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ABSTRACT 

 

A method for the application of vorticity based potential-flow solvers to 

unstructured surface meshes has been created. This method is designed to maintain the 

advantages of the vorticity based solvers while removing the limitations of geometrical 

inputs associated with the philosophical approach. A discussion on the necessity and 

advantages of this approach has been presented. A modification to the evaluation of skin-

friction coefficients using surface vorticity has also been developed. An unstructured 

wake-strand model has been developed to allow handling of wakes emanating from 

unstructured meshes. An attempt has been made to extend potential-flow solvers to the 

current industry surface meshing and numerical solver standards.   

This automated pipeline is considered to be robust enough to allow integration 

with optimizers unrestricted in their geometrical design spaces. A test-suite of basic 

shapes and bodies was tested to evaluate the fidelity of the new approach. An advanced 

test-suite was developed to stress-test the solver as well as to test out the geometry 

handling pipeline required to handle these test cases. It was determined that the solver is 

able to provide high fidelity results for a wide variety of test cases and is able to: work 

with conformal and non-conformal geometry interfaces, resolve surface intersections, 

work with both structured and unstructured meshes, work with both thick and thin bodies 

and work with manifold and non-manifold surface interfaces. 
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NOMENCLATURE 
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𝑦   Y-coordinate of spatial point P 

𝑧    Z-coordinate of spatial point P 
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terminal vertex of the filament to the spatial point P  
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𝑦  Downwash evaluation position between any two consecutive integrated 
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𝐶   Skin friction coefficient for a given mesh facet 
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𝐿    Length of edge between vertices 1 and 2 for a given mesh facet  
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1. INTRODUCTION 

 

Current industry trends point toward an increasing use of towards optimization 

based design pipelines for aerospace and marine applications 
1-4

. Numerous optimization 

schemes have been developed based on varying underlying philosophies 
2-3

. However, for 

complex systems, one aspect is common to all of these optimizers: the need for hundreds 

or thousands of design evaluations to arrive at a truly global optimum design 
1-2

. Since 

each of these designs must be tested for aerodynamic or fluid-dynamic performance, a 

balance between minimizing the computation time versus maintaining fidelity of solution 

and validity of the physics must be made. This balancing represents a major limitation in 

the comprehensive use of Multi-Disciplinary-Optimization (MDO) design pipelines 
2
.   

There is a certain subset of MDO applications in aerospace and marine designs 

where the determination of aerodynamic loads is the precursor for the quantified 

performance index in the optimization process 
2
. For these applications, traditionally four 

major methodologies have been used. These include empirical formulations, potential-

flow methods, solution of Navier-Stokes or Euler equations in volumetric meshes (hereby 

generally referred to in this document as Computational-Fluid-Dynamics or CFD) and 

experiments in the field (wind- and water-tunnels as well as flight testing). Each of these 

four approaches brings with it a unique requirement for user inputs, computation times, 



2 

 

fidelity of solution, possibility for integration into MDO, range of applicable physics and 

overall cost of the process. Table-1.1 summarizes these parameters in a general sense for 

each of the four approaches. Clearly each approach balances out advantages in certain 

niche areas with disadvantages in other sectors.    

Table 1.1: Overview of Aerodynamic Evaluation Schemes 

  

Empirical 

equations 

 

Potential 

methods 

 

Navier-Stokes 

solvers 

 

Experimental 

methods 

Complexity of input 

data/geometry 

Low Intermediate Heavy Heavy 

Run time for single 

design 

Low Intermediate Intermediate/ 

Heavy 

Heavy 

Solution fidelity Intermediate Intermediate Good Good 

Automation for 

optimization 

Very high high Low Very low 

Range of physics Limited Limited High High 

Cost of process Very low Low High Very high 

 

Experimental methods usually offer the closest approximation to actual flight test 

data but at exceptional cost per design case. In addition, they are highly susceptible to 

environmental errors and anomalies (i.e. noise) in the results if any attempt is made to 

reduce the costs or the computational time for the test, all of which are the highest 

compared with the other three approaches. As such, experimental schemes are restricted 
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to studies of designs at advanced levels within the design cycle and typically follow CFD 

testing and validations of the design expectations.  

CFD approaches are rapidly making inroads into the MDO environment and have 

had visible success in demonstrating the use of wide range of physics during 

optimizations 
2
. However, the approach is currently restricted to simpler optimization 

cases for numerous reasons 
2
. One reason is the hardware associated with CFD 

approaches. For aerospace applications in the external-aerodynamics categories as well as 

certain marine applications, the necessary hardware to do thousands of CFD runs is very 

prohibitive to most users during the early design phases. However, this limitation is 

expected to be temporary. Current trends suggest that this limitation is rapidly being 

eroded as hardware expansion costs reduce industry-wide and shared industry pooling of 

large computing facilities becomes common practice 
2
. Even so, for the present time, it is 

expensive to use CFD in MDO pipelines.  

The primary limitation, however, is more philosophical in nature and relates to 

how CFD approaches are applied over a user specified geometrical surface. Since CFD 

approaches are volumetric in nature, i.e. they require volume meshes around the surface 

of interest to solve for the flow-field, the weak link in the solution fidelity chain becomes 

the quality of mesh and the automation of mesh generation. Current volumetric meshers 

are more robust today than at any other time as far as single run cases are concerned. 

However, they still require significant user inputs and visual verifications before being 

passed to the solver. For a large number of external aerodynamics problems, solver 

stability is directly related to the overall volume mesh quality while the solution fidelity 
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is dependent on the refinement of volume meshes in areas of interest around the input 

geometry. Slight variations in the mesh cell density or quality can cause solver 

divergence during iterations (non-physical “trip-ups”) or cause fluctuations in the 

evaluated loads (from pressure field summations) that can render useless an automated 

MDO process. Furthermore, the requirement to visually identify regions of interest for 

further refinement prior to solver runs makes it virtually impossible to automate the 

process under the direction of an optimizer.  

Generally, the meshing is split into two phases in CFD approaches: surface and 

volume. The input geometry must be cleaned up in order to create a sufficiently refined 

surface mesh before the volume meshing can begin. This creates an additional layer of 

possible errors and user inputs and the final result is highly sensitive to the user settings 

during the surface meshing phase.  

Finally, there is the issue of interfacing with the optimizer. Because of the dozens 

of independent meshing parameters that must be varied for changing input geometries, 

automation of geometry variation is a major problem in terms of optimizer control 
2-3

. So 

far, only simple cases with modest design spaces have been shown to be optimized using 

CFD. This is expected to change in the coming years as more focus is applied on making 

the meshing independent of user inputs.  

Potential flow methods have their own unique set of advantages and limitations 

with respect to an MDO environment 
5-7

. Depending on the type of solver chosen for 

these approaches, the choice of user inputs, flexibility, stability and output data varies. 
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However, the biggest limitation of potential flow solvers is the restricted range of physics 

in which they operate 
2, 5-7

. This is typically the purely subsonic flow regimes (Mach < 

0.8) or the truly supersonic flow regimes (Mach > 1.5) and even then only for inviscid 

flow-fields. By comparison, both CFD and experimental methods can smoothly transition 

between subsonic, supersonic and hypersonic flows with both viscous and non-viscous 

environments.  

However, for external aerodynamics MDO requirements for cruise conditions, 

this range of physics is usually very usable given the other major advantages offered by 

potential flow solvers. Typical applications in this genre include subsonic aircraft and 

missiles designed for long-range cruise flights, slow-speed wind-energy turbines, sail-

boat designs, steady and unsteady flow behind propellers, aerostats and marine 

propulsion. Once the initial assumption is made to use potential-flow solvers inside their 

range of applicability, the other inherent advantages make them highly competitive and 

popular for MDO.          

One of the major advantages of potential-flow solvers over CFD solvers is the 

requirement of only surface meshes in order to capture the entire volumetric effect caused 

by the input geometry to the exposed flow-field. The elimination of volume meshing 

removes many of the aforementioned limitations regarding volume meshers. 

Furthermore, surface meshes result in substantial savings in computation time during the 

design evaluations (volume meshing for external aero cases can consume 20-40% of the 

overall solver time in CFD 
3
; this estimate applicable to most tetrahedral/polyhedral 

meshers, i.e. Delaunay meshers) as well as reducing the overall hardware requirements 
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(the majority of the memory requirements are associated with volume mesh generation 

and saving of the generated mesh on the local machines).     

Another advantage inherent to potential-flow solvers is the solver stability 
2
. Only 

geometrical surfaces with self-intersections, non-manifold interfaces and non-conformal 

patches on the surface mesh are known to be problem areas. Other areas of instability can 

include the inappropriate use of automated wake relaxations but this is generally minor.  

Finally, the solution convergence times associated with potential-flow solvers is 

known to be very efficient for most applications even when using surface meshes with 

large variations in mesh densities 
2, 5

. This reduces overall computation times for an 

MDO application substantially compared with a similar CFD approach.  

Potential-flow solvers are not without their inherent limitations beyond the 

restricted range of physics, however 
5-7

. As these solvers have become more advanced 

over the years, they have started to emulate the same limitations that afflict CFD solvers. 

The primary cause behind this is the use of pressure field summations to evaluate loads 

over the geometry. The need for this is driven by the attempts to push potential-flow 

solvers as alternates to CFD solvers for aerospace applications by various authors and 

organizations 
5-11

. For example, NASA’s PMARC, VSAERO 
8-10

 and PANAIR 
11-12

 

potential flow solvers attempt to include schemes to evaluate viscous boundary layers 
13

 

and flow separation 
8-10

 using the pressure fields evaluated by the underlying potential-

flow solvers. This has been a semi-successful attempt to expand the physics of potential-

flow solvers and move the methodology closer to CFD. However, doing so has meant 
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that these solvers have lost several of the aforementioned advantages associated with 

potential-flow solvers whilst also not attaining the true fidelity of the CFD solvers with 

regard to viscous flow regimes and flow separation effects.     

This argument can be elaborated on using a philosophical overview of the 

approaches taken by the three NASA potential-flow solvers. All three of these codes 

attempt to add a pseudo-coupled boundary layer model to the potential-flow results by 

adjusting the geometrical surface to account for the thickness of the local boundary layer 

8-13
. This boundary layer thickness is evaluated locally using the knowledge of the local 

pressure and velocity fields as well as the distance from the nearest leading edge marked 

by the pressure field results. And while they do gather some success 
8-11

 in establishing 

the boundary layer flow, the limitations incurred on the solver outweigh any substantive 

gains from such an approach.  

The primary limitation incurred is the requirement for these solvers to use a 

pressure-solver 
8-11

 rather than a vorticity-solver (elaborated later in this document). A 

pressure-solver necessitates the use of quadrilateral source distributions coupled with 

trailing edge doublet distributions 
8-10

. As such, the solver becomes highly sensitive to the 

fidelity of the surface mesh on which it is applied (similar to CFD solvers and unlike 

vorticity-solvers). The pressure-solver cannot tolerate local surface “bumps” and “dents” 

on the mesh without lowering fidelity of the evaluated pressure field and hence the 

aerodynamic loads 
9-10

. Furthermore the solver results become highly dependent on the 

accurate capture of the pressure field. This means that for simple airfoil cases, for 

example, highly refined surface meshes must be created in the high curvature regions in 
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order to capture the pressure gradients 
11

. This is again similar to the CFD solvers and 

causes similar cascading effects downstream into the optimization pipeline including 

higher computation times, solver sensitivity to surface meshes and reduced flexibility for 

the optimizer to dramatically vary the geometry within the design space 
2
.  

If further flow modifications are needed such as viscous boundary-layers 
13

, 

wherein the potential solution must be iterated until stability with the boundary layer is 

established, the computation times go up even higher 
9-11, 13

. Another attempt in recent 

times has been to incorporate separation flow effects within the potential-flow solutions 

11
. The general idea behind this is to use the pressure-field evaluated from the potential 

solver to determine flow separation points on the geometry using empirical formulations 

and use them to move the trailing edge locations up or down on the geometry. This is 

computationally very intensive and has been shown to be effective only under very 

controlled conditions 
10-11

. As such, any solution results for known flow separation cases 

are purely the domain of CFD solvers that can evaluate these regimes more efficiently 

and with relatively higher solution fidelity. 

Pressure-solvers and Vorticity-solvers use different panel types to suit their 

underlying theme. Pressure-solvers, as the name alludes, use the determination of the 

pressure field around given geometry to determine loads. As such, they use combination 

of source and sink panels coupled with doublet panels for the trailing edge. Source and 

sink distribution panels are mathematically accurate in their evaluation of the local 

pressures and velocities and hence suit pressure-solvers. 
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Vorticity-solvers take an entirely different approach altogether. They depend on 

the evaluation of the circulation around a given geometry and use the Kutta-Joukowski 

formulation applied to each panel for evaluation of the induced loads 
14

. As such, these 

solvers typically use vortex rings or doublet distributions over the surface facets 
15

. These 

types of potential flow panels are not suited for evaluation of the pressure field accurately 

except in far-field regions relative to the panel and on panel control points where the 

external physics conditions are satisfied 
14

.       

With these underlying philosophical differences, the requirement for surface 

meshes and their applicability to an MDO environment vary substantially between the 

two solvers 
2, 14

. Pressure-solvers are able to work with unstructured meshes as well as 

structured ones, mainly because each surface facet is evaluated for a certain source or 

sink strength regardless of the orientation of its edges relative to the flow direction. 

However, vorticity-solvers have thus far been used only with structured meshes since the 

local application of the Kutta-Joukowski formulation for loads at the facet level requires 

segregation of facet edges into two categories: bound or trailing 
2, 14

. This forces the mesh 

to rely on pre-established U-V mapping and restricts the use of advanced geometries with 

vorticity solvers 
2
.  

To balance this limitation, vorticity-solvers are known to be substantially more 

robust and stable compared to pressure-solvers 
14

. They allow for the user of non-

manifold and non-conformal mesh surfaces (which the pressure-solvers cannot handle) 

and are less sensitive to surface perturbations. They also allow use of coarser meshes on 
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the geometry 
14

. This reduces the computation time substantially and affords greater 

stability to the solver, making it usable in an optimization environment 
2
.  

It is therefore apparent that both solvers have their inherent advantages and 

disadvantages. However, it is also apparent that in order to be truly applicable for a wide 

range of MDO applications, niche advantages from both solvers is needed and must be 

combined to harness the true potential of potential-flow solvers. This forms the basis of 

the current effort.  

      

 

 

 

 



 
 

 

 

2. MOTIVATION 

 

A summary of the main objectives of the new approach can be written thus:  

A) Retain advantages of the potential-flow vorticity-solvers: 

 Fidelity of solution: 

Aerodynamic loads (lift, induced drag and viscous drag) are used as a 

measure of the fidelity of the solution. The range of free-stream 

conditions is for Mach Numbers below 0.8 using the compressibility 

correction factor. It will be shown later that for certain geometries the 

range of free-stream Mach number can be extended to 0.9.  

 Speed of solution: 

High solver speed is paramount for use of any aerodynamic prediction 

methodology within an MDO environment. It is possible to use the 

overall CPU time till solver convergence as a measure of the solver 

speed. This document will refer to solver speed in the context of this 

parameter throughout.  

 Flexibility: 

Ability to evaluate aerodynamic loads over surfaces with high 

curvature, proximity, intersections, non-conformity of patch interfaces 



14 

 

and abrupt sizing gradients is paramount to creating a high fidelity 

MDO environment. Although difficult to quantify in and of itself, the 

measure of the speed of the solver and the fidelity of predicted loads 

will be used as a measure of the robustness against such “high stress” 

geometrical surfaces 

 Stability of solver: 

The solver must always attempt to prevent divergence during iterations 

even when applied over difficult-to-solve geometrical surfaces. 

Quantification of solver stability must be developed and used to 

improve automated prognosis methods to prevent solver divergence.  

 

B) Establish ability to work with unstructured surface meshes  

 Allow use of triangular facets of arbitrary orientation relative to flow 

 Bring potential-flow surface meshing to current industry standards: 

This can be split into several sub-goals: 

a) Introduce size based meshing to potential flow solvers 

b) Quantify surface mesh quality and automate its control 

c) Maintaining mesh intra-patch and inter-patch 

conformity or show lack of sensitivity of solver to it 

d) Introduce surface meshing data-packet structures 

similar to CAD/CAE industry standards 
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 Remove requirement for forced U-V mappings on underlying 

geometry, thereby improving  

 Open wide-spectrum geometries to potential-flow solvers. This 

remains a qualitative goal which can be demonstrated via a diverse 

testing suite for the current solver.  

Each of these goals will be addressed in the current document and a summary of 

the results will address the degree to which they have been achieved. 



 
 

 

 

3. THE NEED FOR UNSTRUCTURED MESHES 

 

 A structured surface mesh is typically defined as one where a given surface is 

mapped along two numerical axes (“i-j” or “u-v”) and each facet is bound by four 

vertices extracted from the rectangular structure of the underlying map (known as the U-

V map). In essence, this means that regardless of the physical convolution or warping of 

the physical surface, the underlying U-V mapping is rectangular with uniformly spaced 

increments. Each vertex of this mesh has an associated pair of numerical coordinates so 

that a vertex P is stored in the mesh as:  

  

(3.1) 

And a surface facet is created out of a set of four corner vertices as:  

 

(3.2) 

As such, any structured surface mesh facet is essentially quadrilateral in nature. 

As a result, facets have to be “forced” to assume triangular shapes to meet geometrical 

demands. This is accomplished by “edge-collapsing” wherein two of the facets on a given 

𝐹𝑥   = [𝑋(𝑖 𝑗) 𝑋(𝑖 + 1 𝑗)  𝑋(𝑖 + 1 𝑗 + 1)  𝑋(𝑖 𝑗 + 1)]  

𝐹𝑦   = [𝑌(𝑖 𝑗) 𝑌(𝑖 + 1 𝑗)  Y(𝑖 + 1 𝑗 + 1)  𝑌(𝑖 𝑗 + 1)]  

𝐹𝑧   = [𝑍(𝑖 𝑗) 𝑍(𝑖 + 1 𝑗)  Z(𝑖 + 1 𝑗 + 1)  𝑍(𝑖 𝑗 + 1)]  

𝑥 = 𝑋(𝑖 𝑗) 
𝑦 = 𝑌(𝑖 𝑗) 
𝑧 = 𝑍(𝑖 𝑗) 
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edge of the facet are merged on top of each other to reduce the quadrilateral facet to a 

triangle in physical space. In numerical space such triangles still retain the underlying 

quadrilateral U-V map.  

The advantages and disadvantages of such approaches to mesh generation are 

obvious. The forced quadrilateral U-V mappings of the underlying facets ensure that the 

memory requirement for a given forced structured triangle is always more than an 

equivalent unstructured triangle facet. In addition, forced U-V mappings ensure that 

regions of high curvature or concave warping are always populated with more facets than 

actually required from a geometrical standpoint. As a result, a structured mesh patch 

forced on such geometry always results in higher mesh facets. Further, the quality of such 

facets is typically very poor (with downstream in the solver where oscillations are 

induced).   

Additionally, the typical quadrilateral facet has to be sanitized to establish its 

“effective” surface normal direction given its higher level nature with regard to the 

baseline triangle. With triangular facets, this is not required given the deterministic nature 

of the triangle geometry in three-dimensional space. However, since the quadrilateral 

facet is a combination of a pair of triangles (which can be further varied depending on 

choice of diagonal used), there is no fixed surface normal. This problem is typically 

eliminated by evaluating the surface normal as a cross-product unit vector result of the 

two diagonal vectors of the facet. Understandably, this reduces the geometry capture 

fidelity of the facet. If the quadrilateral facet were to be split into two facets to improve 

this fidelity, the number of resultant mesh facets increases.  
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Figure-3.1 illustrates the application of a structured mesh patch on a high 

curvature surface. The long needle-shaped facets near the nose of the geometry are 

visible. Such facets are typically of very poor quality and can significantly increase the 

mesh facet count.  

 

Figure 3.1: A typical structured mesh over a high curvature surface  

A general rule of thumb obtained from the current effort shows that the 

computation time for the solution convergence is directly proportional to the square of 

the mesh facet count (Figure-3.2).  

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒 ∝  𝑓𝑎𝑐𝑒𝑡   
(3.3) 
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Figure 3.2: Solver run time data versus mesh size for various geometries. All 

geometries run for 10 iterations only 

Further, the regions of lower curvature are populated with much higher number of 

facets than needed because of the need to satisfy the underlying U-V mapping with 

appropriate physical locations. Such adherence to the U-V mapping means that the mesh 

is unable to recognize and react to high curvature regions effectively in physical space. 

This restricts the effective application of these meshes to simplified regions with long 

gradual curvature regions.     

Despite the aforementioned shortcomings of the structured surface meshes, with 

potential-flow solvers (and especially the vorticity-solvers) they offer certain unique 

advantages. Arguably, vorticity-solvers in their prior form have been made possible 

mainly because of the inherent advantages of the structured mesh. Further, mesh 
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generation with structured surface mesher is much simpler from a development 

standpoint than a comparative unstructured surface mesher.   

The vorticity-solvers require a facet edge pool to be split into bound and trailing 

vortices during the application of the Kutta-Joukowski formulation for induced loads at 

the facet level. This means that facets of arbitrary orientation (as obtained from 

unstructured meshes) cannot be applied. Traditionally, the U-V mapping of the structured 

meshes has been used in all legacy vorticity-solvers to establish the bound and trailing 

vortices. The bound vortices are simply marked as those facet edges aligned along a 

certain numerical axis (U or V) and the other edges are marked as trailing. Note that such 

marking usually only corresponds to the correct flow field if the physical space warping 

and curvature is not significantly different from the numerical axes alignment. Therefore, 

such solvers are only applicable on geometrical surfaces that meet this criterion which is 

a major limitation of the vorticity-solvers.  

Further, the induced load formulation requires the knowledge of the vorticity in 

the next bound vortex downstream of a given facet. This information is also evaluated 

from the U-V mapping information. This reduces the computational burden on the solver 

and allows the evaluation of loads in a simple and straightforward manner.    

Having established the merits and demerits of the structured surface meshes, a 

similar analysis can be done for the unstructured surface meshes. The primary 

philosophical difference between the two meshes is the lack of an underlying U-V map 

on the unstructured meshes and that the unstructured meshes are first and foremost 
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triangulated (instead of quadrilateral in structured meshes). Meshes of this type are not 

bound by any numerical forces in the distribution of surface vertices. Each surface mesh 

generated using this approach is essentially a numerical pool of vertices, edges and faces 

that are marked using connectivity mappings evaluated at the time of mesh generation. A 

given vertex may be shared by numerous edges depending on the curvature of the region. 

A given edge may be shared by two faces (for a manifold surface) or more than two faces 

(for a non-manifold surface) as shown in Figure 3.3.  

 

Figure 3.3: Definition of manifold and non-manifold mesh surfaces (selected facets 

are shown in pink; note the number of faces sharing an edge)  

Information storage for the mesh can vary. Industry practitioners use differing 

mesh storage concepts. For example, a facet can be fully defined by knowing its three 

vertices in three-dimensional space. Such a mesh representation can be written as F→V 

where F=Facets and V=Vertices. Similarly, a facet can also be defined entirely from the 

knowledge of its three edges (which in turn are marked from the vertex mapping) and 

such a mesh representation can be written as F→E→V. For the current solver the mesh 

information storage is F→V.  
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Data packets store each facet’s information including vertices, edges, topological 

connectivity and external physics as primary data while derivative data such as facet area, 

quality metrics, surface normal vector, centroid etc. are stored or evaluated as necessary.  

  Unstructured surface meshes bypass some of the aforementioned limitations of 

the structured surface meshes. Geometry capture with unstructured meshes is more 

efficient and can be designed to significantly reduce overall mesh count and improve the 

quality of the facets (i.e. reduce the presence of large number of needle shaped facets). 

They can capture regions of concave and convex warping with much more even 

distribution of facets and facet edge-sizes. They can also be used to enact local surface 

refinements more effectively in physical space rather than having to do so in the 

underlying U-V space.  

Because each facet on such a mesh is a self-contained entity, bad quality facets 

can be deleted, improved or refined to meet mesh requirements. Refinement can reduce 

the overall solver convergence oscillations (caused by the poor-quality cells; discussed 

later) and thereby reduce the computation time to convergence. Unstructured meshes also 

allow superior control on the mesh facet sizing as well as the sizing gradients. Further, 

each facet can be marked with its local external physics and boundary information. This 

allows much simplified creation of boundary zones (such as velocity inlets and trailing 

edges), but also assists in the automated detection of trailing edges on a surface.  

The limitations of the unstructured surface meshes pertain mainly to their 

application with the potential-flow vorticity-solvers. And while the local evaluation of the 



23 

 

vorticity can be made similar to the pressure-solvers using the external and boundary 

physics on the surface mesh, the induced loads cannot be evaluated without marking 

appropriate bound and trailing vortices as discussed for structured meshes. This has been 

the main limitation in the use of unstructured meshes with vorticity solvers thus far and is 

the primary motivation for the development of Method of Integrated circulation as will be 

discussed in the following Sections of this document. However, before moving to the 

discussion of the solver and evaluation of integrated loads, a case study has been 

presented to further illustrate the need for unstructured meshes.  

A simple geometry has been taken (a unit radius sphere with its center at the 

coordinate axes origin) and meshed using a structured and unstructured surface mesher 

developed for this effort. The two spheres have been refined to similar mesh 

requirements, i.e. the number of mesh vertices along any quadrant arc of the sphere must 

be equal to ten (this can be visually inspected from Figure 3.4). Note that the structured 

mesh is forced to convert its quadrilateral facets into triangular ones so that they can both 

be run through the current solver. Additionally, note that the forced U-V mapping on the 

structured mesh causes the existence of a large number of bad quality facets near the 

polar regions of the sphere (Figure-3.4) whereas the unstructured mesh easily bypasses 

this potential pitfall. As a result, the final mesh size between the two meshes is 

substantially different (Table 3.1).  

The two meshes were run through the solver under identical conditions and the 

results are shown in Table-3.1. Note that the aim here was to obtain a potential flow 

solution around the two spheres. As a result, no wake definitions were necessary and the 
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expected coefficient of lift for any angle-of-attack was expected to be zero. The flow 

velocity for the current case study was kept at 1.0 m/sec.  

 

Figure 3.4: Case study sphere in structured and unstructured environments   

The unstructured surface mesh is seen to take about ~88% less time to reach much 

superior convergence limits in fewer iterations and with higher solution fidelity. The 

structured mesh reaches the limit set on the solver iterations and still does not meet the 

required convergence criteria. This is caused by the solver oscillations resulting from 

large number of poor quality facets in its polar regions. The resulting mesh size created 

out of a similar refinement criterion is also favorable for the unstructured mesh (648 

facets) compared with the structured mesh (1,404 facets).  

The resulting trends of this case study are applicable to a wide range of test cases 

and geometrical variations and help establish the necessity and advantage of the 

unstructured meshes for the vorticity-solvers. The next Sections of this document discuss 

the development of the Method of Integrated Circulation to allow evaluation of 

circulation based loads on such meshes.    
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Table 3.1 Case study results 

  

Structured 

 

 

Unstructured 

 

Reduction 

Number of facets 1404 648 53.85 % 

Solver run time (Seconds) 148.88 17.59 88.19 % 

CL (expected = 0.0) 0.000025 0.000009 64.00 % 

Convergence (expected = 1E-3) 9E-3 7E-4 92.22 % 

Solver iterations (max = 20) 20 7 65.00 % 
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4. SOLVER METHODOLOGY 

 

This Section details the vorticity solver used for the current effort along with the 

modified approaches for the evaluation of the integrated aerodynamic loads. The Sections 

are split to include discussions on the following:  

a) The generalized spatial velocity inductions by segmented elements of the 

vortex ring mapped to each facet 

b) The philosophy of the solver from a numerical application standpoint 

c) Development of the relaxed wake-strand model for unstructured meshes 

d) The method of integrated circulation for evaluation of the induced loads on 

the unstructured mesh as well as the modifications to skin-friction drag 

models to allow their application into a vorticity-solver 

 

4.1 SPATIAL VELOCITY INDUCTIONS 

At its most fundamental level, the solver developed for the current effort reduces 

to the application of a vortex ring on a triangulated facet. Each edge of the facet therefore 

becomes a segmented part of the continuous vortex ring on that facet. Since each of these 

edges remains a finite, line segment in three-dimensional space, the induced velocity of 
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each segment at any other point in space is easily determined from the geometry of the 

plane described by the two end vertices of the line and the point of induction in space. 

Once this induction has been evaluated for each edge of the facet, they are summed up 

and treated as the induced velocity of the facet at the point of interest in space. 

Additionally, the direction of vortex ring is aligned to match the winding of the 

facet as shown in Figure-4.1.1. Because each valid (non-degenerate) facet on the surface 

mesh is a closed loop with a known winding, the vortex rings are easily mapped on their 

surface. This is also in accordance with Helmholtz laws which require every vortex ring 

to be closed unless stretched to infinity on both ends of a segment 
14-15

.   

 

Figure 4.1.1: The mapped vortex ring for a facet on the surface mesh 

The derivation for the velocity induced by a linear segment of a facet can be 

mathematically derived in terms of the coordinates of the two end vertices and the point 
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of interest. Consider a point P in space where a segment of a vortex ring is inducing a 

velocity as shown in Figure-4.1.2.  

 

Figure 4.1.2: Velocity induced at a point by a segment of a facet-bound vortex ring 

The velocity induced at P by an infinitely small segment of the ring edge is 

known from the application of the Biot-Savart law 
14

 as:  

𝑑  = 
 

4 

𝑑𝑙   

  
 

(4.1.1) 

Considering the geometry shown in Figure-4.2, Equation-4.1.1 can be modified:  

𝑑  = 
 

4 

𝑑𝑙  𝑖𝑛( )

  
 

(4.1.2) 

 Now, given that,  

𝑕 =  𝑐𝑜 ( ) 
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𝑙 = 𝑕𝑡𝑎𝑛( ) 

𝑑𝑙 = 𝑕 
𝑑 

(   ( )) 
 

(4.1.3) 

Substituting Equation-4.1.3 into Equation 4.1.2, we get:  

𝑑  = 
 

4 
(   ( ))  

𝑑 

(   ( )) 
 𝑖𝑛( )

𝑕 
= 

 

4 

 𝑖𝑛( )𝑑 

𝑕
  

(4.1.6) 

 Equation-4.1.6 can be integrated along the entire length of the segment so that the 

formulation for the net induced velocity by one segment of the vortex ring is: 

  = ∫ 𝑑  

  

  

=
 

4 𝑕
∫  𝑖𝑛( )𝑑 
  

  

  

  = 
 

4 𝑕
(   (  )     (  )) 

(4.1.7) 

In Equation-4.1.7, all variables on the RHS are easily evaluated from vector 

formulations of the planar geometry defined by the three points in space (two vertices and 

one point of interest). Further, if the point of interest were to be so located that the radius 

becomes zero (all three points are collinear) then the solver inputs a zero velocity 

induction even though from Equation-4.1.7 it is obvious that we would have a 

mathematical singularity. Note that Equation-4.1.7 also reduces to the two-dimensional 

vortex Equation for the limiting case of infinitely long vortex (as a result of this, the two 

angles in Equation-4.1.7 becomes 0° and 180° respectively). Note also that the velocity 

magnitude evaluated by equation-4.1.7 is in a plane perpendicular to that defined by the 
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three points in space. However, knowing the surface normal vector for this plane from the 

three points, the velocity magnitude is broken down into three vector components along 

the global mesh coordinate axes. 

Equation-4.1.7 is the induced velocity by one segment of a facet. Therefore, to 

evaluate the velocity induced by the entire ring, we evaluate Equation-4.1.8 over all the 

relevant edges of the ring to get the net velocity induction as: 

 =  ∑   

      

   

 

(4.1.8) 

A discussion of the derivation for the Biot-Savart law in the form used in 

Equation-4.1.1 is given in appendix-A. 

 

4.2 SOLVER PHILOSOPHY  

Considering Equation-4.1.7, it is clear that the only unknown variable in the 

Equation is the vorticity strength. The LHS of the Equation is a variable that can be 

controlled at certain points on the geometry using the boundary physics conditions. The 

remaining terms in the RHS minus the vorticity strength are geometrically dependent and 

therefore determined from processing the surface mesh. If the vorticity strength could be 

determined using known values of the velocity at the control points, then the flow-field 

can be determined at all points in space around the geometry, allowing for evaluation of 
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the loads. This can be further quantified by considering Equation-4.1.7 and Equation-

4.1.8 as:  

  =   ∑ [
1

4 𝑕 
(   (   )     (   ))]

      

   

=        

(4.2.1) 

The coefficient      is the geometrical influence coefficient for the velocity 

induction at point P by the facet “j” of the surface mesh. If the point P were a control 

point, then the LHS is a boundary defined velocity term. Conceptually expanding 

Equation-4.2.1 for a mesh with N facets, the overview of the fundamental solver 

philosophy is: 

  

(4.2.2) 

Where the matrix B is the velocity requirements on the control points (and hence 

known from the external physics requirements) and the matrix A is the N×N matrix of 

geometrical influence coefficients for each of the control points. The matrix 𝛾 is 

therefore the N unknown variables that must be solved for the flow-field to be fully 

defined around the geometry. The system defined in Equation-4.2.2 is essentially a 

system of N Equations and N unknowns that can be solved explicitly.  

[

𝐴   ⋯ 𝐴   
⋮ ⋱ ⋮

𝐴   ⋯ 𝐴   

] [
  
…
  

] = [
𝐵 
…
𝐵 

] 
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The control points selected for triangular facets lie on the facet area-centroid and 

are unique in space (they have no edges from any facet on the mesh that crossed through 

it to introduce singularity) for a manifold, conformal surface mesh.   

The N×N matrix formulation in Equation-4.2.2 introduces certain problems as the 

size of the mesh increases. Since these matrices must be inverted during the solver run, 

the issue of numerical errors cascading up the inversion loop is severe and can lead to 

completely non-physical and erroneous results for the vorticity 
2
. Consequently, the 

matrix must either be evaluated in patches numerically during the inversion phase or the 

solver must be handed small patches of the mesh individually 
16

. The current effort 

handles this at the physical level and splits the mesh into partitions that are fed to the 

solver individually, freezing the remaining Sections of the mesh (their vorticity values) at 

the previous iteration.  

This approach creates an iterative solver for the overall surface vorticity. Given 

the nature of the geometry, an exact solution can never be arrived at practically and the 

solver iterations must be terminated once the surface vorticity values have “converged” to 

a reasonable level of numerical accuracy. The convergence criterion used in the current 

effort is based on the stability of the surface vorticity solution and the stability of the 

relaxed wake strands in the Trefftz-plane downstream of the geometry.  

The vorticity convergence is evaluated as an area-averaged value of the facet 

vorticity strengths on the entire surface mesh. The wake-instability is quantified as the 
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RMS change of the two-dimensional strand positions within the Trefftz plane (Equation-

4.2.3).  

𝑐𝑜𝑛𝑣𝑒 𝑔𝑒𝑛𝑐𝑒    = ∑
[(𝑦 

 + 𝑧 
 )  (𝑦    

 + 𝑧    
 )]

        

        

   

 

(4.2.3) 

The wake-instability criterion is secondary in nature and is under user toggle 

control. This is because terminating wake relaxation at a lower convergence value can 

lead to a wake that is not force-free and therefore can adversely affect the solution. Only 

in the case of simple geometries can such relaxation be frozen without affecting the 

overall result. Wake instability as a convergence criterion comes into play only as a 

means to reduce overall computation time and is entirely case dependent.  

A further note regarding compressibility can be made at this point. The 

application of the Biot-Savart law for velocity induction, although formulated for 

incompressible flows, can be modified with the addition of the compressibility correction 

factor 
24

 and is used in the current approach to simulate higher Mach number flows. The 

importance of such corrections is made clear in Section-8 of this document.  

 

4.3 VORTICITY WAKES: THE RELAXED STRAND MODEL 

 Unstructured meshes drive the wake geometry to be unstructured since the trailing 

edges are not mapped numerically. As a result, the wake sheet concept 
2, 14

 used in the 
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standard relaxed wake models is not applicable with the current approach. This problem 

has been resolved by the evolutionary extension of the relaxed wake sheet into the 

relaxed wake strand approach developed for this effort.  

 The general principle for this approach is based around the conservation of 

vorticity 
14

 in the wake (in accordance with Helmholtz Laws of vorticity) for a strand 

emanating from “nodes” rather than edges on the geometry. This is illustrated in Figure-

4.3.1. The starting point for this model is based on user-marked trailing edges on the 

geometry (either automatically or manually; see Section-7 on boundary conditions and 

external physics). Once the trailing edges are marked, the solver determines the vertex 

pool corresponding to these edges from the global vertex map. These vertices become the 

starting point or nodes, for the individual wake strands. Each node is then numerically 

propagated downstream using the induction effects of the overall facet-bound vortex 

rings, the free-stream velocity and the wake-strands from the previous iteration 

(excluding the strand being updated).   

 The evaluation of the strength of the vorticity strand being propagated into the 

wake requires the knowledge of contributing “source” and “sink” edges for each node. 

These are obtained from the global vertex and edge connectivity maps and are illustrated 

visually in Figure-4.3.1. Edges of any facet that share the wake node are automatically 

marked as contributors to the node (unless the edge is marked as a trailing edge, in which 

case no vorticity is allocated to it and hence cannot be a contributor; green-highlighted 

edges in Figure-4.3.1). A vorticity contributor can be a source or a sink depending on 
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whether the direction of “flow” of vorticity along the edge (determined from the facet 

winding) is towards or away from the wake node.  

Consider the two cases shown in Figure-4.3.1. Here the case on the left has three 

edges that share the wake node in addition to the two trailing edges also sharing it 

(marked green). The three edges sharing the wake are in turn shared by two facets each as 

part of the manifold surface. As a result, each edge is contributing the difference between 

the vorticity of its shared facets to the wake node. So this wake node has three 

contributing edges, two trailing edges and four contributing facets on the top surface. A 

similar situation may exist on the bottom surface as well.    

 

Figure 4.3.1: The wake-strand model at the trailing edge 

Similarly, consider the second case on the right in Figure-4.3.1. Here the wake 

node is being shared by two facets on the top surface, has two contributing edges and one 

trailing edge. The net vorticity of this wake then is the difference between the facet 

vorticity of the two facets sharing it.  
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Mathematically, the vorticity of the strand can be written as:  

 

(4.3.1) 

Because no new sources or sinks are added by the wake nodes, the net vorticity of 

the geometry remains conserved and the wake propagates only the required vorticity in 

the wake to satisfy the Kutta condition at the trailing edges.  

Vorticity strength reductions downstream of the trailing edge can only occur due 

to viscous effects. This is modeled using the application of the Lamb-Oseen 
17-19

 vortex 

model obtained from the exact solution of the Navier-Stokes equations for a laminar two-

dimensional vortex. This model assumes a two-dimensional vortex with circular 

symmetry in which the streamlines are circles around the axis and the vorticity is a 

function of the radial distance away from the filament axis and the pseudo-time 
17

.  The 

exact solution of the Navier-stokes equations 
17

 then takes the form:  

𝜛 =  
𝛾𝜌 
4 𝜇𝑡

𝑒
(
    

 

   
)
 

(4.3.2) 

Assuming the knowledge of the initial vorticity shed into the strand at the node on 

the trailing edge, Equation-4.3.2 is modified to give us the vorticity decay equation 
17

:  

𝛾 =  𝛾 (1   𝑒
(
    

 

   
)
) 

(4.3.3) 

𝛾         =  ∑ 𝛾 

        

   

 + ∑ 𝛾 
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In Equation-4.3.3, the time used corresponds to the pseudo-time and starts at zero 

at the trailing edge. It is marched alongside the strand until the termination of the wake 

downstream at the Trefftz location. The behavior of Equation-4.3.3 is shown in Figure-

4.3.2 for the vorticity decay rate versus wake pseudo-time for a fixed radial position and 

for the velocity induction by a single filament in the radial direction for a fixed pseudo-

time.  The advantage posed by the implementation of the Lamb-Oseen model is visible 

from the results in Figure-4.3.2. The vorticity decay rate results in the “desingularisation” 

of the rectilinear line vortex, in which the vorticity has a delta-function singularity. The 

velocity function also indicates the growth and an effective solid-rotation core along the 

length of the propagating wake-strand filament which simulates viscous behavior.     

 

Figure 4.3.2: Vorticity decay rates and velocity desingularisation using the Lamb-

Oseen vortex core model 
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The numerical propagation of the wake nodes from the trailing edges downstream 

is evaluated using this pseudo-time increment evaluated for each step of each strand. The 

unstructured nature of the strand-based wake allows for the evaluation of strand-specific 

pseudo-time marching. This allows for the local “compression” and “stretching” of 

individual strands so that all of them are propagated to the same Trefftz plane location 

downstream. The Trefftz plane location remains the only external user specification for 

the generation of the relaxed wake strands. Once the time Trefftz location is known and 

the starting node on the trailing edge is evaluated, the local steps from any node location 

at a given time is evaluated using Equation-4.3.4:  

 

(4.3.4) 

 

This allows for the time step for each propagation step to change depending on 

where the previous propagation has taken the node relative to the fixed Trefftz plane 

location and the local velocity conditions. The final propagation step is either truncated or 

projected to intersect with the Trefftz plane.  

The time increment is thus adaptive and responds to each strand node 

individually. This is an advantage over wake-sheet methods since strands starting from 

differing positions on the geometry can be made to propagate to the same location 

downstream. This is illustrated in Figure-4.3.3. 

𝑑𝑡 = *
𝑋          𝑋    

𝐿   
+  𝑛       
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Figure 4.3.3: Adaptive pseudo-time stepping in the relaxed strand theory 

 The wake strand model has several inherent advantages. The presence of adaptive 

time stepping allows for the elimination of all user inputs other than the downstream 

location of the Trefftz plane. User-specified time steps are no longer required. Further, 

the model allows the wake to conform to the geometry based on the local conditions. This 

is illustrated in Figure-4.3.4 for the case of the Rutan Varieze. The presence of the canard 

for this geometry creates relatively complex wake physics where certain strands follow 

their local physics and go above the wing whereas in other cases the go under the wing. 

Because each strand is a self-contained vortical entity, the wake-strand model allows 

such behavior to take place without problems.   
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Figure 4.3.4: Local physics driven wake strands 

Another advantage allows for by the strand model is the ability of the wake to be 

applied to bodies of revolution. This ability derives from the nodes based approach to 

vorticity shedding instead of the edge based models of prior wake-sheet models. A body 

of revolution has a trailing edge that rolls up on itself with the final node touching 

coincident in space with the first node. Since the wake-strand model makes no distinction 

as to the identity of vorticity contributing elements, the geometric relevance is 

unimportant. As a result, wake stability remains unaffected.  

This is particularly useful for geometries with podded engines as shown in Figure-

4.3.5 for the DLR-F6 geometry. Note the “pull” generated by the wing-bound vorticity on 

the engine wake as it propagates downstream. It is possible that future enhancements can 

be made in conjunction with volumetric sources to allow study of integrated aero-

propulsive effects on wing design.  
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Figure 4.3.5: Relaxed wake strands on bodies of revolution 

 

4.4 AERODYNAMIC LOADS  

Aerodynamic loads are evaluated as three components in the current approach:  

a) The induced lift from the Method of Integrated Circulation 

b) The induced drag from the Method of Integrated Circulation 

c) The skin-friction drag from the local vorticity distribution  

 

4.4.1 METHOD OF INTEGRATED CIRCULATION 

 At the core of this approach is the extension of the basic laws on which potential-

flow methods are based: linearization of aerodynamic effects 
14

. The extension is easily 
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illustrated in two dimensions as shown in Figure-4.4.1. The net circulation in the large 

loop encompassing the series of smaller loops with their own circulation is evaluated as:  

𝛤 =  𝛤 +  𝛤 +  𝛤  …   +  𝛤  

(4.4.1.1) 

 

Figure 4.4.1: Concept of integrated circulation 

This idea can be extended to three dimensions for a body of arbitrary surface 

tessellation. Assume that such a body has been solved for the local facet-bound vorticity 

using the vorticity solver described previously. Given that the tessellations are arbitrary, 

no application of the Kutta-Joukowski lift and induced drag equation can be made at the 

facets on this body, even though the vorticity values are evaluated correctly.  

However, given the potential-flow environment around this body, the net spatial 

effect of all the facets on the body at any point in space is equal to the integrated effect of 

the individual facets in isolation. If a two-dimensional closed loop were created around 

this body in a plane perpendicular to the direction of flow, we could evaluate the net 
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circulation around this loop by determining the velocity at all of the loop’s edges and 

then use the generalized equation for circulation 
14

 as:  

𝛤 = ∫               𝑑𝑙
 

 

 

 (4.4.1.2) 

If this were a two-dimensional body, the net induced lift from the body could be 

evaluated using the Kutta-Joukowski theorem 
14

. However, the body is three dimensional. 

As a result, several more sections must be created until the body is enclosed inside an 

effective bounding box of sectional planes, all of which are perpendicular to the direction 

of flow. An example of this approach is shown in Figure-4.4.2 for the Bell-Boeing 

advanced tilt-rotor geometry.   

Each of these loops is referred to in this document as an Integrated Circulation 

Loop (ICL). Once these loops have been created around the geometry of interest, the 

Kutta-Joukowski equation for induced lift is applied for each loop and the lift is evaluated 

for each slice of the bounding box in the span-wise direction.  

 

Figure 4.4.2: Integrated circulation loops around a sample geometry 
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  The presence of these closely spaced ICLs also allows for the evaluation of the 

composite span-wise circulation distribution and is then used to determine the induced 

downwash between the ICLs using standard lifting-line equations 
14

 and using the net 

circulation value of each loop as the “bound” circulation values. The induced lift and 

drag are thus evaluated as:  

L        = ∫  𝜌   𝛤 𝑑𝑦

 
 

 
 
 

 

(4.4.1.3) 

𝐷       =  ∫ 𝜌 𝑤 𝛤 𝑑𝑦

 
 

 
 
 

 

 (4.4.1.4) 

𝑤 =  
1

4 
∫ (

1

𝑦  𝑦 
)
 𝑑𝛤  
𝑑𝑦

𝑑𝑦 

 
 

 
 
 

 

 (4.4.1.5) 

Examples of the composite span-wise distribution function are given for two 

geometries: an elliptical wing and the Boeing F-18A Hornet in order to illustrate the 

nature of the function and its relation to the underlying geometry. Figure-4.4.3 illustrates 

the results for the elliptical wing of aspect ratio 5.1 tested at 10° AOA. The composite 

span-wise sectional-lift distribution is shown in Figure-4.4.5(a). Given the elliptical 

nature of the wing plan-form, the expected nature of the circulation distribution is 

elliptical 
20

 in nature and matches the predicted data within numerical accuracy limits 

(Figure-4.4.5(b)). The current approach reduces to the concept of the lifting-line solution 

for flat wings in the limiting condition.    
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Figure 4.4.3: The elliptical wing vorticity and wake solution 

 

Figure 4.4.4: Integrated circulation loops around the elliptical wing 
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Figure 4.4.5(a): Composite span-wise sectional lift coefficient for the elliptical wing 

 

Figure 4.4.5(b): Composite span-wise sectional lift coefficient for the elliptical wing 
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 Figure-4.4.6 illustrates the same process applied for the Boeing F-18A geometry. 

The geometry was evaluated at 1° AOA with a symmetry plane and velocity inlets for the 

engine intakes under the wing. The auto-mesher was used resulting in a fine mesh and 

smaller average edge-size. This led to the solver using 44 ICLs in semi-span direction as 

shown in Figure-4.4.6. The complexity of the combined main wing, stabilizers and 

LERXs is captured in the span-wise lift distribution shown in Figure-4.4.7. Note that the 

spikes and valleys in the distribution function correspond to the additive or subtractive 

effects of the horizontal and vertical stabilizers, the LERXs and then the fuselage near the 

span-wise zero location in Figure-4.4.7.  

 

Figure 4.4.6: Integrated circulation loops around the F-18A geometry 
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Figure 4.4.7: Composite span-wise sectional lift coefficient for the F-18A 

In numerical application, the ICLs are discretized using the average edge-size of 

the underlying surface mesh. The spacing between ICLs is also discretized using the 

same reference values. It is possible to include other discretization values and this can 

have a varying effect on the solution fidelity depending on the complexity of the 

geometry in question.  

An example of a case-study is presented for a rectangle wing (AR=4) for 12° 

AOA. The spacing was varied about the average edge-size by different multipliers and 

the overall coefficient of lift evaluated for each of these distributions. The results are 

plotted in Figure-4.4.8 and Figure-4.4.9. It can be seen from the figure that increasing the 

spacing between the ICLs beyond the average edge-size gradually reduces the fidelity of 

the solution where reducing the distance between ICLs (and hence increasing the total 

number of ICLs) improves the solution fidelity slightly.   
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Figure 4.4.8: Span-wise integrated circulation for rectangle wing (AR=4, 12° AOA) 

 

Figure 4.4.9: Lift coefficient as function of increasing spacing between ICLs for the 

rectangle wing (AR=4, 12° AOA) 
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4.4.2 SKIN-FRICTION DRAG EVALUATIONS 

Evaluation of parasite drag in legacy potential-flow solvers has been based on the 

evaluation of the local Reynolds number for each facet 
2, 21-22

. This local Reynolds 

number is then used as part of the semi-empirical skin-friction coefficient equations. The 

most popular of these equations for high speed subsonic aircraft was developed by 

Prandtl-Schlichting 
21-22

 in 1932 and was subsequently modified with the turbulent 

correction factor. This equation can be written as:  

𝐶 =  
0 455 

(l g  𝑅𝑒 )
    

  
1700

𝑅𝑒 
 

(4.4.2.1) 

The application of this equation in a pressure-solver was made possible by the 

combined use of structured meshes and pressure-field evaluations for calculation of 

aerodynamic loads 
8-11

. The knowledge of local velocity and distance from the leading 

edge allowed local evaluation of the skin-friction coefficient for each facet that was then 

summed up for the net integrated value 
8-11

.  

With the current approach, the local velocity is not determined. However, the 

local distance from the leading edge can be determined by topological “walking” for each 

facet towards the closest leading edge in the direction of the free-stream (Figure-4.4.10). 
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Figure 4.4.10: Topological “walking” used to determine B.L. growth lengths 

  

Additionally, the local vorticity is known in lieu of the local velocity. As such, the 

equation for the local Reynolds number is heuristically modified thus: 

𝑅𝑒 =  
𝜌   (𝑥 +  

𝛾
  
)

𝜇
 

(4.4.2.2) 

 This model is applied after the determination of the local facet vorticity following 

convergence of the solution. The model follows certain heuristic arguments that were 

used in its formulation:  

a) When the facet is parallel to the flow, the vorticity on it is zero and equation 

4.4.2.2 reduces to the standard formulation for a flat plate. 
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b) When the facet is at the leading edge, the local vorticity dominates the skin-

friction evaluation since the distance from the leading edge is a very small value 

c) The dependency of the local Reynolds number on the surface vorticity means that 

the distribution patterns for the skin-friction coefficient closely resemble the 

vorticity distributions. This is also expected from theoretical arguments. An 

example of this is shown in Figure-4.4.11 for the case of the Bell-Boeing 

Advanced Tilt-rotor geometry.  

  

Figure 4.4.11(a): Vorticity distribution for the Bell-Boeing tilt-rotor (5° AOA) 

  

 Figure 4.4.11(b): Skin-friction coefficient for the Bell-Boeing tilt-rotor (5° AOA)   
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5. MESHER METHODOLOGY 

 

This Section outlines the automation adopted for the unstructured surface mesher 

developed for this effort. The quantification of various heuristics and empirical 

parameters that control the overall surface mesh and help convert an input geometry into 

a solver ready surface mesh are also discussed. Finally, the Section will outline the 

importance of sizing and quality control on the solver mesh and the inherent robustness 

of the current approach to stressful input geometries.  

 

5.1 SIZE BASED MESHING 

 One of the opportunities provided by unstructured meshes is the ability to control 

sizing and sizing gradients for the surface facets at the local and global levels. This is of 

great importance in CFD simulations because of the volumetric cell based solver physics. 

In potential-flow solvers, the importance of mesh facet sizing varies depending on the 

choice of solver. Pressure-solvers are significantly more sensitive to the sizing and sizing 

gradients very similar to CFD solvers. This is not surprising in lieu of the similar nature 

of their aerodynamic load evaluators. As mentioned in previous Sections, capturing the 

pressure field accurately is of paramount importance for such solvers and this is not 
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possible unless the mesh is appropriately refined based on the local surface curvatures. 

Furthermore, surface patches making up the geometry must be conformal along the 

interface edges. This is due to the greater sensitivity of such solvers to gaps or punctures 

in the surface topology. If the solver is fitted with a boundary layer model, no such gaps 

can be allowed and the mesh surface across patches must be conformal at all times. Such 

conformity and sizing can be enforced through the careful development of an underlying 

U-V mapped structured mesh and is the reason for widespread use of such surface 

meshes with legacy potential-flow pressure-solvers.  

 Vorticity-solvers are much more resilient to such limitations and afford greater 

flexibility in the sizing and sizing gradients. Effective solutions can be obtained even 

from meshes with sharply varying sizing gradients along the topology. Mesh conformity 

is not a necessary condition for solution fidelity. However, maintaining conformity along 

patch interfaces and a uniform sizing gradient greatly helps in faster solution convergence 

(boosted by lower oscillations in surface vorticity along solver partition interfaces as also 

because of higher quality facets).  

The savings in computation time due to sized based meshing therefore translate 

directly to faster runs within an MDO environment and therefore merit further 

investigation. Despite these advantages, there are certain pitfalls that must also be 

investigated. The primary disadvantage of size based meshing for vorticity-solvers is that 

it can sometimes defeat the very advantage that makes this approach MDO friendly. This 

can happen by the liberal use of size-based meshing over the entire surface geometry, 

which can significantly increase facet count in regions of low curvature where the 
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vorticity gradients are low and insignificant. Surface re-meshing, as brought about by the 

use of size based meshing is also particularly invasive to the smoothness of the initial 

surfaces and can create “bumps”. However the vorticity-solvers are generally insensitive 

to local surface bumps while the Method of Integrated Circulation concept allows it to 

smooth out the effects of such topological perturbations. Finally, unless care is taken and 

appropriate metrics used, redefining the surface tessellations can adversely affect surface 

curvature and must therefore be carefully employed.           

Two case studies of sized based meshing applied to initial structured meshes 

elaborate on the above concepts. The mesher developed for this effort is discussed later 

but its results are used here for illustration purposes.  

For the first study, a quadrant of a truncated cone was generated with a structured 

mesh made of up quad facets that was then split into triangles. The resulting “forced” 

unstructured mesh is shown in Figure-5.1.1. The initial sizing of the facets was set up so 

that the base of the cone had facets of appropriate edge-sizes. Note that this initial surface 

has all the inherent advantages and disadvantages of a mapped structured mesh. There are 

no surface perturbations and the feature lines are clean. Also note that the U-V mapping 

forces poor quality facets near the tip of the truncation edge of the cone and that the edge-

sizes of the facets in this region are much smaller than the requested edge-size.  

Consider now the re-tessellated surface generated by the size-based mesher 

developed for this effort (Figure-5.1.1). The sizing distributions are much more uniform 

across the surface and especially near the tip of the truncation edge. However, note that 
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the feature lines on this surface are distorted and as a result there are surface 

perturbations (this can be evaluated in Figure-5.1.1 by the lighting distribution on the two 

surfaces from a single point source away from the surface). A comparison of the average 

edge-sizes and the final facet-count is shown in Table 5.1.1. The reduction in facet count 

is more than 50% while the improvement in edge-sizes created by the mesher is within 

5% of user requested values compared with 40% on the original surface.    

 

Figure 5.1.1: Size based meshing case study for a truncated cone surface. Initial 

surface mesh (left) and re-tessellated mesh (right)    

 

Table 5.1.1: Size based meshing results for the truncated cone surface 

 Initial surface  Re-tessellated surface 

Number of facets 352 160 

Average edge-size (expected = 0.2m) 0.28 0.21 
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A second case study was made on much more realistic application geometry. The Rutan 

Varieze civilian aircraft was run through the mesher and the results for the aircraft are 

shown in Figures-5.1.2(a) and Figure-5.1.2(b). In Figure-5.1.2(a), the original surface 

prior to re-tessellation is shown. This mesh was generated from a forced conversion of 

the underlying structured mesh which resulting in the starting surface of 108,040 facets. 

The geometry once again had clean feature lines and little to no surface perturbations. 

The large number of facets for this surface resulted from the very large needle-shaped 

facets distributed over the entire surface to allow effective pressure-gradient capture from 

a potential-flow pressure-solver.  

This surface was then run through the mesher with an aim to convert the surface 

into one more appropriate for a vorticity-solver. This meant that the sizing gradients 

could be improved in favor of reducing computation time and feature curves could be 

dispensed with where necessary. The result of this was process is shown in Figure-

5.1.2(b). As can be observed from this figure, the overall “essence” of the geometry has 

been preserved by the mesher but at the cost of much more pronounced surface 

perturbations. Such a surface as shown in Figure-5.1.2(b) is not considered solver-ready 

for any pressure-field solver or any CFD solver but is usable by the current approach 

without loss of fidelity. The reduction in facet count is an indicator of reduced 

computation time outlined via Equation-3.3. The new facet-count is 10,036 facets (a 

reduction of over 90 %) compared with a structured mesh. The savings in computation 

time is over two orders of magnitude.  
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Figure 5.1.2(a): Initial pressure-solver mesh for the Varieze (108,040 facets)    

 

Figure 5.1.2(b): Re-tessellated vorticity-Solver mesh for the Varieze (10,036 facets)    
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 A further illustration of the sizing distribution and gradients for this case study 

can be made via Figure-5.1.3. Here, the contour distribution of the mesh facet sizes is 

shown for the initial and final meshes on the Rutan Varieze. The comparison is 

qualitative but apparent.  

 

Figure 5.1.3: Mesh sizing distribution and gradients    

 

5.2 MESH QUALITY DEFINITION 

 The current effort quantifies mesh quality at the facet level and evaluates them at 

an area-averaged level for the overall surface mesh. At the facet level, the quality 

criterion (developed by the author) is defined as:  

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑅𝑎𝑑𝑖𝑢  𝑜𝑓 𝑐𝑖 𝑐𝑢𝑚𝑐𝑖 𝑐𝑙𝑒 

𝑅𝑎𝑑𝑖𝑢  𝑜𝑓 𝑖𝑛𝑐 𝑖𝑏𝑒𝑑 𝑐𝑖 𝑐𝑙𝑒 
 

 (5.2.1) 
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The Circumcircle and Incircle for a triangular facet is readily defined in two 

dimensional Euclidean space based on the facet edge lengths and is thus applied to three-

dimensional facets similarly. As a result of this, Equation-5.2.1 can be modified thus: 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =

*
𝐿  𝐿  𝐿  

4√ (   𝐿  )(   𝐿  )(   𝐿  ) 
+

√(   𝐿  )(   𝐿  )(   𝐿  )
 

 

(5.2.2) 

Where,  

 =
(𝐿12+ 𝐿23 + 𝐿31)

2
 

(5.2.3) 

The limiting value for the quality ratio described in Equation-5.2.1 is 2.0 for an 

equilateral triangle. Note that this value represents the confluence of solver vortex ring 

requirements in that an equilateral triangle has the most appropriate placements of the 

centroid-based control points and therefore the resultant positive effect on solver 

convergence and reduced computation time. This lower reference value therefore serves 

as the metric for “best-possible-quality” for a given facet on a surface.  

As a result, the mesher looks to this metric to determine which facets must be 

culled from a quality standpoint during the re-tessellation phase. That is, the mesher 

determines a range of quality above this reference value which it considers as recoverable 

and amenable for improvements. All facets having quality values beyond this threshold 

are culled from the mesh via edge collapsing (to retain conformity of neighbors).  
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Since the quality of a facet is geometrically defined, visual evaluation of overall 

mesh quality serves as a useful step for the current solver process. An example is shown 

in Figure-5.2.1 for the Lockheed-Martin F-35 geometry. Run through the mesher prior to 

re-tessellation, the “quality-distribution” of the mesh can be visualized. In this way, mesh 

regions needing facet culling or re-tessellation can be identified and either manually 

repaired or run through the mesher.  

 

Figure 5.2.1: Unstructured mesh facet quality distributions 

 

5.3 MESHING AUTO-REFINEMENT 

 The automated unstructured mesher developed for this effort uses several invasive 

surface improvement techniques to render a size- and quality-controlled solver-ready 

mesh.  The individual techniques applied at the facet or patch level are:  

a) Edge-collapsing  

b) Edge-Swapping 

c) Facet-splitting 
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Edge-collapsing is applied on those facet edges that are deemed too small to allow 

recovery of facet sizing and/or quality. An example is shown in Figure-5.5. The smallest 

edge in the facet is identified and the corresponding vertex connectivity map is 

determined from the global topology. The two vertex pairs are then collapsed and the 

topology adjusted accordingly as shown in Figure-5.3.1. Edge-collapsing serves to 

eliminate very poorly sized facets or ones with very poor quality (above the mesher 

recoverable threshold) while also helping to increase the overall size of the surrounding 

facets. Of the three surface modification techniques used in the mesher, it is the only one 

that increases the sizes of facets and reduces overall mesh size. Checks are also made to 

ensure that edges marked as feature edges based on their neighborhood connectivity are 

not subject to edge collapsing. This is done to ensure that no overall loss of geometrical 

“essence” takes place.   

 

Figure 5.3.1: Edge collapsing on below-threshold facets. Before (left), after (right) 

 Edge-swapping is a purely quality control technique and is applied iteratively in 

conjunction with the Edge-collapsing and Facet-splitting. The general principle is to 



63 

 

identify pairs of neighboring facets from the surface topology and identify their shared 

edge. If this edge can be flipped with resulting increase in quality of the two facets, the 

mesher allows this. Checks are made to evaluate the surface-normal angle across the 

shared edge and determine if this value is greater than the user defined threshold for 

active feature edge modifications. If so, the edge is not swapped and the feature edges are 

preserved. An example is shown in Figure-5.3.2 for two facet pairs. The resulting 

improvement in quality is visible. Note that the swapping subroutine actively looks to 

ensure that the final summed area of the two facets does not increase in order to prevent 

flipping edges that would lead to topologically inconsistent or self-intersecting facets in 

the post swapping phase. Note that edge-swapping is the only active quality-control 

technique in the mesher’s tool set. All other techniques may improve quality based on 

secondary criteria, but otherwise enforce no checks for quality.  

 

Figure 5.3.2: Edge swapping on facet pairs, before (left) and after (right) 

 Facet splitting takes place in one of two ways: at the facet level or at the patch 

level. At the facet level, the mesher identifies facets that are above the allowable sizing 
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threshold and marks them for splitting. Topological sharing information for the three 

edges of the facet are recovered from the global map and the neighboring facets are also 

marked for splitting along the shared edge to enforce mesh conformity. Note that the 

splitting, whether at the facet level or the patch level, is designed to always enforce 

conformity on the surface unless none exists initially. Once this information is extracted, 

the mesher splits the edges in digital steps, i.e. the splits are dual along each edge and are 

not matched for exact sizing. This is enforced in order to prevent the formation of very 

poor quality, needle-shaped facets that can prove irrecoverable by the edge-swapping or 

edge-collapsing routines. Figure-5.3.3 shows an example of splitting applied by the 

mesher at the facet level for a simple cube designed with just 12 facets initially. Note the 

substantially higher facets in the resulting mesh in Figure-5.3.3. This is an inherent 

feature of facet splitting: there is always an increase in mesh size. As a result, only 

patches where the solver requires greater refinement are subjected to these routines. Note 

also that facet splitting does not respect feature edges in its effort to maintain mesh 

conformity.  

 

Figure 5.3.3: Individual facet-splitting, before (left) and after (right) 
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Facet splitting at the patch level is more advanced and sizing-driven. In this 

routine, the mesher actively looks for topological information and uses this to identify 

patches of the initial tessellation that can be suitably split along the feature lines. Once 

identified, it splits the feature lines in exact sizing steps (unlike the digital splits used in 

the facet-level splitting) so that feature-aligned surface meshes can be extracted. This is 

illustrated for an application made to the F-35 upper-fuselage surface from Figure-5.2.1 

and is shown in Figure-5.3.4. This is the only technique in the mesher’s tool set to reduce 

overall feature-curve distortion in the final mesh compared to the initial surfaces.   

 

Figure 5.3.4: Patch-splitting, before (left) and after (right) 

 Pierced facets are corrected by the application of splitting at facet level for the 

two intersecting pairs. The splitting point inside the facet is determined by the 

intersection of the edges of the opposite facet with the plane of the other facet. Once this 

point is evaluated, it is added to the global vertex map and the facet is split into three new 

facets about this point. This process retains the overall mesh conformity and the global 

edge-connectivity map is added upon but otherwise not changed. This process is applied 
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on both facets of the pair and the process is repeated until no further piercings exist on 

the pair. An example of this is shown in Figure-5.3.5. Here, a flat finely-tessellated 

surface is shown cutting a coarsely tessellated cube. This results in numerous piercings as 

visible from Figure-5.3.5. The post piercing-correction results are also shown and the 

increased facet count can be seen as well as the cutting edges that are not visible. The 

new facets are mainly of poor quality and further iterations of the solver are suitable 

candidates for edge-collapsing and edge-swapping. 

  

Figure 5.3.5: Piercing correction, before and after (cutting surface hidden) 

All of these techniques are applied in an iterative loop that spans every facet on 

the original mesh and changes are recorded. The mesher continues to operate on the mesh 

until it records no further changes applicable to the geometry at which points it terminates 

operations and moves the mesh to the solver for pre-simulation diagnostics. The liberal 

application of this mesher on the entire geometry can result in significant mesh-size 

increases, distortion of feature-edges and de-featuring of smaller components (that fall 
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entirely below the user specified sizing threshold). This can, of course, be used to 

advantage so that non solver-ready meshes with high geometrical fidelity can be reduced 

to a solver-ready state around the essence of the overall geometry.  

A case study of the auto-mesher is provided here for the F-16A geometry. Figure-

5.3.6 shows the initial geometry as run through the solver diagnostics. Facets marked in 

red are pierced and can cause instant solver divergence. Blue edges are feature edges 

evaluated by the mesher through topological probing. Note that feature edges have been 

detected on this geometry even over relatively smooth surfaces because of the underlying 

non-manifold edges that are not visible in Figure-5.3.6. Edges that are non-manifold are 

instantly marked as feature edges by the mesher and as such either need to be removed 

manually or the auto-mesher can leave them in place. Green edges are free and represent 

the perimeter of free-edges and non-conformal interfaces. Facets marked in orange show 

proximal facets that will also cause instant solver divergence.   

It is easily visible from Figure-5.3.6 that the initial mesh is highly articulated and 

contains a lot of electronics antennae and other empennages that are below the sizing 

threshold of the rest of the geometry and can be dispensed with (each of these 

empennages can cause solver divergence since they are not topologically consistent with 

the rest of the geometry; i.e. they pierce other facets or are in numerically bad proximity 

of each other). This repair can be accomplished via laborious manual means or through 

the use of the automated mesher developed here. The results are shown in Figure-5.3.7 

and the quantitative mesh comparison is presented in Table 5.3.1.   
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Figure 5.3.6: F-16A initial geometry pre-solver topological probing results 

 

Figure 5.3.7: F-16A case study results for automated mesh refinements 

Table 5.3.1: F-16A automated mesh refinement results 

 Initial Mesh Re-tessellated Mesh  

Number of facets 4504 13964 

Average facet quality  8.3491 2.2253 

Worst facet quality 4579.36 106.52 
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5.4 PATCH INTERFACES AND CONFORMITY 

 For this effort, patch interface conformity is defined as the connectivity of facets 

at the feature edges of a surface topology. These interfaces are created during the CAD 

phase of the geometry design process but can also result from user defined feature curves 

as well as brought about within an MDO environment by the intersection of topologically 

independent bodies such as wing-fuselage intersections, wing-pylon intersections etc. 

Applied to potential-flow solvers at the surface level, they are the equivalent of CFD 

solver volume mesh partition interfaces and have philosophically similar effects on the 

solver convergence.     

 These interfaces are handled in one of two ways:  

a) Mesh side handling 

b) Solver side handling 

In the mesh side handling, the mesher (volumetric for CFD and surface for 

potential-solvers) is responsible for generating conformal meshes along the interfaces. 

The solver simply inherits the connectivity information from the mesher during the 

solution phase. Maintaining conformity on the mesher side enforces mesh quality 

penalties that can adversely affect the solution.  

In the solver side handling, the interface conformity is ignored by the mesher and 

therefore meshes the topological patches in a standalone manner. The solver is then left 

to determine the cross-connected facets and neighborhood connectivity. This can result in 

increased computation time and increased solver oscillations depending on the quality of 
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the interfaces. The choice of either of these two approaches to interfaces affects the 

solver significantly.   

 The vorticity-solvers and the Method of Integrated Circulation are largely 

insensitive to the surface presence or absence of mesh conformity at the patch interfaces 

with regard to the final aerodynamic loads. However, the solver convergence (and thus 

computation time) is still dependent on mesh conformity.   

The solver developed for this effort handles the patch interface conformity on the 

solver side. As such, the mesher is allowed to identify and mesh patches in standalone 

format. This reduces the complexity of the application of this approach to an MDO 

environment whilst improving flexibility in the design space since each patch can be 

meshed individually. Given the first-order approach of the vortex-ring solver applied to 

the facets, it was determined that the solver is generally stable around non-conformal 

patches under controlled sizing gradients (applied by the surface mesher described in 

previous Sections).  

A case study for the stability of the solver under conformal and non-conformal 

patches is presented here to illustrate the effects. The Soviet Mig-21 interceptor geometry 

was chosen for this study as shown in Figure-5.4.1. The wing surface was made 

conformal for one case and non-conformal for the second case (Figure-5.4.1) and both 

meshes were run through the current solver under identical conditions. The solution for 

vorticity and the relaxed wake strands were seen to converge in both cases and were 

found to be very close to each other (see Figure-5.4.1). The final solution therefore had 
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no apparent effect by the conformity of the wing-fuselage intersection. The integrated 

aerodynamic loads evaluated using the Method of Integrated Circulation seems to 

confirm this assumption in that far field effects are indeed diminutive on the final results.   

 

Figure 5.4.1: Mig-21 mesh conformity case study results 

 However, such visual inspection of the vorticity distribution and the qualitative 

comparison of the integrated loads can be deceptive to the overall effect on the solver. To 

illustrate this, the convergence history for the above case study is provided in Figure 

5.4.2. Plotted as a function of iterations, the dramatic effect of mesh conformity is easily 

visible on both the vorticity convergence as well as the wake-strand stabilization. From 

the figure it can be seen that the conformal design undergoes substantially more damped 

oscillations compared to the non-conformal mesh and the convergence takes place at a 

more rapid rate.   
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Figure 5.4.2: Mig-21 case study convergence history results 

Similar results have been obtained from other geometries as well that suggest that 

solver stability is adversely affected by the non-conformity of patch interfaces but 

otherwise have little effect on the overall fidelity of the integrated aerodynamic loads.  
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6. SOLVER EFFICIENCY ENHANCEMENT 

 

The basic vorticity-solver methodology utilizing structured meshes does not offer 

significant flexibility to improve its basic performance. However, with the current 

approach making it possible to apply unstructured meshes, several important techniques 

have been developed to take advantage of the increased solver and mesh flexibility to 

improve solver efficiency, stability and to reduce computation times. The novel 

techniques developed for this effort are: 

a) Fluid-Dynamic Mesh Repartitioning  

b) Persistent Geometrical Induction Matrix 

 

6.1 FLUID-DYNAMIC MESH REPARTITIONING 

 The unstructured surface meshes post CAD-driven tessellation and post auto-

meshing (as described in Section-5 of this document) can render a diverse spread on the 

surface facet distributions with regard to numerical space. In other words, the 

unstructured nature of the mesh operations, whether part of CAD design, manual surface 

repair or the auto-mesher, leads to facets that are numerical neighbors being widely 

separated in physical space. This is illustrated in Figure-6.1.1 for clarity. The F-16A 
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geometry used here is illuminated for numerical neighbors using the contour coloring and 

shows the mesh post-CAD and post-auto-mesher. 

 

Figure 6.1.1: Rationale behind FDMR 

 The widely spread nature of the numerical neighbors are readily appreciated from 

Figure-6.1.1. When passed to the solver in this condition, the iterative patches are 

scattered and have physical neighbors that are not part of the current iteration’s solution 

(and hence have vorticity values frozen from the previous iteration). As a result, the 

solver undergoes substantial stress. Once the solver stabilizes and the oscillations dampen 

out, the vorticity and wake solutions converge quickly to their final form.  

 It has been observed from several geometries that the oscillation phase of the 

solver for a typical mesh as shown in Figure-6.1.1 constitutes about 40-50% of the total 

solver iteration time. If these oscillations could be damped out prior to start of solution, 

the resulting convergence would be substantially faster and more stable. Further, if the 

solver partitions could be organized so that partitions containing the leading edges and 
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sharp nose sections were evaluated first, the “pass-on” effect of the solver during each 

iterative loop could lead to quicker convergence as well.  

To resolve this issue, the Fluid-Dynamic Mesh Repartitioning (FDMR) concept 

was developed and applied to the solver. This process repartitions the solver-ready mesh 

developed by the auto-mesher or provided by the user and reorganizes the numerical 

distribution of the mesh to match the free-stream direction.  The sorting algorithm used 

here is a standard bubble-sort routine and the direction of the bubble-flow is in the free-

stream direction. In some cases it is beneficial to sort the partitions in the direction 

normal to the flow and this has also been developed and added to the solver as a user 

defined option called Contra-FDMR.   

 Figure 6.1.2 shows a case study for the application of the FDMR concept on the 

Lockheed-Martin F-35 geometry. This geometry was passed directly from the CAD to 

the solver post-FDMR (i.e. no auto-meshing refinement was used). As a result, it retains 

the original CAD tessellations during the solver run. This was done to ensure that the 

only change between various runs was the numerical re-ordering of the solver partitions. 

An example of FDMR application to the geometry is given in Figure-6.1.2 for flow in the 

vehicle X direction (long axis).  The comparison of the solver partitions is clear and it is 

seen that the FDMR partitions provide the required “pass-on” numerical behavior that is 

anticipated to give desired reductions in solver computation times.  
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Figure 6.1.2: The F-35 geometry before and after FDMR 

The geometry was run through the solver without FDMR, with FDMR and with 

Contra-FDMR for otherwise identical conditions. The vorticity solution for the geometry 

with FDMR is shown in Figure-6.1.3 and shows a clean convergence. Figure-6.1.3 shows 

that the FDMR solver convergence is an order of magnitude lower than the standard 

mesh and the Contra-FDMR results. In terms of computation time, the results are even 

more significant. The FDMR solution reaches the same convergence level of the non-

FDMR solution (reached in 25 iterations) within 4-5 iterations. That is a reduction of 

~80% in overall computation time during vorticity convergence phase of the solution. It 

should be noted that the loads evaluation phase for all three cases would remain 

unaffected by the application of FDMR. Also, FDMR imposes its own time penalty based 

on the mesh size. It is usually between 1-5% of the overall solver run time. Combining all 

of these factors, the effective reduction in solver time for the FDMR case is between 60-

70%. This value is still very significant and bears importance during MDO runs.   
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Figure 6.1.3: Convergence history for the F-35 solution (AOA = 5°, 1 m/sec flow) 

 

6.2 PERSISTENT GLOBAL INDUCTION MATRIX 

As outlined in Section-4, the velocity induction coefficient matrix is identical 

during all iterations in the absence of geometrical warping or morphing. Under these 

conditions, it is possible to reduce the evaluation time for this matrix by storing it in the 

solver memory allocations after the first complete iteration. This approach reduces the 

computational expense for the solver and it merely has to access the predetermined 

memory locations to evaluate the geometrical induction coefficient of a given facet-
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bound vortex ring on any other facet. This coefficient is then multiplied by its vorticity 

value from the latest iteration.  

Note that this does not apply to the relaxed wake strands since their spatial 

relaxation does not allow persistent storage of their induction effects of the geometry 

control points. The wake coefficients are evaluated incrementally despite the associated 

computational expense. The wake evaluations therefore become the limiting condition for 

the scalability of this feature for large geometries.  
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7. BOUNDARY PHYSICS 

 

The unstructured nature of the surface mesh used in the current effort makes the 

application of external boundary physics on local regions a simple process. Single facets 

can be marked individually or as part of topological patches. For the solver developed as 

part of the current effort, there are four main boundary conditions and associated external 

physical conditions that are applicable on the surface facets:  

a) Slip walls 

b) Velocity Inlets 

c) Trailing edges 

d) Symmetry 

 

7.1 SLIP WALLS 

Slip walls are the default boundary conditions for all facets in the solver for the 

current effort as a carryover from all legacy potential-flow solvers. The current 

application takes the form of the Neumann condition 
2, 14

 on the control point of each 

facet (placed at the centroid of the facet).  This condition states that the fluid flow normal 

to the direction of the facet at the control point must be zero. Unlike the other sister 
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condition for slip walls based on the Dirichlet condition 
14

, the Neumann condition 

remains applicable for both thick and thin surfaces and thereby helps maintain solver 

robustness 
14

. Legacy pressure-solvers were usually provided with the Dirichlet condition 

as the default slip-wall condition given the requirement for thick closed surfaces for 

pressure evaluations 
8-11

. Mixed-condition solvers were also used. However, vorticity 

solvers applying combination of thick and thin surfaces have always necessitated a 

Neumann condition approach 
2
. It also has a simpler implementation. 

The main disadvantage of the Neumann condition is the inability to carry or 

enforce any boundary layer information and thereby serves to decouple the viscous and 

inviscid effects, necessitating the requirement for a decoupled skin-friction load 

evaluation scheme, as outlined in Section-4.   

 

7.2 VELOCITY INLETS 

 Velocity inlets are simulated on the user-marked surface facets by relaxing the 

Neumann condition 
14

 on the control points. The relaxation of the Neumann condition 

allows the modeling of various types of inlet flows such as compressor fan faces of 

podded engines, air-intakes on the fuselage and cooling-intakes at various points on the 

geometry 
14

.  

The Neumann condition is provided the required velocity increment magnitude 

and direction vector components during its application in the solver. As a result, the 

solver ensures that no surface normal component of velocity other than the predetermined 
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external value can exist on the marked facets. It achieves this by modifying the local 

vorticity.  

Note that the Neumann condition only allows the modification and control of the 

surface normal velocity on the facet. It does not enforce any control on the local 

tangential components of the velocity (borrowing from its slip-walls lineage). As a result, 

relaxation of the Neumann condition to simulate velocity flow can only accurately 

portray the normal velocity components whilst ignoring the tangential components. 

An example of the application of velocity inlets is provided for the case of the 

Boeing F-18A Hornet (Figure-7.2.1). The geometry is modeled about the symmetry plane 

and has facets marked across the engine inlet next to the fuselage as shown in the figure. 

Two cases were run with the solver for this geometry for an AOA of 0°, symmetry plane 

applied and 25 iterations limit. The first case did not simulate the velocity inlet and 

treated the facets on the engine inlet as standard slip-walls (Figure-7.2.2). The second 

case relaxed the Neumann condition on the marked facets and simulated flow moving 

through the intakes (Figure-7.2.3). Notice the difference in the local vorticity distribution 

for the two cases. The under-wing vorticity is significantly affected by the presence or 

absence of the velocity-inlet and this translates to small changes in the integrated 

aerodynamic loads. The overall effect varies from geometry to geometry and must be 

exercised accordingly.    
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Figure 7.2.1: The F-18 geometry with velocity inlets and symmetry plane 

 

Figure 7.2.2: The F-18 geometry without Neumann relaxation 

 

Figure 7.2.3: The F-18 geometry with Neumann relaxation 
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7.3 TRAILING EDGES 

Facets at the trailing edges of wings, fins and stabilizers are marked accordingly 

so that the solver can determine the wake nodes on the mesh (as discussed in Section-4). 

As such, they remain the most important aspect of all potential-flow solvers, regardless of 

the solver methodology. The solver is set up to check marked facets for trailing edges as 

well as doing a global search on the surface mesh to determine trailing edge facets. In the 

former approach, the user marks the facets on the mesh manually to treat them as a 

trailing edge.  This has the advantage of giving extensively customized solutions. 

However, for an MDO environment, this is clearly unsuited. Further, lacking the U-V 

mapping of structured meshes, the current solver cannot rely on pre-marked information 

for determining trailing edges on the mesh.  

As mentioned in Section-4, the primary advantage available from the relaxed 

strand model is the ability to evaluate wakes at the level of strands. As a result, the 

determining characteristics of the trailing edge facets can also be evaluated at the facet 

level in the mesh and then pooled together to determine the wake nodes.  

The current approach is based on the formulation of trailing edge metrics. The 

solver checks the facets in the entire mesh to determine which of the facets pass the 

testing criteria for trailing edges and automatically marks them as trailing facets. There 

are two main criteria for a facet to be a trailing edge:  

a) The facet must have at least one free edge or have a neighbor where the angle 

across the shared edge is greater than the wake definition threshold angle set 
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by the user (the stable value for this angle is 90° based on experimentations; 

Figure-7.3.1). 

b) The “centrifugal-normal” for the edges that pass selection criteria (a) must 

make an angle with the free-stream velocity vector greater than the trailing-

edge marker angle (the stable value for this angle is 75° based on 

experimentations). The centrifugal normal vector for an edge is the vector 

normal to the edge direction (along the winding of the facet) in the plane of 

the facet with a direction away from the facet centroid (Figure-7.3.2). 

 

Figure 7.3.1: Condition-1 for auto-detecting “thick” trailing edges marked by the 

solver using topological feature angles  
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Figure 7.3.2: Centrifugal normal vectors for a general facet  

Facets that meet the above two conditions are processed for the wake generation 

criteria including the detection of possible wake nodes along the exposed trailing edge 

vertices (Figure-7.3.3).  

  

Figure 7.3.3: Typical results of trailing edge auto-detection. Thick wing example 

(left) and thin wing example (right) 

  

It should be noted that the solver is not restricted from marking more than one 

edge as a trailing edge. It is conceivable that up to two edges of a facet could 

simultaneously be trailing for a certain orientation and hence will both pass through the 
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auto-detection routines. The solver takes the existence of this possibility into account and 

lets the wake node detection routines determine whether a facet can have more than two 

wake nodes. In this aspect, the current approach attains a significant advantage compared 

to the pressure-solvers.   

The ability to detect thick and thin edges using the two selection criteria allows 

the solver to maintain robustness with both types of surfaces. This is yet another 

advantage of the current methodology. This allows the user to improve the efficiency of 

the solver by marking thick surfaces with very low thickness values as thin and eliminate 

and entire patch of facets from the solver without affecting the solver results. An example 

of such an approach is shown in Figure-7.3.4 for the Boeing F-18A Hornet. It has a 

geometry modeled from a combination of thick and thin surfaces whilst retaining overall 

geometrical (and hence the solution) fidelity.  

 

Figure 7.3.4: The F-18 geometry manifold and non-manifold surfaces 
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7.4 SYMMETRY PLANES 

For most standard applications, it is possible to identify a symmetry plane for the 

geometry with a normal vector perpendicular to the direction of the free-stream flow. 

This is especially true in those cases with non-morphing and non-rotating geometrical 

sections. Such cases can take advantage of the symmetry place boundary condition. The 

use of these planes significantly reduces the solver workload as well as memory 

requirements (in order to apply the persistent geometrical induction matrix feature 

discussed previously) by transferring over half of the mesh (and hence half of the wake) 

to the common induction matrix evaluated at the beginning of the solver iterations.  

When this condition is applied about the symmetry line, the facets retained are 

treated as though having a mirror image about the symmetry plane. Note that their 

winding direction does not change but the storage of vertices is modified accordingly. 

This allows the facet to induce its own effect spatially but also add to that the induction 

of its reflection on the other side of the symmetry plane.  

An example of the CPU savings from adopting this boundary condition is 

illustrated for the case of the DLR-F6 wing-fuselage geometry as shown in Figure-7.4.1. 

The original geometry has 11,038 facets. The effective facet count after symmetry plane 

has been applied is thus 5,519. Two case runs were done on the solver, with and without 

symmetry planes for 0° AOA and 1 m/sec free-stream flow. Both geometries were passed 

through the FDMR routines. The trailing-edges were detected automatically and the 

geometry was modeled entirely as thick. The resulting wake-field is shown in Figure-



88 

 

7.4.2 and the results of the two runs are shown in Table 7.4.1 for the individual 

components that make up the overall solver CPU time.  

 

Figure 7.4.1: The DLR-F6 geometry with and without symmetry BC 

 

Figure 7.4.2: The DLR-F6 geometry with symmetry BC (AOA = 0°, 1 m/sec flow) 

It is easily established that the savings in CPU time for the overall run are 

substantial (64.46%) for the geometry run with the symmetry condition. Note also the 

reductions in FDMR time, global geometric induction matrix allocation and storage times 
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and the solver iterations time for the same number of iterations. There is reduction in all 

of these components, illustrating the advantage given by the symmetry plane condition.  

Table 7.4.1: DLR-F6 solver results comparison (AOA = 0°, 1 m/sec flow) 

 No Symmetry BC Symmetry BC 

Number of facets 11,038 5,519 

FDMR Wall Time (seconds) 2.58 1.02 

Induction Matrix Evaluation Wall Time (seconds) 186.51 83.85 

Solver iterations Wall Time (seconds) 454.14 143.70 

Total Wall Time (seconds) 643.23 228.57 
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8. RESULTS 

 

This Section details the results of the solver runs made for the two main testing 

suites developed for this effort. The preliminary testing suite deals with simple 

geometries and shapes designed to test basic features of the solver. These include 

geometries such as spheres, flat wings etc. These geometries allow easy diagnosis of 

problem areas and help in identification of the limits of the current approach. They are 

also very useful to highlight the advances made by the current approach over legacy 

approaches and also to validate the new approach on well-defined theoretical cases.  

The advanced testing suite deals with real world applications and involves testing 

the solver under stressful mesh conditions (such as large mesh sizes, non-manifold 

surface intersections and complicated auto-mesher runs), with multi-physics external 

flows and testing limits of the physics of the potential flow philosophy. The geometries 

used here are real-world aerospace designs. Results have been collected for the 

aerodynamic load coefficients, solver run times, convergence histories and mesh statistics 

(wherever required). 
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 8.1 PRELIMINARY TESTING SUITE 

The list of geometries tested in this group includes:  

a) Rectangle wings (various aspect ratios) 

b) Delta wings (various aspect ratios) 

c) 75° / 65° Double-delta wing  

d) 70° Arrow wing 

e) 70° Diamond wing 

f) 45° Sweep wing  

g) Unit sphere and other axisymmetric bodies  

 

8.1.1 RECTANGLE WINGS 

Rectangle wings with aspect ratios of 3.0, 4.0 and 7.0 were designed and an 

unstructured mesh was generated for each of them. The geometry was designed as thin, 

free-surfaces. The results are shown in Figure-8.1.1 and Figure-8.1.2. The test results 

were compared with the original experimental results of Prandtl 
23

 from 1921 and are 

plotted alongside for comparison in Figure-8.1.1 and Figure-8.1.2.  

The results show generally good adherence to experiments with higher fidelity 

results for lower angles of attack. This is not unexpected since the new approach 

simplifies to the standard lifting line approach for rectangle wings in the extreme limiting 

conditions as disused in Section-4. At higher angles of attack, additional fluid physics 

such as flow separation begin to take place at higher angles and consequently affect the 
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lift and drag coefficients. The linear prediction curve then deviates from the experimental 

results as the experimental lift reduces while the experimental drag increases. Under 

these conditions the predictions overshoot the measured results.  

 

Figure 8.1.1: Lift coefficient versus angle of attack for rectangle wings 
23
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Figure 8.1.2: Lift versus Drag for rectangle wings 
23

 

 

8.1.2 DELTA WINGS 

Unlike rectangle wings, delta shaped wings offer severe challenges for a vorticity-

solver given the complicated physics even at modest angles of attack. Unless special care 

is taken to model the leading edge separation of vorticity as an additional relaxed wake 

proposed by Katz and Plotkin 
14

, or more advanced vortical sheet models are used such as 
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that done by Burkhalter and Purvis 
24

 for thin wing surfaces, the standard vorticity-solver 

is unable to capture the effects for delta wings except at low angles of attack 
2
. This 

approach enhances the application of such solvers to unstructured meshes and has 

devised load evaluation and wake generation techniques unique to such meshes, but 

otherwise remains true to the original philosophical concept. As a result, it is theoretically 

unexpected that the evaluation of loads over pure delta wings would be better.  

This is outlined in Figure-8.13 for delta-wings with various aspect ratios. The 

experimental data was evaluated for a Reynolds number of 7×10
5
 by Schlichting and 

Truckenbrodt 
25

 in 1969. The experimental wings were modeled for thickness t=0.12c.  

It is easily seen that the experimental data is non-linear as a result of the physics 

involved. The current approach however can only match the linearized physics, and 

hence fits a linear lift-curve slope through the required data. The linearization deviates 

from experimental results at higher angles of attack and the error between prediction and 

experiments is significant within that region.  
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Figure 8.1.3: Lift coefficient versus angle of attack for delta wings 
25

  

 

8.1.3 DOUBLE DELTA WING 75° / 65° 

In addition to the standard delta wings described in Section-8.1.2, several more 

wing shapes modified from the standard delta were also tested. One such model was the 

75° / 65° double-delta wing. The plan-form of this geometry is shown in Figure-8.1.4 

post auto-mesher. The nature of the unstructured mesh is also visible in this figure.  
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The results for this geometry were tested against the experimental results of 

Wentz and Kohlman 
26, 29

 from 1968. Additionally, the predicted data was also compared 

with the empirical equations based on the leading-edge suction analogy developed by 

Polhamus 
27, 28

 for high sweep angle wings. The comparisons are shown in Figure-8.1.5. 

It is seen that the behavior of the predicted data is similar to that of delta wings in that the 

current approach attempts to put a linearized prediction curve against non-linear data. 

The general fitting of the predictions is good for lower angles of attack similar to that for 

delta wings.  

 

Figure 8.1.4: Unstructured mesh on the 75°/65° double-delta 
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Figure 8.1.5: Lift coefficient versus angle-of-attack for the 75°/65° double-delta 
26-28

 

 

8.1.4 ARROW WING 70° 

Another geometry modified from the original delta wings is the 70° delta wing as 

shown in Figure-8.1.6 post auto-mesher along with an overlay of its non-conformal 

unstructured mesh. The predictions for this wing are compared with the experimental 

results of Wentz and Kohlman 
26

 from 1968. Similar to Section-8.1.3, the Polhamus 

arrow empirical model 
27-28

 predictions have also been overlaid on the data for 

comparison. The arrow wing predictions are substantially poor compared with the 

double-delta and the delta wings even for the limited range of angles as seen in Figure-

8.1.6. The predictions are comparable to the experimental results for angles up to 4°. The 

substantial non-linearity of the arrow wing even at lower angles renders any such 
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potential flow approach ineffective. Burkhalter and Purvis have managed to get superior 

results compared to the current approach for such wing geometries using continually 

distributed vortical sheets.  

 

 

Figure 8.1.6: Unstructured mesh on the 70° arrow wing 
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Figure 8.1.7: Lift coefficient versus angle-of-attack for the 70° arrow 
26-28 

 

8.1.5 DIAMOND WING 70° 

The final modification to the delta wings was in the form of a 70° diamond wing 

as shown in Figure-8.1.8 post auto-mesher. The experimental data used for comparison 

for this geometry also follows from the work of Wentz and Kohlman 
26

 from 1968. The 

Polhamus equations 
27-28

 modified for a diamond wing are also used for comparison. The 

results are shown in Figure-8.1.9. The general comparison is good for the range of angles 

shown with the predictions underestimating the measured data. This is a trend that has 

now been established as common for all the delta-wing variations seen previously and in 

contrast to those for the rectangle wings, which always overestimated measured data at 

higher angles of attack.    
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Figure 8.1.8: Unstructured mesh on the 70° diamond wing 

 

 

Figure 8.1.9: Lift coefficient versus angle-of-attack for the 70° diamond wing 
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8.1.6 SWEEP WING 45° 

In contrast to high taper-ratio wings such as the delta, diamond and arrow wings, 

the current approach predicts very good results for low taper-ratio geometries and does so 

for other geometries that have physics that are captured by vorticity-solvers. This was 

seen in the limiting case for a rectangle wing but is not limited to such basic geometries. 

The case presented here for a 45° sweep wing is another example where the current 

approach predicts the aerodynamic performance in close accordance with measured data.  

The geometry used here is a standard zero taper-ratio rectangle wing with an 

aspect ratio of 5.0 and 45° sweep on the leading and trailing edges. The experimental data 

used for comparison here is obtained from the work of Weber and Bremner 
30

 in 1958 

and is shown in Figure-8.1.10 and Figure-8.1.11. Figure-8.1.10 shows the very close 

approximation of the predictions alongside the measured lift coefficient for the wing for 

the entire range of measured angles of attack. Similarly, the sectional lift coefficient 

plotted as a function of span-wise location also shows remarkable estimations alongside 

the measured data. Note that the sectional lift distribution is nonlinear for such wings 
30, 31

 

but the current approach is able to match that nonlinearity accurately. Some noise is seen 

inside the experimental data as well as the characteristic numerical noise in the sectional 

circulation data of the current approach (which manifests itself as the sectional lift 

coefficient using the Kutta-Joukowski formulation).   
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Figure 8.1.10: Lift coefficient versus angle-of-attack for the 45° sweep wing 
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Figure 8.1.11: Normalized sectional lift coefficient for the 45° sweep wing 

 

8.1.7 UNIT SPHERE AND AXISYMMETRIC BODIES 

In addition to the standard wing geometries, axisymmetric bodies were also tested 

for the classical potential flow results using the current solver. Two of these bodies are 

presented here: a sphere and an ogive body. The sphere was designed with a unit radius 

and meshed unstructured as shown in Figure-8.1.12. The theoretical lift coefficient from 

such a body without wake description is zero. The geometry was tested from 0° to 90° 

angle of attack and the results are shown in Figure 8.1.13. The overall prediction is found 

to be well within acceptable limits around the theoretical prediction. There is some 
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numerical error obtained from both the solver as well as the facetization of the analytical 

sphere surface and its effects are random as seen in Figure-8.1.13.  

 

Figure 8.1.12: The unit sphere 

 

 

Figure 8.1.13: Lift coefficient versus angle of attack for the sphere 



105 

 

The ogive body used for the tests is shown in Figure-8.1.14. This body was 

generated with a center body radius of 0.5 meters and an overall length of 4.0 meters. The 

unstructured mesh generated on this body shows some of the limitations of the 

unstructured mesh discussed in previous Sections. The nose of the ogive is poorly 

discretized by the mesher but has very good quality facets. This is helpful to the solver 

but poor for overall mesh fidelity. Using an structured mesh for such a body would have 

increased the mesh fidelity by retaining the appropriate feature curves but would have 

resulted in solver oscillations and higher numerical errors the loads. As such, the 

predicted results for the lift coefficient are much better than the sphere as seen in Figure-

8.1.15. The numerical error is significantly lower and overall drives the point that the 

current approach requires only the “essence” of the underlying geometry for it to provide 

accurate results. This will prove very useful in the following Sections that deal with the 

advanced geometries.  

 

Figure 8.1.14: The ogive axisymmetric body 
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Figure 8.1.15: Lift coefficient versus angle of attack for the ogive body 

 

 8.2 ADVANCED TESTING SUITE 

The list of geometries tested in this group includes:  

a) General-Dynamics F-16A 

b) McDonnell Douglas F-18A  

c) DLR-F6 commercial transport aircraft  

d) NASA Canard Fighter 

e) Rutan Varieze 
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8.2.1 GENERAL-DYNAMICS F-16A 

The General-Dynamics F-16A Fighting Falcon was originally designed as a 

multipurpose strike aircraft in the lightweight fighter category in the 1970s 
32

. Its original 

design objective was superior subsonic-cruise lift-to-drag ratio to allow effective mission 

radii with a variety of air-to-ground and air-to-air weapons. The design (Figure-8.2.1) has 

leading edge extensions for the main wing to provide controlled vortex lift and increase 

lift at high angles of attack 
32

. The single vertical stabilizer was chosen over the two 

surface options unlike the F-15 to reduce buffeting from strake vortices at high AOA. 

The engine intake is place below the nose to avoid gun gas ingestion 
32

. The overall 

wing-body intersection is blended for superior aerodynamic performance and increased 

internal volume for fuel (and hence range).  

 

Figure 8.2.1: The Lockheed-Martin F-16 
32

 

This design was tested using the current approach by the conversion of a flight-

simulation geometry used by NASA into a solver ready mesh. The original geometry is 
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shown in Figure-8.2.2. This represented the starting point in the conversion process for 

the solver.  

 

Figure 8.2.2: Original geometry for the F-16A post CAD design 

This geometry was then cleaned up using manual repair tools to remove 

geometrical features that would not contribute to the solver fidelity but would otherwise 

increase the overall mesh size and induce solver instability and increase overall 

computation time. The features removed in the manual repair process included the 

weapons stores, the under-wing pylons, the gun ports and the electronics antennae. The 

engine intake and exhaust were closed off with additional facets and the internal 

geometry removed.   Further, the thin nature of the horizontal stabilizer allowed for the 

collapsing of the upper and lower surfaces into a mean camber line thin surface.  
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Following the geometrical de-featuring, the model was passed through the auto-

mesher to improve overall mesh quality and sizing gradients. The need from this can be 

seen from the auto-mesher results shown in Figure-8.2.3. Additional feature curves were 

marked manually to ensure the auto-mesher did not de-feature the surface curvature in 

the wing-body intersection regions as well as the cockpit-fuselage intersection regions 

(this allowed the preservation of the classic bubble-shaped canopy lines of the F-16). 

Note from Figure-8.2.3 that the auto-mesher induced surface perturbations at several 

points on the geometry. These were manually cleaned after the meshing process.  

The user of the auto-mesher increased facet count substantially as seen from the 

statistics in Table-8.2.1. However, the overall mesh quality was much improved. This 

was considered a good tradeoff between computation time and solution fidelity.  

The boundary physics for the geometry included slip walls at every point on the 

geometry except for the intake and exhaust facets that were marked as velocity inlets and 

outlets. The trailing edge detection was manual and the facets were marked prior to 

solver initialization. The geometry was evaluated using a symmetry plane.  
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Figure 8.2.3: Auto-mesher results on the F-16A 

Table 8.2.1: Auto-mesher results for the F-16A  

 Initial Geometry Refined Mesh 

Number of facets 4504 13964 

Average facet quality  8.3491 2.2253 

Worst facet quality 4579.36 106.52 
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The solver was run for a 10
-4

 convergence setting and the Trefftz plane was 

marked 6 meters behind the horizontal stabilizer trailing edges. This was considered a 

safe point for the termination of the wake as a tradeoff between wake fidelity and 

computation time. The results of the vorticity-solver for the geometry are shown in 

Figure-8.2.4 for an AOA of 10°. The wrap-around of the main-wing wake strands near 

the fuselage is easily visible. 

 

Figure 8.2.4: Vorticity distribution on the F-16A 

The aerodynamic loads were evaluated using 32 ICL planes (using the average 

edge-size of the mesh) as shown in Figure-8.2.5. The sectional lift-coefficient as a 

function of span-wise location for an AOA of 10° is shown in Figure-8.2.6. The loss of 

lift caused by the presence of the fuselage is easily visible as well as the additive effects 

of the horizontal stabilizer.  
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Figure 8.2.5: ICL distribution about the symmetry plane on the F-16A 

 

Figure 8.2.6: Lift coefficient span-wise distribution about the symmetry plane 

The integrated lift data was compared with experimental results obtained by 

Nguyen et.al 
32

, in 1979 as part of a NASA effort. The flight conditions were highly 
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compressible at Mach 0.9 and the predicted results were corrected for compressibility 

using the correction terms described in Section-4. The final results are shown in Figure-

8.2.7. The overall comparison is found to be very favorable along the measured data. 

There is some deviation at the lower and upper spectrum of the data as a result of slightly 

lower slope of the predicted lift-curve. It is reasoned that this is the result of inaccuracies 

in the source geometry.  

 

Figure 8.2.7: Lift coefficient versus angle of attack for the F-16A 
32

 

The integrated drag predictions were compared with measured data obtained from 

the work of Webb and Kent 
33

 in 1977 and were also collected for Mach 0.9 in flight. The 

predicted data fits well within the flight-test data but the induced drag is seen to be 
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underestimated at higher angles of attack. The effects of compressibility on the predicted 

data could also be a factor in this discrepancy.  

 

Figure 8.2.8: Lift versus drag for the F-16A 
33

 

 

8.2.2 MCDONNELL-DOUGLAS F-18A 

The second advanced geometry used in this testing suite was the McDonnell-

Douglas F-18A (Figure-8.2.9).  The pre-solver processing applied on this geometry was 

very similar to that adopted for the F-16 including the manual de-featuring of extraneous 

external and internal geometry objects prior to auto-meshing. The final mesh is shown in 

Figure-8.2.10. The geometry was modeled with 7,857 facets about the symmetry plane. 
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Given the nature of the experimental results available for comparison, the engine intakes 

and exhausts were not modeled with a velocity inlet boundary. The horizontal and 

vertical stabilizers were converted to thin surfaces but the main wing was modeled as a 

thick body merged with the similarly thick LERXs (visible in Figure-8.2.10).  

 

Figure 8.2.9: The McDonnell Douglas F-18 

 

Figure 8.2.10: Auto-mesher results for the F-18A 

The solver was run for a 10
-4

 convergence setting and the Trefftz plane was 

marked 5.0 meters behind the horizontal stabilizer trailing edges. This was considered a 
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safe point for the termination of the wake as a tradeoff between wake fidelity and 

computation time. The results of the vorticity-solver for the geometry are shown in 

Figure-8.2.11 for an AOA of 1°.  

 

 

Figure 8.2.11: Vorticity distribution on the F-18A (vorticity units = m
2
/sec; AOA = 

1° and free-steam velocity = 1 m/sec) 

The aerodynamic loads were evaluated using 44 ICL planes (using the average 

edge-size of the mesh) as shown in Figure-8.2.12. The sectional lift-coefficient as a 

function of span-wise location for an AOA of 1° is shown in Figure-8.2.13. The figure 

illustrates the important additive and subtractive effects between the main wing, the 
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stabilizers and the fuselage. Moving from the wingtip inwards, the additive effect of the 

horizontal stabilizer is seen initially, spiking the overall sectional lift. This is then 

subtracted from by the tilted vertical stabilizer which caused the downward spike. The 

LERXs then add to the lift and the curve spikes up again and finally drop off above the 

fuselage, which does not produce any useful lift at such low angles.  

 

Figure 8.2.12: ICL distribution about the symmetry plane on the F-18A 
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Figure 8.2.13: Lift coefficient span-wise distribution about the symmetry plane 

 The integrated lift data was compared with experimental results obtained by 

Banks 
34

 in 1988. The experimental conditions were slightly compressible at Mach 0.33 

and a Reynolds number of 5.33×10
6
. The predicted results were corrected for 

compressibility using the correction terms described in Section-4.  

At this point it is perhaps useful to compare the results of the experimental results 

of Banks with the vorticity solver used by Browne and Katz 
35

 in 1990 as well as the 

current solver developed for this effort. The geometry used by Browne and Katz is shown 

in Figure-8.2.14(a). The fidelity of the geometry is quite poor compared with geometry 

used for the current solver (Figure-8.2.14(b)). This is understandable given the 

computational hardware limitations in 1990. However, moving past the geometrical 

fidelity, several philosophical differences can be outlined between the past work and the 

current methodology. Primarily, the model developed by Browne and Katz 
35

 is a 

structured mesh with quad valency panels. This is in line with the approach taken by 
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legacy Vorticity solvers. For geometries as advanced as the F-18, this imposes a penalty 

with the solution fidelity compared with the unstructured mesh used for the current 

approach.  

 

Figure 8.2.14(a): Panel model of the McDonnell Douglas F-18A 
35

 with 1,336 panels 

(effective 2,372 facets for current solver) 

 

Figure 8.2.14(b): Unstructured model of the McDonnell Douglas F-18A with 7,853 

facets used in the current solver 

This penalty between the two solver approaches is shown in the comparison of the 

results next to the NASA Ames wind-tunnel results by Browne and Katz 
35

 in 1990 

(Figure-8.2.15 and Figure-8.2.16). As seen from the lift data, the comparison of both 

solvers is favorable at lower angles of attack (AOA < 12°). However, the vorticity-solver 



120 

 

used by Browne and Katz 
35

 under-predicts the induced effects while the current 

approach over-predicts the induced loads beyond AOA=15°. The drag results amplify 

this discrepancy substantially in favor of the current approach. It is seen from Figure-

8.2.16 that the current approach predicts the drag results much better than the older 

solvers at higher AOA. Even so, beyond AOA=20°, the current approach also begins to 

under predict the drag as nonlinear physics become dominant on the upper surfaces of the 

F-18 LERXs.    

 

Figure 8.2.15: Lift coefficient versus angle of attack for the F-18A 
34-35
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Figure 8.2.16: Lift versus drag for the F-18A 
34-35

 

 

8.2.3 DLR-F6 COMMERICAL TRANSPORT AIRCRAFT 

The third geometry used in this testing suite was the AIAA DLR-F6 (Figure-

8.2.17) 
36-38

. The pre-solver processing applied on this geometry differed from the 

previous cases in that the original CAD tessellations did not have to be de-featured or any 

components removed other than the volumetric bounding box. This is because the DLR-

F6 geometry is part of the AIAA drag prediction workshop 
36-38

 testing suite and as such 

is designed in CAD for use in CFD. Unlike the F-16 and F-18 geometries, which were 

designed as visualization meshes for simulators, this geometry is a converted CFD 
36

 

model used in the current solver.  
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Figure 8.2.17: The DLR-F6 geometry on a mount in the DLR wind-tunnel 
36

 

The initial CAD tessellations are shown in Figure-8.2.18. The geometry is already 

in an unstructured state and is used as such. The initial mesh was topologically consistent 

and the bounding box mesh about the symmetry plane was split accordingly 
36

 as seen in 

Figure-8.2.18. This was subsequently removed for testing in this approach since volume 

meshes were not needed. The presence of underlying CAD also allowed for a unique test 

of the CAD projection abilities of the auto-mesher which resulted in a good quality, 

solver-ready surface mesh as shown in Figure-8.2.19. This final mesh had 11,038 facets 

about the symmetry plane.  

On the DLR-F6, the podded engine is hollow inside and follows the model design 

for the wind tunnel 
37-38

 (Figure-8.2.17). This negated the need for velocity inlets to be 

applied on the engine intake and exhaust. Further, the geometry is simplified and there 

are no horizontal and vertical stabilizers on the geometry. No surfaces had to be collapsed 

to remove their thicknesses. True to the original CFD geometry, the model was tested 

with a symmetry plane boundary.  
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Figure 8.2.18: Initial AIAA CAD tessellations for the DLR-F6 
36

 

 

Figure 8.2.19: Auto-mesher results for the DLR-F6 

The solver was run for a 10
-4

 convergence setting and the Trefftz plane was 

marked 1.0 meters behind the horizontal stabilizer trailing edges (the model overall 

length is 1.188 meters using the scaling applied on the wind-tunnel geometry). As such 

the Trefftz location corresponded to roughly one body length past the last facet on the 

mesh and this was considered a safe point for the termination of the wake as a tradeoff 
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between wake fidelity and computation time. The results of the vorticity-solver for the 

geometry are shown in Figure-8.2.20 for an AOA of 1°. 

 

 

Figure 8.2.20: Vorticity distribution on the DLR-F6 (vorticity units = m
2
/sec; AOA = 

1° and free-steam velocity = 1 m/sec) 

The aerodynamic loads were evaluated using 46 ICL planes (using the average 

edge-size of the mesh) as shown in Figure-8.2.21. The sectional lift-coefficient as a 

function of span-wise location for an AOA of 2° is shown in Figure-8.2.22. As for the 

case of the F-18, the figure illustrates the important additive and subtractive effects 
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between the main wing and the fuselage. However, unlike the F-18 geometry, the much 

larger numerical noise is seen in the ICL vorticity distributions as a result of the low-

density mesh on the wing, which results in much larger surface perturbations. These can 

be improved with further local refinements of the mesh but as is outlined later, the effect 

on the results is expected to be minimal.  

 

Figure 8.2.21: ICL distribution about the symmetry plane on the DLR-F6 

 

 

Figure 8.2.22: Lift coefficient span-wise distribution about the symmetry plane 
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 The integrated lift and drag data was compared with experimental results obtained 

in the ONERA 
36

 tunnels (in 2001) as well as with two Navier-stokes solvers (CFL-3D 

and OVERFLOW 
37-38

) using two “medium” meshes and Overset mesh solvers 
36-38

. The 

choice of using medium meshes as a comparison point with CFD is deliberate. It is well 

understood that the above solvers working with “fine” meshes result in superior results 

than the relatively coarser “medium” meshes. However, it was discovered that the 

tessellations used in the current approach are similar to the “coarse” meshes used in CFD 

solvers, even though from potential-flow standpoint, they represent very refined meshes. 

DLR-F6 results with similar coarse CFD meshes could not be obtained 
36

. However, 

medium mesh results are available 
36-38

 and used here to illustrate the philosophical 

differences in requirement between the two approaches using the same underlying 

geometry.  

The experimental conditions as well as those used in the CFD solvers were highly 

compressible at Mach 0.75 
37

. In both these cases, the wing pressure distribution showed 

supercritical performance and normal shock spikes were measured on the surfaces during 

experiment 
36

. This remains out of bounds of the limit of the potential flow solvers. 

However, using the precedence from the F-16A tests described previously, the tests on 

this geometry were continued after including the corrections for compressibility as 

described in Section-4.  

The overall comparison is found to be very favorable alongside the measured data 

as seen in Figure-8.2.23 and Figure-8.2.24. The lift data shows the Navier-Stokes solvers 

with medium meshes overestimating the measured data while the current solver is able to 
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match closer. The perturbations in the evaluated data for the current approach are due to 

the perturbations noted in the ICL vorticity distributions in Figure-8.2.22 and are entirely 

numerical errors. The drag data in Figure-8.2.24 shows similar trends as the lift data for 

the two Navier-Stokes solvers 
36-38

. The hypothesis by the authors is that there is an over-

prediction in the surface pressures as a result of the coarser mesh. Since the aerodynamic 

loads are evaluated by pressure-summations, both the lift and drag are seen to be over-

predicted. The drag predictions by the current approach shows a little discrepancy once 

again brought out by the vorticity perturbations in the ICL (drag data between 0.025 and 

0.03 is perturbed adversely). Given the outer bounds of the physics involved, the current 

approach manages to get relatively close matches with the measured data.  

 

Figure 8.2.23: Lift coefficient versus angle of attack for the DLR-F6 
36-38
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Figure 8.2.24: Lift versus drag for the DLR-F6 
36-38 

 

8.2.4 NASA CANARD FIGHTER 

The final two geometries in this testing suite deal with stress testing of the relaxed 

wake-strand model. Both geometries have canards and main wings which involve wake 

interference in the loads as well as complex wake relaxation. The similarity between the 

geometries ends there, however. The NASA Canard Fighter 
39

 was designed in 1983 

purely as a testing model for improving the understanding of such canard-wing 

interactions. It has a configuration of a high subsonic combat aircraft similar to the 

Swedish Viggen and in recent years the French Rafale and the European Eurofighter 

designs 
39

. Unlike these real world geometries, however, the NASA design was a 
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simplified model with straight rectangular section and primary focus was given only to 

the canard-wing aerodynamics 
39, 41-43

.  

The model of the Canard-Fighter (shown in Figure-8.2.25 as mounted in the 

Ames wind tunnels) used for this effort was reconstructed from the detailed dimensions 

and scaling information provided in the work by Stoll and Koenig 
39

 at NASA Ames in 

1983. This reconstructed geometry is shown in Figure-8.2.26 following auto-meshing 

cleanup. The mesh had 2,383 facets about the symmetry plane and was specifically 

modeled to include thin main wings and canard. This is in accordance with the very low 

thickness of the NACA 65A004 airfoil 
40 

used on the NASA model for both the surfaces. 

The savings in computation time as a result of this action is significant (a reduction of 

23% was observed). And as outlined later, the effect on the final results is not noticeable.  

Also in accordance with the wind tunnel model 
39

, the engine intakes and the base 

of the model were modeled with facets but otherwise were not included with a velocity 

inlet boundary. The wing and canard mesh patch interface with the fuselage is non-

conformal and was not fixed. The solver adapted to this condition without any 

oscillations given the general alignment of the facets in those regions.     
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Figure 8.2.25: The Canard Fighter model on a mount at NASA Ames tunnel 
39

 

 

Figure 8.2.26: Auto-mesher results for the Canard Fighter post CAD design 

The solver was run for a 1e-4 convergence setting and the Trefftz plane was 

marked 5.0 meters behind the main wing trailing edges (the model overall length as used 

in the solver is 5.053 meters). As such the Trefftz location corresponded to roughly one 

body length past the last facet on the mesh and this was considered a safe point for the 

termination of the wake as a tradeoff between wake fidelity and computation time. The 
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results of the vorticity-solver for the geometry are shown in Figure-8.2.27 for an AOA of 

10°. 

Figure-8.2.27 is also a good illustration of the stability of the wake strands. For 

this angle of attack, the wake from the canard moves above the main wing by a 

significant distance. This is partly due to the higher elevation of the canard relative to the 

wing and partly because of the fluid flow angles. The high incidence of the flow also 

creates powerful tip vortices for both the canard and the main wing and is easily seen in 

Figure-8.2.27. The vortices leaving the canard are under the influence of the main wing 

and the fuselage and as a result they do not spiral in a manner similar to the main wing 

strands. The strand emanating from the canards near the root are also pulled above and 

around the top surfaces of the fuselage as a result of the local vorticity gradients caused 

by the sharp angles on the geometry.  

The aerodynamic loads were evaluated using 18 ICL planes (given the relatively 

coarse mesh) as shown in Figure-8.2.28. The sectional lift-coefficient as a function of 

span-wise location for an AOA of 10° is shown in Figure-8.2.29. As for the case of the F-

18, the figure illustrates the important additive and subtractive effects between the main 

wing, canard and the fuselage. Given the simplified geometry involved, there is very little 

numerical noise in the ICL distribution.  
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Figure 8.2.27: Vorticity distribution on the Canard Fighter (vorticity units = m
2
/sec; 

AOA = 10° and free-steam velocity = 1 m/sec) 
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Figure 8.2.28: ICL distribution about the symmetry plane 

 

 

Figure 8.2.29: Lift coefficient span-wise distribution about the symmetry plane 

The integrated aerodynamic loads were compared with the experimental results 

obtained from the work of Stoll and Koenig 
39, 41-43

 at NASA Ames in 1983. Further 

comparison is made with the nonlinear Vortex Lattice Solver (VLS) used at Ames 
44

 by 

the authors, as well as with the Boeing PANAIR pressure-solver also used to compare 
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with the experimental results 
45

 (Figure-8.2.30). The VLS solution simplified the 

geometry by removing the fuselage and extending the wing and the canard to the 

centerline of the geometry 
44

. It also maintained the surfaces as thin. The PANAIR 

solution modeled the geometry entirely as a closed and manifold body for a pressure-

integrated solution 
45

.  

As seen from Figure-8.2.30 for the lift evaluations, the current approach closely 

approximates the wind-tunnel results. The VLS predictions are also close to the measured 

values. However, the PANAIR results deviate quickly from the measured data with 

increasing angle of attack. The PANAIR deviation is expected 
45

 given the low facet 

count and poor geometric fidelity of the model: as outlined earlier in this document, 

pressure-solvers remain limited by the fidelity of the mesh used. However, the reason the 

non-linear VLS solution matches experimental data so accurate is because it models the 

rollup of free vortices similar to the current approach’s relaxed strand model 
44

. More 

importantly, the model has the ability to simulate vortex separation from leading, side 

and trailing edges using free-separation vortices composed of discrete vortex segments 
44

. 

The current approach does not model free-vortex separation from the leading edges and 

this remains one of the major future objectives. The accuracy of the Ames non-linear 

VLS solver is a classic example of enhancing the simplified VLS solvers for improved 

accuracy and physics 
14, 44

.  

Figure-8.2.31 illustrates the results for the model with and without the canards on 

the geometry. The comparisons here are restricted only to the wind-tunnel results given 

the absence of similar data from the NASA references cited earlier. The current approach 
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accurately captures the presence and absence of the canard from low AOA up to the point 

of vortex breakdown above the main wing surfaces.  

 

Figure 8.2.30: Lift coefficient versus angle of attack for the Canard Fighter 
44-45
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Figure 8.2.31: Lift versus angle of attack for the Canard Fighter 
44-45

 

 

 

8.2.5 RUTAN VARIEZE 

The final geometry used in this testing suite increases the stress on the relaxed 

wake-strand model by combining a canard-wing with a realistic fuselage and more 

complex surface blending. The model chosen for this test is the Rutan Varieze 
46

 which is 

a small civilian pusher design as shown in Figure-8.2.32. The testing goals remain the 

same as those for the NASA Canard-Fighter 
39

. 
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Figure 8.2.32: The Rutan Varieze 

The geometry is designed using the detailed CAD information provided by the 

work of Long 
47

 in 1985 as part of a NASA research effort. The CAD was modified to 

remove the undercarriage fairings and booms as well as the propellers. The propeller nose 

cone was smoothened and blended into the rear fuselage. The vertical stabilizers at the 

wingtip were made into thin surfaces. Smaller fairings and antennae were removed as 

part of the standard auto-mesher de-featuring. The final resulting mesh is shown in 

Figure-8.2.33. The wing meshes had significant perturbations but were found to be 

irrelevant to the overall solver fidelity, in line with the robustness expectations following 

the DLR-F6 geometry testing done previously. Unlike the Canard-Fighter, the vertical 

stabilizers were modeled as lifting surfaces given their location on the main wing tips 
46

. 

The under-fuselage engine air intake was not modeled as a velocity inlet and was closed 

off as a solid surface. The geometry was modeled with a symmetry plane boundary.       
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Figure 8.2.33: Auto-mesher results for the Varieze post CAD design 

The solver was run for a 1e-4 convergence setting and the Trefftz plane was 

marked 5.0 meters behind the main wing-trailing edges. The results of the vorticity-solver 

for the geometry are shown in Figure-8.2.34 for an AOA of 10°. As discussed for the 

same geometry in Section-4, the wake strands are seen to show complex behavior over 

the wing surfaces and next to the fuselage and require more iterations (and hence more 

computation time) than for other relatively simpler cases such as the DLR-F6 geometry.  
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Figure 8.2.34: Vorticity distribution on the Varieze (vorticity units = m
2
/sec; AOA = 

10° and free-steam velocity = 1 m/sec) 

 

The aerodynamic loads were evaluated using 48 ICL planes (using the average 

mesh edge-size as discretization length) as shown in Figure-8.2.35. The sectional lift-

coefficient as a function of span-wise location for an AOA of 10° is shown in Figure-
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8.2.36. As for the case of the Canard-Fighter, the figure illustrates the important additive 

and subtractive effects between the main wing, canard and the fuselage. Unlike the 

Canard-Fighter, however, the Varieze has substantially more numerical noise in the ICL 

distribution and has convergence history behavior similar to that of the DLR-F6, which 

also had substantial ICL distribution scatter due to mesh perturbations.  

 

Figure 8.2.35: ICL distribution about the symmetry plane 
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Figure 8.2.36: Lift coefficient span-wise distribution about the symmetry plane 

The integrated aerodynamic loads were compared with the experimental results 

obtained from the work of Long at NASA Langley 
47

 in 1985. The flow is incompressible 

with only Mach 0.1 flow. The tests on the Varieze shed important light on the coupling 

effects of the relaxed wake flow over lifting surfaces and their corresponding effect on 

the overall lift generation 
46-47

. Tests were done on the geometry with and without 

canards and with and without main-wing 
47

. The results of these tests for the lift 

generated are presented in Figure-8.2.37.  

From Figure-8.2.37, it is possible to see the coupling effects clearly. The tests 

done with individual components (canard or wing) are plotted and in both cases the 

current approach matches them accurately within the appropriate AOA range prior to 

flow separation. However, a plot has been made to show the decoupled sum of the wing 

and canard lift coefficients. This curve is parallel to the experimental data for the coupled 

sum of the canard and the wing. This is the coupling effect of the canard wake moving 
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over the wing surfaces that causes the overall lift coefficient to reduce. When run with the 

complete geometry setup, the current approach captures the effect clearly and the 

matches the measured data closely. This test underlines the importance of (and need for) 

relaxed wakes for complex aerodynamically-coupled geometries such as the Varieze.     

 

Figure 8.2.37: Lift coefficient versus angle of attack for the Varieze 
47

 

  



 
 

 

 

9.  CONCLUSIONS 

 

A method for the application of vorticity based potential-flow solvers to 

unstructured surface meshes has been created through the use of a novel method for 

aerodynamic loads. This method is designed to maintain the advantages of the vorticity 

based solvers while attempting to remove the limitations of geometrical inputs associated 

with the philosophical approach. A discussion on the necessity and advantages of this 

approach has been presented. It was shown for the case of simple geometric objects such 

as the sphere that 65% reductions in solver iterations could result from the use of an 

unstructured mesh (with inherent higher mesh quality) versus a converted structured 

mesh. In addition, a reduction of ~54% in mesh size was obtained as a result of higher 

mesh quality. Overall, the combination of reduced mesh size and higher quality led to a 

reduction of about ~88% in overall solver CPU time.   

The theoretical underpinnings of the current methodology have been elaborated 

on in this document. A classical test case is presented in the thin elliptical wing for which 

an analytical solution is known from lifting line theory. Comparisons of the current 

numerical approach with this analytical solution show close approximation (error 

variation within 2.5-3%). The linearized nature of the underlying theoretical foundation 

for the current theory was shown using the F-18 geometry.  In accordance with the stated 
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objectives of this effort, stability metrics were developed for the surface vorticity and the 

relaxed wake strands. These parameters have since been used to demonstrate the stability 

of the solver under stressful geometry conditions.   

To further capitalize on the improved possibilities offered by the use of 

unstructured surface meshes, a modification to the evaluation of skin-friction coefficients 

using surface vorticity was developed to bypass the limitation of existing approaches. 

The heuristic arguments in support of the current formulations have been presented and 

fit well within experimentally observed behavior. A novel unstructured wake-strand 

model has been developed to allow handling of wakes emanating from unstructured 

surface meshes and test cases show the stability of the vorticity shedding as well as the 

applicability of its novel features such as adaptive time stepping and vorticity decay 

models used to eliminate mathematical singularities.  

An attempt has been made to extend Potential-Flow solvers to the current industry 

surface meshing and numerical solver standards. This automated design pipeline is 

considered robust enough to allow integration with optimizers within an MDO 

environment no longer restricted in their geometrical design spaces.  In accordance with 

the objective of this effort, metrics were developed for surface mesh quality and 

automated meshing tools were developed to convert input geometries into solver ready 

meshes. The effect of size based meshing and mesh quality on solution fidelity was 

tested. It was determined that surface meshes with uniform sizes and quality offered 

superior results and quicker convergence. RMS error reduction between 10-20% between 

higher and lower quality meshes. 
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Several improvements in solver methodology applicable in an unstructured mesh 

solver have also been developed. These included the FDMR and persistent induction 

matrix concepts. The use of the FDMR on the F-35 fighter geometry resulted in 80% 

reduction in solver iterations for the same convergence limits and an order of magnitude 

improvement in solver convergence (10
-3

 versus 10
-2

 for the non FDMR case) for the 

same number of iterations. Testing using the persistent induction matrix concept allowed 

reductions between 65-85% in CPU time for the same number of iterations for large 

surface meshes (>10,000 facets).  

Improvements to the boundary physics models have been made to take advantage 

of the unstructured meshes. Relaxation of the Neumann condition on user-specified facets 

or topological patches has made it possible to create velocity inlets. Additionally, the 

detection of the trailing edges has been automated, thereby removing a possible limitation 

compared to structured mesh solvers. Use of the Mirror-plane boundary condition has 

allowed substantial reductions in solver time for steady-state, symmetric flow geometries. 

Tests on the DLR-F6 geometry with and without the mirror plane boundary showed that 

reductions of up to ~65% could be obtained through the use of the mirror plane. Other 

geometries allow for varying savings in CPU time with the general trend towards 

increasing savings for large meshes. In general, reductions of up to 75% have been noted 

for some designs such as the Rutan Varieze.   

A test-suite of basic shapes and bodies has been tested to evaluate the fidelity of 

the new approach. This suite tested the current solver over thin wing plan-forms of 

various types. It was observed that the current theory is accurate for rectangular wings, 
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sweep wings, axisymmetric bodies and delta wings with all aerodynamic load predictions 

within 5-10% of experimental data at low angles of attack. At higher angles of attack, 

expected deviations between predictions and experiments are seen and these are 

attributed to the non-linearity of the physics close to, and after, flow separation. The 

validity of the Kutta condition is shown for the axisymmetric bodies when the vorticity 

shedding is eliminated and no trailing edges are marked.  

An advanced test-suite has also been developed to stress-test the solver as well as 

to test out the geometry handling pipeline required to handle these test cases. Through 

these tests, it was determined that the solver is able to provide high fidelity results for a 

wide variety of test cases. Results show a high degree of fidelity for typical fighter 

configuration geometries such as the F-16 and the F-18. In the case of both these 

geometries, the aerodynamic loads were found to be within ±10% of the experimentally 

obtained values. For the case of the F-16 it was shown that the range of applicability of 

the compressibility correction factor extends to Mach Numbers between 0.8-0.9. The F-

18 test case showed substantial improvement of numerical drag prediction with the 

current approach over contemporary solvers.  

Tests were also done for commercial airliner representative test cases. The DLR-

F6 geometry was used and aerodynamic load predictions were within ±5-10% with slight 

over-predictions in drag and slight under-prediction in lift coefficient. This test was 

compared with CFD results using similar sized surface meshes as a starting point and the 

results showed substantially lower fidelity of solutions compared to experiments. In 
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addition, a reduction in CPU time was noticed from ~36 minutes (CFD) to about 3.5 

minutes (current solver); a reduction of ~90%.  

Testing also included canard equipped geometries to determine the coupling 

effect of the lifting components in such geometries. Two designs were tested: the NASA 

Canard Fighter and the Rutan Varieze. In both cases the coupling effect of the canard on 

the main wing was observed under differing conditions and compared with experimental 

data. Results showed aerodynamic load predictions within ±5-10% and the coupling 

effect was readily visible through the use of the relaxed wake-strand model of vorticity 

shedding.  

Finally, the stated objective of this effort to develop a solver able to handle 

diverse geometrical cases hitherto restricted to Navier-Stokes solver has also been 

reasonably demonstrated by the various models and designs tested within the basic and 

advanced testing suites. Realistic designs such as the F-16, F-18 and Varieze geometries 

as well as reference cases such as the DLR-F6 (for CFD studies) and the NASA Canard 

Fighter (for legacy and contemporary potential-flow studies) illustrate the spread of 

designs that can be readily tested for aerodynamic performance using the Method of 

Integrated Circulation.  
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APPENDIX-A 

DERIVATION OF THE BIO-SAVART LAW FOR VORTEX RINGS 

 

 

The continuity equation for incompressible and inviscid equation can be written 

as:  

  𝑣 = 0 
(A.1) 

The velocity field can be written as the curl of a vector field B, such that:  

𝑣 =     𝐵 

(A.2) 

Since the curl of a gradient vector is zero, B is indeterminate to within the 

gradient of a scalar function of position and time, and the vector field B can selected such 

that:  

  𝐵 = 0 
(A.3) 

The vorticity then becomes:  

 

𝛾 =     𝑣 =     (   𝐵) =   (  𝐵)     𝐵 

(A.4) 

Substituting Equation-A.3 into Equation-A.4,  

 

𝛾 =      𝐵 
(A.5) 

The solution to Equation-A.5 is arrived at using Green’s theorem by Karamcheti
 

48
 and is written as:  
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𝐵 = 
1

4 
∫
𝛾

| |
𝑑  

                                                             (A.6) 

Combining Equation-A.2 with Equation-A.6 gives:  

𝑣 =  
1

4 
∫    

𝛾

| |
𝑑  

(A.7) 

Since the infinitesimal volume can be split into an infinitesimal area normal to the 

Vorticity and an incremental distance 𝑑𝑙 on the filament so that:  

𝑑 = 𝑑  𝑑𝑙 

(A.8) 

Also, circulation on the infinitesimal area  𝑑  is given as:  

 = 𝛾𝑑  

(A.9) 

Combining Equation-A.8, Equation-A.9 and Equation-A.7, we get:  

 

𝑣 =  
1

4 
∫    

 

| |
𝑑𝑙 =  

 

4 
∫
𝑑𝑙   

| | 
 

 (A.10) 

Equation-A.10 is the required vector formulation of the Biot-Savart law as used in 

the current effort.  


