G rough surface                        63M rough surface 
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63P rough surface 

Figure 28: The other five rough surface profiles after leveling 

 

B: Plots of relationship between amplitude (Δ) versus wavelength (λ) for the 

other four measured rough surfaces 

 

 

 2L rough surface                        4L rough surface 



70 
 

 

63G rough surface                        63M rough surface 

Figure 29: Δ vs. λ for the other measured rough surfaces 

 

C: Plots of relationship between B and λ for the other four measured rough 

surfaces 

 

 2L rough surface                         4L rough surface 
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63G rough surface                       63M rough surface 

Figure 30: B vs. λ for the other four measured rough surfaces 

 

D: Schematical illustration of fractal dimension of the other five measured 

rough surfaces calculated by using different four methods  

For 2L rough surface: 

   

(a)                                   (b) 
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(c)                                       (d) 

 

For 4L rough surfaces: 

 

(a)                                    (b) 
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(c)                                       (d) 

 

For 63G rough surface: 

 

(a)                                    (b) 
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(c)                                       (d) 

 

For 63M rough surface: 

   

(a)                                    (b) 
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(c)                                       (d) 

 

For 63P rough surface: 

 

(a)                                    (b) 
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(c)                                    (d) 

Figure 31: D values calculated by four different methods for the other five measured 

rough surfaces 

             (a) Fourier analysis; (b) Roughness-length method; (c) Box-counting method; 

(d) Power spectrum method 

   The lines are fitted to the points calculated from the real surfaces 

 

 

E: The other five generated rough surface profiles after leveling 

  

2L rough surface                           4L rough surface 
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63G rough surface                         63M rough surface 

 

63P rough surface 

Figure 32: Surface profiles after leveling for the other five generated rough surfaces 
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F: Plots of relationship between amplitude (Δ) versus wavelength (λ) for the 

other four generated rough surfaces 

  

2L rough surface                        4L rough surface 

 

63G rough surface                        63M rough surface 

Figure 33: Δ vs. λ for the other four generated rough surfaces 
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G: Plots of relationship between B and λ for the other four measured rough 

surfaces 

 

 2L rough surface                        4L rough surface 

  

63G rough surface                         63M rough surface 

   Figure 34: B vs. λ for the other four generated rough surfaces 

 



80 
 

H: Schematical illustration of fractal dimension of generated rough surfaces 

calculated by using different four methods  

For 2L rough surface: 

 

(a)                                     (b) 

  

(c)                                      (d) 

 

 

 

 

 

 



81 
 

For 4L rough surface: 

 

(a)                                     (b) 

  

(c)                                      (d) 
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For 8L rough surface: 

 

(a)                                     (b) 

 

(c)                                      (d) 

  



83 
 

For 63G rough surface: 

 

(a)                                     (b) 

 

(c)                                      (d) 
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For 63M roughs surface: 

 

(a)                                      (b) 

 

(c)                                      (d) 
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For 63P rough surface: 

 

(a)                                      (b) 

 

(c)                                      (d) 

Figure 35: D values calculated by four different methods for the other five measured 

rough surfaces 

(a) Fourier analysis; (b) Roughness-length method; (c) Box-counting method; 

(d) Power spectrum method 

  The lines are fitted to the points calculated from the generated surfaces 

 

 

 


