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This thesis presents an investigation into near infrared (NIR) spectroscopy as a 

technique for determining pulp yield and kappa number for kraft pulp and black liquor 

samples.  It is believed that proper spectra collection and preprocessing techniques 

combined with a linear regression analysis can produce models that accurately predict 

pulp yield and kappa number.  Currently, no instrument exists for estimating these values 

simultaneously.  Methods for estimating yield and kappa number consist of lengthy lab 

based wet chemistry techniques.  NIR reflectance spectroscopy has the potential of 

providing a single, relatively simple instrument solution for both of these measurements. 

NIR transmission spectroscopy of the black liquor may provide further information and 

process control capability.  The ability to predict yield and kappa number is a valuable 

process control technology for use in kraft mills.   
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Samples of pulp with yield and kappa number ranges typical of mills were 

generated from the batch kraft digestion of softwood chips and liquor of varying EA.  

NIR spectra of the samples were collected using little or no sample pretreatment.  The 

idea was to analyze the samples under conditions similar to a non-idealized mill 

environment.  Different prototype NIR spectrometers were used covering a major portion 

of the NIR spectrum.  Correlations between the pulp yield, kappa number, NIR 

reflectance data of the pulp and NIR transmission data of the black liquor have been 

developed. These lab based calibrations were used to predict kappa number and yield 

values for lab generated pulp samples.  The calibration models were also able to 

accurately predict kappa values for unknown mill pulp samples.     
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INTRODUCTION 

 

Significance of the Research 

The focus of this research was the development of techniques and practices to 

implement near infrared (NIR) spectroscopy for the measurement of process variables 

important to the pulp and paper industry.  The main focus was to utilize NIR 

spectroscopy for the determination of pulp yield and kappa number.  This research will 

lead to the development of lab based and online analyzers capable of measuring pulp 

yield and kappa number.  To achieve this analysis, proper mathematical models and 

spectral techniques must be developed and employed.   

In the pulping process accurate analysis of pulp yield and quality is of 

considerable value.  Pulp yield is an essential parameter having both economic as well as 

process importance.   Knowledge of both yield and kappa number allows for control over 

pulp properties and more consistent pulp and paper products.  The usefulness of these 

parameters warrants a robust technique for their determination. 

In practice, yield determinations are generally inaccurate and are mostly estimated 

using production and inventory.  The tests for kappa number are usually performed in a 

lab on a routine basis as a quality control test.  Kappa tests are either performed by
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manual titration or with the use of an automated titration system.  The automated system 

is likely more accurate, but either procedure requires human input and may lead to 

variability in measurements.  The results of the kappa measurements are generally used to 

determine the control action needed to keep the pulp quality within the specification.  The 

infrequency of these tests gives poor approximations of actual values due to the 

variability and large amount of raw materials used in the pulping process.  Furthermore, 

these tests cannot be used as an online real time process control tool.   

There is clearly a need for a more accurate method of determining pulp yield and 

kappa number.  NIR spectroscopy is a fast and relatively simple method for performing 

compositional analysis of pulp.  The development of lab based and online NIR 

spectroscopy instruments for kappa and yield measurements will allow for unprecedented 

control in the kraft process.



 3

Objective and Scope 

 The objective of this work was to develop techniques necessary to calibrate NIR 

spectroscopic equipment to estimate pulp yield and kappa number of kraft pulp.  NIR 

measurements of the pulp itself and spent black liquor were investigated.  Prototype 

optics benches designed by a third party company were used for the spectral analysis.  

The sample preparation and spectral methods used in this research are not the most robust 

lab based techniques available, but reflect a system that can be implemented online in a 

non-idealized mill environment.  Such an environment requires simple durable 

instrumentation and minimal or no sample preparation.  The specific objectives and 

approaches are stated below: 

• Review and repeat previous research using the third party company�s optics bench 

for NIR measurements. 

• Determine the minimal amount of sample preparation necessary that allows for 

the collection of a useable spectrum.   

• Determine the best arrangement for spectroscopic measurements of the pulp 

sample.   

• Determine the best preprocessing and regression strategies for the development of 

pulp yield and kappa number calibration models.  

• Investigate the ability to estimate yield and kappa number of both pulp and spent 

black liquor using spectroscopic measurements from the optics bench designed by 

the third party company. 
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Wood Composition 

 Wood is the most utilized resource for the production of cellulose containing 

products.  Wood has many components to its structure which must be considered for its 

use in pulping.  These components are considered as either being part of the woods 

macrostructure or microstructure.  Further detail about the wood can be seen at the 

molecular level as well.  Wood is classified as either hardwood (angiosperm) or softwood 

(gymnosperm).  Both types of wood have the same components in their macrostructure 

and molecular level, but differ in their microstructure. 

 

Macrostructure 

It is easy to visualize all of the macrostructural components of wood considering a 

cross-sectional view of a tree trunk.  On the outside of a tree is the outer bark which is 

made up of dead cells that provide physical and biological protection.  The first interior 

layer of the wood is the inner bark or phloem.  The phloem is a narrow layer of tissue that 

serves to conduct the sap or nutrients up and down the tree stem.  Just inside the phloem 

is the cambium where new growth takes place.   

The rate of growth in the cambium varies with season.  Tree growth is 

accomplished through the deposition of successive layers of new cells on already existing 

fibers.  Earlywood growth occurring in the spring and summer is characterized by thin 

wall fiber cells and latewood growth occurring in the fall is characterized by thick wall 

fiber cells.  Trees are generally dormant in the winter months.  This annual growth cycle 

with earlywood followed by latewood results in the annual ring pattern found in wood.   
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The trunk of the tree, not including the bark, is referred to as the xylem and 

contains the sapwood and heartwood.  The sapwood is physiologically active 

(parenchyma cells only) and provides structural support, food storage and water 

conduction for the tree.  The heartwood resides inside the sapwood and is made up of 

dead wood cells that provide only structural support.  Inside the heartwood is juvenile 

wood made up of short fibers with low density.  The juvenile wood surrounds the pith or 

center of the tree.  The pith is composed entirely of parenchyma cells much like the 

sapwood.  The last component of the wood macrostructure is the wood rays which are 

positioned radially and provide storage and lateral food movement from the phloem to 

the cambium and sapwood.   

  

Microstructure 

Considering the microstructure of wood, differences between hardwoods and 

softwoods are apparent.  Hardwoods are more complex containing libriform fibers, vessel 

elements, fiber tracheids, ray cells, and parenchyma.  Whereas softwoods only contain 

fiber tracheids, ray cells, and resin ducts.  The relatively long and narrow libriform fibers 

of hardwoods function as support and the shorter and wider vessel elements aid in 

conducting water and nutrients.  Ray cells in both hardwood and softwood and 

parenchyma in hardwood provide storage and conduction of water and nutrients.  Resin 

ducts in softwoods secrete resins and prevent invasion of insects and pathogenic 

organisms.  The tracheids are the individual fibers that make up most of the vertical 

structure of the wood.  Softwood fibers are generally about twice as long as hardwood 

fibers.  The greatest difference in hardwood and soft wood pertains to the weight and 
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volume percentages of various components like fibers, vessels, and parenchyma in the 

wood.   

 The wood fibers in hardwoods and softwoods can be broken down into additional 

components.  A typical tracheid is composed of several layers.  The middle lamella has a 

very high lignin content and separates two adjacent tracheids.  The middle lamella is 

essentially what holds the fibers together.  The tracheids each have a primary wall and 

secondary wall which contain microfibrils.  Microfibrils are bundles of cellulose fibers 

and their orientation affects characteristics of pulp fibers.  The primary wall is a mixture 

of hemicelluloses with random microfibril orientation.  The three-layered secondary wall 

is located inside the primary wall and contains microfibrils with a specific orientation.   

  

Molecular Level 

At the molecular level hardwoods and softwoods contain the same components 

which are cellulose, hemicelluloses, lignin, and extractives.  Hardwoods typically have 

higher concentrations of cellulose, hemicelluloses, and extractives, while softwood has a 

higher concentration of lignin.    

 Cellulose is a carbohydrate or more specifically a polysaccharide composed of 

repeating cellobiose molecules.  Cellobiose is composed of two d-glucose molecules 

connected by a 1,4�-β-glycosidic bond.   The size of cellulose molecules is quantified by 

their degree of polymerization (D.P.) which is the number of glucose units.  Typically the 

D.P. is in the range of 600-1500 for most papermaking fibers.  While cellulose exists in 

crystalline and amorphous states the high linearity of the cellulose molecule lends itself 

to a crystalline structure.  This crystalline structure produces fibers which are difficult to 
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penetrate by solvents or reagents making them ideal for papermaking.  Other properties 

of cellulosic fibers include high tensile strength, suppleness, resistance to plastic 

deformation, water insoluble, hydrophilic, wide range of dimensions, inherent bonding 

ability, ability to absorb modifying additives, chemically stable, and relatively colorless 

(1). 

 Hemicelluloses, on the other hand, are polymers made up of five different sugars; 

glucose, mannose, galactose, xylose, and arabinose.  Glucose, mannose, and galactose are 

six carbon sugars whereas xylose and arabinose are five carbon sugars.  Hemicelluloses 

generally exist in an amorphous state due to their inherent heterogeneous structure.  This 

aspect makes hemicelluloses much more susceptible to solvation and degradation than 

cellulose.  For this reason there is generally fair less hemicelluloses in pulp than in the 

original wood.   

 Lignin is an amorphous, highly polymerized substance that forms the middle 

lamella and serves as the cement that holds various fibers together.  Lignin is obviously 

important for the structural integrity of the tree, but from a papermaking point of view is 

an undesirable constituent.   The structure of lignin consists of phenyl propane units 

linked three dimensionally.  In chemical pulping the linkage between the propane side 

and the benzene ring is broken in order to free the cellulosic fibers.   

 Extractives make up about 5% of wood and are a diverse class of wood 

components that are soluble in organic solvents.  Extractives include; terpenoid 

compounds, resin acids, fatty acids, and alcohols.  The compounds are generally 

recovered in the pulping process and sold as by-products.
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Kraft Process 

Process Nomenclature 

White Liquor: A mixture of reacting and inactive chemicals dissolved in water and used  

  for the cooking of wood chips to free cellulose fibers.   The active  

  chemicals are sodium hydroxide (NaOH) and sodium sulfide (Na2S) and  

  the dead load chemicals include sodium carbonate (Na2CO3), sodium  

  sulfite (Na2SO3), sodium sulfate (Na2SO4), sodium thiosulfate (Na2S2O3),  

  sodium chloride (NaCl), and potassium chloride (KCl). 

Black Liquor: A mixture of unreacted and dead load chemicals from the white  

  liquor, along with lignin and some dissolved carbohydrates. 

  This is the spent liquor from the cooking of wood chips.   

Green Liquor: This is the dissolved smelt of sodium carbonate and sodium sulfide  

  resulting from the burning of black liquor in a recovery furnace.   

Effective 
Alkali (EA): This is the total sodium hydroxide in liquor at any given time.  Sodium 

  sulfide hydrolyses to produce sodium hydroxide.  Thus the EA is the sum  

  of the actual sodium hydroxide along with the sodium hydroxide formed  

  from the hydrolysis of sodium sulfide.   

As Na2O: This a convention used to put all sodium salts in the liquor on a common  

  basis for measurement.  The sodium salts are expressed in Na2O  

  equivalents, referred to as grams or pounds of Na2O per unit volume. 
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Process Description 

In order to produce pulp for the manufacture of paper products or any cellulose 

containing product, the fibers that compose wood must be freed from their inherent 

structure.   Pulping of wood is performed either by mechanical or chemical means.  The 

idea in chemical pulping is to remove lignin, the amorphous polymer that holds the wood 

fibers together.  Essentially, the wood is delignified and as a result the wood fibers are 

liberated. 

The most common method used for wood pulping is the kraft process.  Figure 1 

and figure 2 show the key components and a block diagram of the kraft process, 

respectively.  In the kraft process, wood chips and white liquor are added to a digester 

and cooked at a range of temperatures and times depending on the type of digester used.  

The amount of liquor charged in the reactor is determined from the bone dry weight of 

the wood and desired liquor to wood ratio.   

The two types of digesters employed in the kraft process are either batch or 

continuous.  Batch digesters are much like a pressure vessel while continuous digesters 

behave more like a plug-flow reactor.  With a batch digester chips and white liquor are 

added to the vessel and the temperature is ramped up and the chips are cooked at a range 

from 155ºC to 175ºC for 1 to 3 hours.  The continuous digester uses multiple zones which 

mimics in spatial coordinates the process that occurs in a batch digester based on time 

coordinates (2).  Chips and white liquor are usually first combined in an impregnation 

vessel allowing the chemicals to begin to diffuse into the chips.  The chips are then 

pumped into the impregnation zone in the top of the digester and then through an upper 

and lower heating zone to ramp up to the desired cooking temperature.  The chips then go 
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to the cooking zone where most of the delignification occurs.  Finally, the chips are 

partially washed in the washing zone and then blown apart by a pressure differential in 

the blow tank to release the liberated fibers from the chips.   

After leaving the blow tank the pulp is sent to series of vacuum washers that serve 

to further remove the remaining organic and inorganic compounds remaining with the 

pulp fibers.  The washer effluent is weak black liquor that can be used as make-up to the 

cooking process or in the washing zone of the continuous digester.  Once the pulp is 

washed it is either sent to paper machines or a bleaching plant for the production of 

higher grade pulps.   

The spent black liquor from the digester enters into a chemical recovery cycle.  

Figure 3 shows the chemical cycles of the process.  The black liquor is first concentrated 

in a series of evaporators and then burned in a recovery furnace.  In the furnace the 

organic compounds are oxidized and the inorganic chemicals remain and form a mixture 

referred to as smelt which contains sodium carbonate and sodium sulfide.  The smelt and 

weak white liquor are combined in a dissolving tank and then sent to the green liquor 

clarifier.  Suspended solids referred to as dregs settle out in the clarifier and are washed 

to remove additional useful inorganic chemicals before being sent to the landfill.  The 

resulting green liquor from the clarifier is sent to storage tanks and eventually to a 

causticizing plant.  

The causticizing plant serves to convert the green liquor into white liquor to 

eventually be used in the cooking process.  Calcium oxide (CaO) in the form of lime is 

first added to the green liquor at the slaker.  The calcium oxide and water react violently 

disintegrating the lime and allowing for the filtration of unwanted and inert materials 
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from the useful lime.  The material that is filtered out is referred to as grits and is sent to 

the landfill.  The remaining lime from the slaker is sent to the causticizer to complete the 

causticizing reaction.  The slurry from the causticizer contains sodium hydroxide and 

lime mud (solid CaCO3).  The lime mud is removed from the slurry at the white liquor 

clarifiers and the resulting white liquor can once again be used at the digester.  Lime and 

weak white liquor are recovered from the lime mud for reuse in the causticizing process.
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Figure 1:  Key components of the kraft process (1).
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Figure 2:  Block diagram of the kraft process (1).
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Figure 3:  Chemical recovery cycle of the kraft process (3).
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Prior Research 

Two essential parameters for measurement in the kraft process are pulp yield and 

kappa number.  Pulp yield is defined as the ratio of the bone dry weight of pulp to the 

bone dry weight of the original chips that were used to produce the pulp.  Yield values in 

the kraft process can typically range between 30% and 70% depending on the cook 

conditions and whether or not the pulp is bleached for higher grades.  Pulp yield can 

further be classified as total yield, screened yield, and bleach yield.  Total yield is the 

actual yield of the pulp out of the digester and will always be the highest in value.  

Screened yield is the yield taken after the pulp has been screened to remove undigested 

wood components.  Bleach yield is the yield of the screened pulp after it has been 

through the bleaching plant and is the lowest yield value measured in the process.  

 Kappa number is a measurement of the quality of the pulp and indicates the 

relative hardness, bleachability, or degree of delignification.  Kappa number is defined as 

the volume of 0.1N potassium permanganate solution consumed by one gram of bone dry 

pulp (4).  A fairly linear relationship is usually seen between the kappa number and the 

total yield of pulp.  In the kraft process the control objective is to cook to a desired kappa 

number (1).   

Kappa number of pulp is generally measured in an onsite lab, either manually or 

with an autotitrator.  Manual tests generally follow the Tappi standard and the autotitrator 

is basically an automated form of this.  These measurements can only be performed as 

quickly as a standard kappa test permits (~12 min) and do not allow for use as a process 

control parameter.  Yield measurements are generally based on overall mass balances and 

are not accurate enough to allow for use as an online control tool.  Mass balance 
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determinations suffer from raw material variability and many uncontrollable or 

immeasurable parameters in the process.  Yield determinations may also be made through 

carbohydrate correlations which include the Marcoccia-Stromberg, cellulose, mannose 

and carbohydrate-lignin methods.  However, these techniques require lab work and are 

not suitable for online control.  Several optical methods have been examined for the 

measurement of kappa number and pulp yield.  Using an optical type method offers the 

advantage of simplicity and relatively fast sampling time, which warrants their use as real 

time inline process control method.   

The STFI (Swedish Pulp and Paper Research Institute) optical method has been 

implemented in process control for the measurement of kappa number.  This system uses 

ultraviolet (UV) light absorption to quantify the lignin content of pulp.  With this method 

pulp is sampled from the process and sufficiently washed and diluted. The fiber 

suspension is then illuminated with UV light and photodetectors measure the absorption.  

This determines the lignin content or kappa number independent of concentration. The 

washing process is a critical step for this analysis technique, since any dissolved lignin in 

solution would produce erroneous results. The system provides an accurate kappa number 

determination in about 5 min.  This system has been in use in several mills, offering a 

reliable method with low maintenance (5).  These systems are normally implemented 

before and after the bleaching stage and are only capable of measuring kappa number.   

In another study, 13C NMR, FTIR, and NIR have been compared in the 

measurement of carbohydrate (glucose and xylose) and lignin content of pulp derived 

from the kraft pulping of birch.    Spectral data were collected for each method and 

analyzed using partial least squares (PLS) regression.  In this comparison NIR 
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spectroscopy offered the best predictive ability of any single technique, but methods 

combining the data of all three resulted in even greater predictive ability (6).  This result 

was also apparent in a similar study comparing only FTIR and NIR.  Delignified samples 

of pine and sweetgum were tested for lignin, hemicelluloses, and cellulose composition.  

In this study, NIR was also found to be the superior method.  Not only was the calibration 

more accurate, but also sample preparation and scan time were much faster (7).  

Additionally, a more recent study performed using photoacoustic FTIR spectroscopy 

along with PLS regression to find lignin and carbohydrate composition of hard and 

softwood pulps resulted in very accurate evaluation of composition, but suffered from a 

very high analysis time of 30-40 min per sample (8).  The substantial time needed for this 

method eliminates it as a viable online measurement.   Another study performed using 

FTIR, showed good predictability of kappa number and hexeneuronic acid of high-yield 

kraft pulp.  This study also used the PLS regression method and made predictions on the 

region 1650-1200 cm-1 of the FTIR spectra which is in the longwave infrared region of 

the electromagnetic spectrum.  This region was determined to contain characteristic 

bands of lignin and hexeneuronic acid (9). 

Of the aforementioned spectroscopic methods, NIR appears to be the most 

suitable for implementation as an inline control tool.  NIR correlations created with a 

multivariate regression technique offer good predictability of kappa measurements 

(10,11).  It is also expected that NIR analysis can accurately predict pulp yield.  Studies 

performed on wood meal using NIR measurements for the determination of cellulose 

content and pulp yield correlate very well with wet chemistry evaluations of these 

measurements (12,13).  Although these experiments were performed with wood, similar 
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calibrations should be feasible using spectral data from pulp, as similar absorption trends 

should be seen in both the pulp and wood.  Research has also been performed in 

modeling pulp yield using NIR measurements on higher yield pulps produced by  

semi-chemical pulping.  In these studies, a strong correlation was found between NIR 

measurements and yield.  It was also shown that this correlation could be applied to mill 

data giving good yield estimates.  NIR was found to be a sensitive indicator of yield 

variation and machine runnability for the mill.  The model was not as accurate for mills 

that used a blend of wood chip species (14). 

NIR spectroscopy has been successfully implemented online in mills to measure 

the liquor component concentration and total dissolved solids of liquors (15).  This alone 

is a very valuable control tool for pulp mills.  With the addition of pulp yield and kappa 

information an unprecedented degree of control over digester operations may be possible.  

The evaluation of black liquor for lignin content and other components through NIR in 

addition to the NIR analysis performed on the pulp will allow the calibration of the NIR 

liquor analyzer for yield and kappa number, thus providing accurate predictions for 

control applications.    

Very little work has been done for the development of online yield measurement.  

Few methods have been suggested and the difficulty in collecting samples that can be 

accurately analyzed is alone a substantial task.  However, the use of near infrared (NIR) 

spectroscopy has proven to be a viable method for determining yield and kappa number.  

Good correlation between NIR absorbance and pulp yield and kappa number has been 

observed.  This technique may prove to be sufficiently accurate for online control of 

digesters and have immense significance in the pulping industry.  
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BACKGROUND 

 

Spectroscopy 

Spectroscopy can be described as a measurement of amplitude and energy across 

a range of energies or frequencies.  The device used to make these measurements and 

data set of measurements is referred to as a spectrometer and spectrum, respectively.  

Spectrometers come in many configurations and are employed in many diverse 

applications.  Typically, optical spectrometers are the most abundant and have the widest 

range of applications.  Optical spectrometers are available in many forms, including; 

transmission, attenuated total reflectance (ATR), and diffuse reflectance.  These optical 

type spectrometers measure wavelength as the independent variable and percent 

transmission of radiation as the dependent variable.  Some non-optical type spectrometers 

include acoustic spectrometers and electrical impedance spectrometers.  Acoustic 

spectrometers measure the frequency of the acoustic wave against the attenuation of the 

wave and electrical impedance spectrometers measure voltage or current against 

electrical impedance (2).   

The key advantage that all spectrometers have is the ability to make many 

measurements in a relatively short amount of time.  The independent variable can cover 

thousands of measurements to produce a spectrum.  Much technology is available to 

design and construct spectrometers that are optimized for specific conditions.  Optically 
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based spectrometers in particular can, depending on the application, have rather simple 

designs and be built for a relatively low cost.   

All types of spectrometers operate over some region of the electromagnetic 

spectrum.  Figure 4 shows all regions of the electromagnetic spectrum.  Optical 

spectrometers operate over a small region of the electromagnetic spectrum from 100nm 

to 40,000nm that includes ultra-violet, visible, and infrared regions.  The infrared region 

of the electromagnetic spectrum is divided into short wave near infrared (SWNIR) 800nm 

to 1100nm, long wave near infrared (LWNIR) 1100nm to 2500nm, mid infrared (MIR) 

2500nm to 4000nm, and long wave infrared (LWIR) 4000nm to 40,000nm.  

Optical spectral methods are described mathematically by the Beer-Lambert 

relation.  This relationship is described by the following equations: 

 

Where I(λj,x) is the output light (electromagnetic signal) intensity at wavelength                

λj at a distance x into the material, Ci  is the molar concentration of i, and α(λj,Ci) is the 

absorption coefficient of of i at wavelength λj.  The equation is then integrated to yield 

the following relation: 

 

Where I0(λj) is the input light (electromagnetic signal) intensity and L is the length 

of material crossed by the light.  The relation can be applied to a multi-component system 

by including a summation of components: 
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Additionally, the relation can be linearized for concentration changes: 

 

Where A(λj) is the linearized absorption at wavelength λj.  Figures 5 and 6 

illustrate the use of the Beer-Lambert relation as it applies to transmission and reflectance 

spectroscopy. 

Optical spectrometers in general are composed of several components.  A 

radiation source is generally projected onto the sample that covers a specific region of the 

optical spectrum.  Transmitted or reflected light is sent to some type of dispersive 

element or filter, which subsequently filters out all but the desired wavelength or 

separates the light into its component wavelengths.  The light is then sent to a 

photodetector which indicates the intensity of radiation of the transmitted or reflected 

light.  Figure 7 shows a typical configuration of an optical spectrometer.  All components 

involved are chosen and matched for there use over a particular region of the optical 

spectrum.  Generally, different materials are used to produce components that operate 

optimally over the chosen region of spectral investigation.   

 

∑•=−=
i

ijij CLIIA ,0 )ln()ln()( αλ

LC

jj
i

iji

eII










− ∑

=
,

)()( 0

α

λλ



 22

 

 

Figure 4:  The electromagnetic spectrum.   
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Figure 5:  Variables for use with the Beer-Lambert relation in transmission. 

 

 

Figure 6:  Variables for use with the Beer-Lambert relation in reflectance.
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Figure 7:  Typical optical spectrometer configuration.
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Spectra Linearization 

Spectra typically need to be linearized to correct for baseline offsets caused by 

variations in the contribution of the spectrometer and the environment in which the 

spectrum is collected.  This can be done by collecting a reference spectrum that can then 

be used to linearize the actual spectrum of the sample.  Spectra can be plotted in either 

transmittance or absorbance values, but absorbance is normally used for quantitative 

analysis because it is linearly proportional to concentration, whereas transmittance is not.  

The mathematics of the linearization is based on the aforementioned Beer-Lambert 

relation (16).     


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=
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Where A is the absorbance, I0 is the light intensity of the infrared beam measured 

with no sample (reference spectrum), and I is the light intensity of the infrared beam 

measured with a sample in place (sample spectrum).   

The previous linearization is standard for spectra collected in a transmission 

arrangement, but may not be as accurate for reflectance spectra.  With diffuse reflectance 

there may not be a direct relationship between peak intensity and composition of the 

sample.  Diffuse reflectance does not have a fixed path length, unlike transmission, and 

peak intensities may be dependent on the depth to which the light penetrates the sample.  

Linearization of diffuse reflectance data may better be achieved through the use of the 

Kubelka-Munk function (17): 
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Where Km is the corrected spectra, I is the sample spectrum, and I0 is the reference 

spectrum.  The Kubelka-Munk equation can be applied to diffuse reflectance to help 

linearize the spectrum to better correlate with concentrations or compositions of the 

sample.  The equation corrects the spectral distortions created by a varying effective path 

length to produce a spectrum much like that of an absorbance transmission measurement.  
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Regression Techniques 

Regression techniques are employed to relate spectral and chemical data for the 

development of calibration models and subsequent prediction of unknowns.  Linear 

regression methods along with spectroscopy can be used for the development of these 

models.  Three typical linear regression techniques commonly employed are Multiple 

Linear Regression (MLR), Principal Component Regression (PCR), and Partial Least 

Squares Regression (PLS).    

 

Multiple Linear Regression 

Multiple Linear Regression selects a small number of wavelengths to relate 

sample properties to spectral data.  MLR applies a linear combination of responses to the 

independent variable that minimizes the error in determining the dependent variable.  As 

long as there are few parameters that are not collinear and relate well to the responses, 

MLR proves to be a robust technique.  Though with larger data sets and greater numbers 

of parameters, the data needed for identification becomes significantly large.  

Additionally, with the number of factors becoming greater than the number of 

observations the model tends to suffer from over-fitting and predictions become poor.  

MLR also tends to be very sensitive to noise in the spectra (18,19). 

 

Principle Component Regression 

Principle Component Regression identifies principal component scores of the 

dependent variable upon which the sample properties are regressed.  This technique does 

not regress system parameters on the original measured variables, so it does not suffer 
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from the problems of large parameters sets associated with MLR.  Basically, PCR 

determines variation related to the measured variable over the entire spectra.  The 

algorithm of PCR involves a Principle Component Analysis (PCA) followed by a MLR 

of the component scores and measured variable values.  The number of principle 

components that optimizes the model is determined through cross-validation.  The use of 

PCR greatly reduces the number of parameters needed to build the calibration, making it 

more applicable to the analysis of spectral data sets (18,19).   

 

Partial Least Squares Regression 

Partial Least Squares Regression also uses the entire spectra, but further improves 

on the PCR technique.  PLS not only determines principle components that explain 

variation in the independent variable, but also calculates principle components on the 

measured variables.  A set of latent variables is chosen that maximizes covariance 

between the principle components of the independent and dependent variables.  

Essentially, these latent variables best define the properties of the spectra that relate to the 

measured values (20).  This technique appears to be the most commonly used regression 

method for NIR spectroscopy and is the chosen technique for the research presented in 

this thesis.   
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Spectra Preprocessing 

Several preprocessing techniques applicable to infrared spectroscopy have been 

developed.  The goal is to transform the collected spectra in such a way as to make 

apparent the relation between the sample composition and the characteristics of the 

spectra.   Ideally, spectral transformations should: correct for baseline offsets due to 

inconsistent sample presentation, reduce spectral variations for samples in the same class, 

increase the spectral differences between classes of samples, and linearize the response 

(18).  Some mathematical techniques for achieving these transformations include: 

derivative methods, Savitsky-Golay smoothing and differentiation, discrete cosine 

transform low pass filtering, multiplicative scatter correction, standard normal variate 

scaling, orthogonal signal correction, mean centering,  and slope and offset corrections.   

 

Differentiation 

Classic differentiation methods basically replace an absorption value at one 

wavelength by a difference in absorption values at adjacent wavelengths.  Such derivative 

methods are generally available in mathematical and statistical software and they give 

similar results.  The first derivative is usually applied to eliminate baseline offset 

variations within a set of spectra and the second derivative to eliminate slope variations.  

Savitsky-Golay smoothing and differentiation allows for more options and is 

more sophisticated than classic differentiation techniques.  Additionally, Savitsky-Golay 

does not increase the signal to noise ratio of the spectra, which occurs with classic 

differentiation.  Savitsky-Golay operates on a specific window of the spectra determined 

by the user.  The algorithm fits a polynomial over the window incrementally across the 
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entire spectrum.  An estimate of the derivative of the function is calculated from the fit 

giving a smoothed function.   

 

Filtering 

A discrete cosine transform (DCT) can be used to filter noise out of a spectrum.  

The transform of the spectra is taken with the number of points kept in the DCT domain 

optimized to retain all the pertinent spectral information.  An inverse DCT of the data is 

then performed to return the filtered spectra.  The DCT function is described 

mathematically as follows: 
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the inverse DCT: 
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Signal Correction 

Standard normal variate (SNV) scaling and multiplicative scatter correction 

(MSC) are techniques designed to deal with varying path lengths of samples in a data set, 

due to scattering effects associated with diffuse reflectance.  SNV uses a fairly simple 

approach where each spectrum in a data set is mean centered and then divided by its 
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standard deviation.  MSC first calculates a mean spectrum based on all the spectra in the 

data set.  Next each spectrum is regressed against the mean spectrum providing a linear 

equation with a defined intercept and slope.  Then the intercept is subtracted from each 

point in the spectrum and the resulting absorbance is divided by the slope.  This 

minimizes variations in the spectra not related to sample composition.  SNV and MSC 

tend to give fairly similar results when applied to the same set of spectra (21).  These 

techniques both tend to align spectra of samples with similar composition.  

Orthogonal signal correction (OSC) is another method intended to correct light 

scattering effects.  OSC is unique in that it uses measured sample values in its algorithm.  

OSC is designed to remove variations in the spectra unrelated to the sample property 

values.  The algorithm computes a matrix of weights that are used to determine variance 

in the predictor block unrelated to the predicted block.  This component is then subtracted 

from the predictor block.  This technique is used in conjunction with PLS modeling.  The 

weights are determined for the calibration set and then applied to new spectra for 

prediction.  This technique gives very good calibration plots and can be helpful when 

transforming a calibration for use with a new spectrometer that the calibration was not 

originally built with.         
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EXPERIMENTAL METHODS 

 

Overview 

The development of models for calibration and prediction of kappa and yield 

values required several steps.  Pulp samples had to be created and lab tested for kappa 

number and yield.  A reflectance set-up for use with the spectrometer had to be 

developed, fabricated, and optimized.  In some cases the actual spectrometer had to be 

built and tested.  Additionally, many permutations of spectra transformations had to be 

investigated to create the best models.  The scope of this project was not necessarily to 

develop these models with the most robust lab techniques available for NIR 

spectroscopy, but to utilize techniques and technology developed by the third party 

company.  A prototype spectrometer has been developed that is relatively simple and 

inexpensive, but is capable of being implemented in laboratory as well as inline industrial 

applications.  The methods used in this research were always implemented with great 

consideration to their applicability to mill situations.   
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NIR Spectroscopy 

NIR spectroscopy was utilized during the course of this research.  NIR 

spectroscopy focuses on the study of the interaction of light in the NIR region with some 

medium (22).  NIR spectroscopy has many key benefits.  This technique is universal and 

much technology has been developed for its application.  The spectra provide immense 

information for determining the composition of samples and correlating their identities.  

The locations of peaks and their general shape and size can be used to identify functional 

groups or measure concentrations.  Most importantly for online applications, NIR 

spectroscopy is a relatively fast, simple, and inexpensive method of analysis (22). 

Transmission and diffuse reflectance type NIR spectrometers are examined in this 

research.  Transmission configurations are best for liquids and can be easily employed for 

the analysis of black liquor.  For a transmission spectrometer the radiation source is 

projected onto the sample and the transmitted light is collected and analyzed.  Diffuse 

reflectance configurations are used for the analysis of pulp samples because of their 

applicability to light-diffusing medium such as a roughened or uneven surface.  For 

diffuse reflectance the radiation source is projected onto the solid sample and the 

diffusely reflected light is collected and analyzed.   
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Sample Preparation 

A total of three sets of pulp samples, referred to as A, B, and C, were prepared 

during the course of this research.  Data for the pulp samples can be found in Appendix 

A.  The preparation of each consecutive sample was optimized to deal with potential 

variability in samples that may have been the cause of poor kappa and yield models.  For 

sets A and C  only pulp was collected, but for set B the spent black liquor was also 

collected for analysis and investigation into its correlation with pulp yield and kappa 

number using NIR spectroscopy.    

For all of the sample sets, southern pine pin chips were cooked over a broad range 

of conditions to give a good spread of kappa and yield values.  Mill wood chips were 

used to make the pin chips by first allowing them to air dry and then shredding them in a 

heavy-duty blender.   The shredded chips were then sifted to separate the fines and larger 

chips.  This process produced pin chips of fairly consistent size that were sufficiently 

small for cooking in stainless steel bombs.  On average, the pin chips were 1mm in width 

and 15mm in length.  The bombs used for cooking in sample sets A and B were 50mL 

capacity and those used for set C were 500mL capacity.   Figure 8 shows a comparison of 

the two different size bombs.  The bombs were immersed in water inside a lab batch 

digester for cooking. 

For the cooks, liquor to wood ratios was approximately 5.0, with a 9.0g charge of 

wood chips in the 50mL bombs and 90g of chips for the 500mL bombs.  The use of 

individual bombs allowed for the quantitative determination of pulp yield and the quick 

generation of many pulp samples with a wide range of characteristics.  Cooking liquors 

of varying effective alkali (EA) from 30 g/L to 110g/L as Na2O were used in the cooks.  
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In sample sets A and B mill white liquor with an EA of 110 g/L as Na2O was diluted to 

achieve the different concentrations of liquor used for cooks.  For set C, synthetic liquor 

was produced by dissolving appropriate amounts of NaOH and Na2S in water.  

Additionally, cook times of 0.5 hours to 2.5 hours in 0.5-hour increments and cook 

temperatures of 160, 165, and 170°C were used. 

In the sample set A, three bombs were used at each set of the conditions thereby 

producing triplicate for each sample.  However, this did not allow for enough pulp to 

determine a repeatable kappa number, yield value, and allow for enough sample for the 

NIR analysis.  For this reason sample set B employed the use of six 50mL bombs per 

sample condition which provided plenty of pulp for analysis.  For sample set C the larger 

500mL bombs were used so that pulp at a particular condition all came from the same 

bomb.  When using several bombs at the same condition, the pulp from each bomb was 

mixed and kappa and yield values were then determined and treated as one sample.  Even 

though each bomb at a particular condition was given the same treatment as far as liquor 

EA value and cook time and temperature, it was speculated that there may have been 

slight discrepancies in measured values from bomb to bomb.  It is for this reason that the 

larger bombs were used to produce sample set C.  The use of larger bombs inherently 

increases the accuracy of yield measurements as well.  This is because small amounts of 

pulp that may be lost during washing are much less significant to the calculation when 

using bombs that are an order of magnitude larger. 

After cooking, the pulp was washed by running tap water over the digested chips 

residing in a Buchner funnel with a vacuum applied.  For sample set B the spent black 

liquor was collected from a few bombs and a sample of all the liquor and washings was 
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collected from one of these bombs and diluted to 2000mL for each sample.  It was 

hypothesized that collecting the diluted washing set would allow for analysis of the entire 

volume of components in the liquor.   

Once the pulp was thoroughly washed (i.e. the wash water was fairly clear), the 

chips were put into a blender to blow them apart into pulp fibers.  The pulp was then 

poured into a Buchner funnel with filter paper and the water was vacuumed out, thereby 

forming the pulp pads that were to be used for analysis.  The pads were all air-dried and 

the total weight for a sample was determined.  A small amount of the sample was then 

oven-dried for the moisture determination.  An average yield for each sample was 

determined and the yield values ranged from 31% to 67%.  The air-dried samples were 

sealed in bags and were later used for NIR analysis and kappa testing.   

Kappa tests were performed according to the Tappi standard (4).  To ensure good 

repeatability, initial kappa test were performed to determine the approximate kappa 

number, usually two to three, then an additional two to three kappa tests were performed 

and an average kappa value was computed from these.  Generally, consecutive kappa 

tests provided values that were within 0.5 units of the average value.  Kappa numbers 

ranged from 13 to 100 for the pulp samples. 
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Figure 8:  Bombs used during the cooking process. 
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NIR Analysis 

The pulp samples were analyzed using an NIR spectrometer and reflectance set-

up for collection of the spectra.  The black liquor samples used a NIR spectrometer and 

transmission set-up.  The best configuration for the transmission set-up was clearly 

defined, but the reflectance arrangement required several iterations of the design.  

Additionally, three different spectrometers were utilized for the collection of reflectance 

spectra of the pulp samples.  The three spectrometers used included a Rosemount AOTF-

NIR Analyzer and two prototype analyzers.  The spectral data was sent to a computer and 

appropriate software was used to visualize the spectra and organize the absorbance values 

into a spreadsheet.  Figure 9 shows a graphic of the typical set-up used for collection of 

the NIR spectra.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9:  Data collection system. 
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The transmission set-up for the collection of black liquor spectra is fairly simple.  

A holder is used that the light source and light collector are affixed to.  The liquor sample 

is injected into a 1mm quartz cuvette and placed between the light source and collector 

on the holder.  The 1mm pathlength has been proven by other studies to be a good 

arrangement for analyzing black liquor.  The sample is illuminated and the transmitted 

light is collected and sent to a spectrometer via fiber optic cable.  Figure 10 shows the 

configuration for the collection of the transmission spectra of the black liquor.  The 

prototype spectrometer used scans in the long wave near infrared region from 1000nm to 

2200nm and was built and designed by a third party company. 

Figure 10:  NIR transmission set-up.   

 

Power to 
light 

Fiber-optics 
to analyzer  

Light 
Collector

Light 

Light 
Source 

Cuvette 



 40

Sample set A was used as a preliminary analysis of kappa number and yield 

predictions using NIR spectroscopy.  A basic reflectance set-up was fabricated for the 

collection of the spectra.  Pulp samples were pressed into a circular sample holder and the 

light source and collector were placed at a 45° angle in relation to the sample.  A hand 

press was fabricated to press the pulp into the sample holder.  By pressing the samples 

most of the water was allowed to drain out and the pulp retained about 20% moisture.  

Figures 11 and 12 show pictures of the hand press and reflectance set-up used to 

accomplish the aforementioned sample presentation.  The sample spectra were collected 

using an acousto-optic tunable filter (AOTF) NIR analyzer built by Rosemount.   This 

analyzer used a wavelength range from 1058nm to 2115nm and 256 absorbance values 

were recorded in this range.  Figure 13 shows a picture of the entire system used. 

 

 

  
Figure 11:  Hand press for sample preparation.      
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Figure 12:  Reflectance set-up.      

 

 

Figure 13:  Rosemount AOTF-NIR system. 
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Spectra for sample set B were collected using a modified reflectance arrangement 

and spectrometer.  For this reflectance arrangement, pulp samples were placed in an 

aluminum holder with a sapphire window through which the reflectance measurement 

was made.  The pulp first dispersed in water and pressed into the sample holder such that 

pulp was pressed flat against the sapphire window to allow ample presentation for 

reflectance.  Figure 14 shows the orientation of this reflectance set-up.  Once again 

sample moisture was about 20% and a sufficient amount of pulp was used to produce a 

thick layer of pulp to ensure the light did not penetrate the entire depth of the sample.  A 

Teflon reference was also used between scans in order to produce consistent spectra and 

eliminate spectral changes due to light source variations.    

The reflectance spectra of the samples were collected with a prototype NIR 

spectrometer designed for mill use by a third party company. Spectral data was 

transferred from the spectrometer to a PC via ethernet connection. Figure 15 shows a 

photo of the prototype NIR analyzer.  The samples were scanned over a wavelength 

range of 1200-2100 nm and absorbance values were recorded at 0.9375 nm increments.  

This allows for sufficient detail in the spectra.   
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Figure 14:  Reflectance set-up.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15:  Prototype spectrometer.   
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For sample set C another method of sample presentation and reflectance 

orientation was used.  The reflectance orientation was similar to the previous set-up 

shown in figure 14, but pulp samples were prepared by pouring slurry containing 

approximately 8g of air dried pulp into a Buchner funnel and vacuuming for 1min.  The 

pulp pad was then placed on top of the reflectance set-up and subsequently scanned.  This 

method generally resulted in about the same pad moisture content as the previous 

methods, but was thought to give a more uniform pulp pad for analysis.  Two different 

prototype spectrometers were used for analyzing sample set C.  One used an optical 

bench designed to scan the short wave NIR region from 830nm to 1660nm at 1nm 

increments.  The other bench was designed for long wave NIR and scanned in a range 

from 1000nm to 2200nm at .9375nm increments.  The key differences in these optical 

benches were the monochromator and photodetector used.  Both of these elements had to 

be chosen according to the region of the NIR spectrum in which they were utilized.   

Three scans of each sample were taken consecutively where the pulp pad was 

repositioned on the reflectance set-up for each consecutive scan.  By repositioning the 

pad it is possible to determine variability in the spectra caused by characteristics of the 

packing of the pulp and variations in the surface of the pad.  An air reference was also 

taken for each sample before the pulp pad was scanned.  Figures 16 and 17 show a 

picture of the analyzer and final reflectance set-up used for the collection of spectra on 

sample set C.   
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Figure 16:  Picture of prototype spectrometer. 

 

Figure 17:  Picture of reflectance set-up. 
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Software 

Different software packages were utilized for the collection and analysis of the 

spectra.  Spectracalc software was used for the collection of spectra using the AOTF-NIR 

analyzer.  Software developed by a third party company was used for the collection of 

spectra analyzed using the different prototype spectrometers.  Both of these software 

packages organized the absorbance values of the spectra into a spreadsheet that could be 

loaded into additional software for analysis.  Matlab was used as the primary tool for 

processing the spectra and building models for calibration and prediction.  A PLS toolbox 

developed for use with Matlab by Eigenvector Research Inc. contained the specific 

algorithms used for analysis.  The algorithms come in the form of Matlab m.files and 

contain code used to accomplish the PLS and various spectral preprocessing.  Also, other 

Matlab m.files were created for the organization of the spectra and some of the 

preprocessing.  The code for these m.files is shown in Appendix B.   

The spectral data collected from the analyzer was extracted in the form of a text 

file and loaded into Matlab as a matrix.  The matrix is then organized into an MxN matrix 

of M wavelengths and N absorbance values.  The spectra were first linearized using 

either the Beer-Lambert relation or the Kubelka-Munk equation in conjunction with the 

sample spectra matrix and a reference matrix of the same size.  The output was a 

linearized matrix of the same size as the sample and reference matrix.  All spectral 

preprocessing techniques were then directly applied to the linearized matrix.  The PLS 

regression is then applied to the preprocessed matrix and a corresponding matrix of 

measured values.  The resulting independent and dependent variable loadings, 

independent variable weights and inner relation coefficients from the PLS regression are 
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then applied to a matrix of spectral data of unknown samples for prediction.  The PLS 

model then returns a matrix of predicted values for the unknown samples.  
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RESULTS AND DISCUSSION 

 

Overview 

The goal of this research was to determine the ability to estimate pulp yield and 

kappa number from NIR spectral information using technology developed by a third 

party company.  Correlation of kappa number and pulp yield with both pulp reflectance 

spectra and spent black liquor transmission spectra were considered.  Essentially, the 

approach is to accurately determine lab values for the measurements of interest, collect 

spectra with detailed information, determine necessary data preprocessing to get the most 

information from the spectra, and build accurate calibration models that can predict the 

kappa and yield values of unknown samples.  This methodology was applied to all 

collected data sets.  The data sets include:  spectra of sample set A collected with the 

Rosemount AOTF-NIR analyzer, spectra of sample set B collected with the prototype 

LWNIR analyzer, and spectra of sample set C collected with both the prototype LWNIR 

and SWNIR analyzer.   
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Characteristic Spectra 

Every spectrometer has its own characteristics that affect the appearance of the 

spectra it generates.  Even when the same design and fabrication process is used, slight 

variations may be seen in spectra from one spectrometer to the next. Variations in the 

light source and how the light interacts with the sample can cause discrepancies in 

spectral measurements.  For example, figure 18 shows spectra collected with the same 

prototype optics bench, the only difference between the two groupings was the use of 

different light sources.  Even though the light sources were the same model, slight 

nuances in the orientation of the filament may have led a change in the absorption values 

and variations in the spectra.   Fortunately steps can be taken to adjust calibrations built 

with one spectrometer to be applied to another.   

Three different spectrometers were used during the course of this research.  A 

Rosemount AOTF-NIR spectrometer was used with the sample set A as a preliminary 

investigation into the potential of NIR as a method for predicting kappa and yield values.  

The Rosemount analyzer�s operating range was from 1058nm to 2115nm.  Figure 19 

shows some typical spectra from the Rosemount analyzer representing samples with 

kappa numbers ranging from 13 to 100 and yields ranging from 35% to 70%.  Spectra 

from this analyzer are not as detailed as those of the prototype spectrometers, because the 

absorption is only measured about every four wavelengths.  However, the signal to noise 

ratio is relatively high. 

Further analysis on sample sets B and C was performed using two similarly 

designed prototype spectrometers, one optimized for short wave NIR and the other for 

long wave NIR.  The prototype SWNIR spectrometer covered wavelengths from 830nm 
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to 1660nm, while prototype LWNIR spectrometer covered wavelengths from 1000nm to 

2200nm.  Figures 20 and 21 show typical spectra from the SWNIR and LWNIR 

spectrometers, respectively.  These spectra represent samples with kappa numbers 

ranging from 13 to 100 and yields ranging from 35% to 70%.  There is a sizable overlap 

in the spectral region for both of these prototype analyzers.  As a result, spectra collected 

on one analyzer may prove to contain more pertinent information for building 

calibrations.  Calibrations need to be evaluated for both spectra to determine which 

spectrometer yields the best predictive ability.  SWNIR has much less noise associated 

with the spectra than does LWNIR due to the type of photodetector used.  If the SWNIR 

spectra contain the necessary information to create a good calibration model, the method 

would be superior to LWNIR because of the higher signal to noise ratio.   
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Figure 18:  Spectra collected using different light sources. 
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Figure 19:  Spectra of pulp from the Rosemount AOTF-NIR spectrometer.  
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Figure 20:  Spectra of pulp from the SWNIR prototype spectrometer. 
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Figure 21:  Spectra of pulp from the LWNIR prototype spectrometer. 
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Spectra Smoothing and Differentiation 

Considering the previous spectra the level of noise can vary considerably 

depending on the type of spectrometer used.  Electronic noise can be reduced through 

design considerations when building a spectrometer, but in some instances high levels of 

noise may be unavoidable.  It was found that there is a relatively low amount of light 

throughput associated with the reflectance pulp spectra collected during the course of this 

research.  To deal with this, the signal from the photodector was amplified considerably 

with the prototype spectrometers.  Unfortunately, amplifying the signal also increases the 

noise in the spectrum.  This becomes more of an issue with spectra collected on the 

LWNIR analyzer due to its inherently noisier components.   Figure 22 shows a close up 

of some raw spectra from the LWNIR analyzer.  There is a consistent noise shown in this 

figure which most likely corresponds to every increment of the stepper motor that turns 

the grating in the monochromator of the spectrometer.   

To deal with the inherent noise of the spectra, filtering or smoothing was 

employed by applying these techniques to different degrees and qualitatively comparing 

the resulting spectra.  Discrete cosine transform filtering proved very useful for 

smoothing the spectra.  It was very simple to adjust the amount of filtering in order to 

retain the pertinent information in the spectra.  Figures 23, 24, and 25 show unfiltered 

spectra, spectra with very little filtering, and spectra with considerable filtering, 

respectively.  The spectra with the most filtering still retained 99.9% of the signal, but 

using a small amount of filtering may be sufficient, and can produce spectra that can be 

further processed by differentiation.  On the other hand, if a standard derivative is taken 

of a fairly noisy spectrum the noise will be considerably amplified.  Figure 26 shows the 
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first derivative of a raw spectrum from the LWNIR analyzer.  It is obvious that no useful 

analysis can be made with this spectrum.  If DCT filtering is first applied to the spectra 

and a derivative is taken a considerably more useful spectrum can be realized as shown in 

figure 27.   

Through qualitative comparison the Savitsky-Golay smoothing and differentiation 

method proved to be superior method to the aforementioned DCT filtering followed by 

differentiation.  Although, some minor DCT filtering might first be employed before 

Savitsky-Golay for a considerably noisy spectrum.  For most of the calibration models a 

second-order polynomial and first derivative with a modest window size was used with 

the Savitsky-Golay algorithm.  Figure 28 shows a Savitsky-Golay treated spectrum of the 

same sample as in figure 27.  The Savitsky-Golay algorithm produces a much cleaner 

spectrum.   Figures 29, 30, and 31 show Savitsky-Golay treated spectra from all three 

aforementioned spectrometers.  These spectra have well defined peaks and taking the first 

derivative helps remove baseline offset and other variations caused by inconsistent 

moisture content from sample to sample.   
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Figure 22:  Oscillations in spectra caused by motor noise in the LWNIR analyzer. 
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Figure 23:  Close-up of unfiltered spectra from the LWNIR analyzer. 
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Figure 24:  Spectra from the LWNIR analyzer with some DCT filtering. 
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Figure 25:   Spectra from the LWNIR analyzer with considerable DCT filtering. 
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Figure 26:  First derivative of raw spectrum from the LWNIR analyzer.   
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Figure 27:  DCT filtered and differentiated spectrum from the LWNIR analyzer. 
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Figure 28:  Savitsky-Golay treated spectrum from the LWNIR analyzer.  
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Figure 29:  Savitsky-Golay treated spectra from the AOTF-NIR analyzer. 
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Figure 30:  Savitsky-Golay treated spectra from the SWNIR analyzer. 
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Figure 31:  Savitsky-Golay treated spectra from the LWNIR analyzer. 
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Signal Correction 

Several techniques of signal correction were investigated to deal with the inherent 

difficulties of reflectance spectroscopy.  Figure 32 shows raw spectra that have only been 

DCT filtered.  There are three spectra of the same pulp sample that were collected 

consecutively on the LWNIR spectrometer.  The spectra are similar, but show some 

offset in particular regions.  In general, one would expect spectra of the same pulp sample 

collected on the same analyzer to line up on top of one another.  The offsets can most 

likely be attributed to light scattering effects.  Figures 33 and 34 show the same spectra 

after using standard normal variate scaling (SNV) and multiplicative scatter correction 

(MSC), respectively.  Both SNV and MSC techniques help correct light scattering and 

have very similar effects on the spectra.  There is very little difference between treated 

spectra of the same sample, which can improve calibration models.  Essentially, SNV and 

MSC decrease spectral variation among samples of the same class. 

Orthogonal signal correction (OSC), when applied to the spectra, drastically 

improved the calibration models, but these models failed to estimate unknown samples 

accurately.  Figures 35 and 36 show differentiated spectra of all samples from set C, 

collected on the LWNIR analyzer before and after OSC was applied.  Figures 37 and 38 

show spectra for three samples with kappa number values of 18, 41, and 85 before and 

after OSC was applied.  There are three spectra for each sample.  In these figures it is 

clear that OSC aligns spectra of the same sample class and creates good separation 

between samples with different measured values.  OSC uses the measured values as a 

parameter to create a set of weights to correct the spectra.  Calibration models created 

using OSC should certainly have good correlations, because the spectra are adjusted 
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according to the measured values of the pulp samples.  For estimating values for the 

unknown samples, the weights created from the calibration model are applied to new 

spectra of the unknowns.  With the samples tested the parameters created with OSC did 

not prove to properly correct the new spectra of unknowns.  This indicates that spectral 

differences determined through OSC are neither universal nor applicable to data outside 

of the calibration set, for the data analyzed in this research.   
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Figure 32:  DCT filtered spectra of one sample. 
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Figure 33:  Figure 32 spectra with SNV applied.   



 71

1000 1200 1400 1600 1800 2000 2200
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Wavelength (nm)

A
rb

itr
ar

y 
A

b
so

rp
tio

n 
U

ni
ts

 

Figure 34:  Figure 32 spectra with MSC applied.   
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Figure 35:  Savitsky-Golay treated spectra from LWNIR analyzer. 
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Figure 36:  Previous spectra with OSC applied. 
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Figure 37:  Three samples with widely varying kappa number.   
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Figure 38:  Previous spectra treated with OSC.   
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     Kappa = 85
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Pulp Calibration Models and Predictions  

All of the aforementioned data treatments have been utilized considerably 

throughout the development of calibration models for kappa and yield prediction. 

Numerous combinations and manipulations of these techniques have been employed with 

all of the sample sets and spectra collected from the different spectrometers.  The 

application of these techniques has lead to improvements in the calibration plots and the 

ability to accurately predict kappa numbers of some mill samples.   

Calibration models developed using pulp sample set C in conjunction with the 

LWNIR prototype spectrometer have shown the best ability to predict samples that are in 

the model, but failed to predict unknown lab generated samples.  These poor prediction 

plots had R2 values of 0.5 or less, which shows essentially no correlation.  However, the 

calibration plots showed good correlations with eight loadings in the PLS regression 

model.  These calibration plots were produced using only Kubelka-Munk linearization 

along with multiplicative scatter correction (MSC).  Figures 39 and 40 show the 

calibration plots for kappa and yield, respectively.  The plots show the actual measured 

values as the independent variable and the values predicted by the calibration models as 

the dependent variable. 

Since the prediction of unknown lab samples was poor, a technique was employed 

to determine repeatability of spectral measurements.  Three scans of each sample were 

taken consecutively, only repositioning the sample each time.  Calibrations were then 

built with two spectra from each sample and the third set of spectra was used for 

prediction.  With this approach reasonable predictions were achieved. However, spectra 

of the samples used in the prediction set were built into the calibration.  Obviously this is 
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not a good indicator of the ability of the model to predict unknowns.  Figure 41 and 42 

show the aforementioned prediction plots for kappa and yield, respectively.  It is clear 

that correlations of these plots are not as good as the calibration plots.  This would 

suggest that the variability in the packing and surface of the pulp pads has a considerable 

effect on the resultant spectra.  This is most likely due to the orientation of the reflectance 

set-up.  Although many attempts have been made to optimize the components, a 

successful iteration of design has not yet been reached.  The collected light is most likely 

only the specular reflectance or that which is reflected off of the surface of the pulp rather 

than light that has penetrated the pulp pad.  A better raw spectrum is essential for the 

development of useful calibration models.   

A calibration model using lab pulp samples was built to estimate a set of unknown 

mill pulp samples of kappa number ranging from 14 to 34.  The model was built with 

sample set C and used Kubelka-Munk linearization, DCT filtering, and Savitsky-Golay 

differentiation for the spectral pretreatments.  This calibration model predicted the 

unknown kappa values of the mill samples fairly well using eight loadings with the PLS 

regression.  Table 1 shows the actual and predicted values for the mill samples.  The 

model estimated each sample value within two kappa numbers of their actual value.  

Figure 43 shows the plot for the calibration model and figure 44 shows the actual 

prediction curve for the mill samples.  The results are good considering the model was 

fairly accurate for samples from six different mills.  In practice, calibrations models will 

most likely be tailored for a particular mill to provide the most robust predictions.   
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Figure 39:  Calibration curves for kappa measurement. 

 

R2=0.993
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Figure 40:  Calibration curve for yield measurement. 

R2=0.992 
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Figure 41:  Prediction curve for kappa measurement. 

R2=0.948 
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Figure 42:  Prediction curve for yield measurement.   

R2=0.922 
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Figure 43:  Calibration curve for kappa measurement of mill samples.   

R2=0.991
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Figure 44:  Prediction curve for kappa measurement of mill samples. 

R2=0.960
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Mill Sample Predicted Kappa Actual Kappa Kappa Difference 

A 30.1 28.2 +1.9 

B 13.0 14.2 -1.2 

C 32.6 33.9 -1.3 

D 27.1 26.4 +0.7 

E 23.8 24.0 -0.2 

F 30.7 29.4 +1.3 

 

Table 1:  Actual and predicted values for mill samples.     
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Black Liquor Calibration Models and Predictions 

Only minor investigations were made into the ability to predict yield and kappa 

number using spent black liquor spectra.  A limited set of black liquor from sample set B 

was available for analysis.  Only concentrated black liquor was considered for the 

calibration.  The diluted black liquor was at too low a concentration and only appeared as 

water when the spectra were analyzed.  

 Figure 45 shows typical concentrated black liquor spectra for a high and low 

kappa and yield value.  Collecting spectra of the liquor allowed for good light throughput 

and fairly clean and defined spectra were achieved.  No data pretreatment was necessary 

for building the calibration model.  Figures 46 and 47 show the calibration plots for the 

black liquor spectra.  Figures 48 and 49 show the prediction plots for the black liquor.   

The calibration model predicted both pulp yield and kappa number with some accuracy.   
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Figure 45:  Typical spectra for spent black liquor.   
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Figure 46:  Black liquor calibration curve for kappa measurement. 
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Figure 47:  Black liquor calibration curve for yield measurement. 
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Figure 48:  Black liquor prediction curve for kappa measurement. 

R2=0.930
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Figure 49:  Black liquor prediction curve for yield measurement.  

 

R2=0.938 
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CONCLUSIONS  

   

The ultimate goal of this research was to build robust calibration models for the 

prediction of kappa and yield values for unknown samples.  Techniques for collecting the 

black liquor transmission spectra were straight forward and the development of good 

calibration models required few iterations.  Kappa and yield values of unknown black 

liquor samples were estimated with good accuracy using the calibration models.   

Correlations relating pulp reflectance data with yield and kappa values was not as 

easily realized.  Building such calibration models required optimizations of the 

spectrometer, sample presentation, and spectral preprocessing techniques.  Spectral 

features relating to pulp properties (e.g. kappa, yield, etc.) are quite subtle and require 

more advanced spectral processing techniques to extract as compared to transmission 

methods.   The key to building models that predict unknowns accurately lies in 

maximizing the signal to noise ratio of the spectra and determining the correct 

configuration for the reflectance apparatus.   

Several reflectance arrangements are available, but this research was concerned 

with using an arrangement that would lend itself well to reliable and simple online and 

lab based implementation in the mill environment.  Previous work from researchers in 

this field used sophisticated lab based reflectance arrangements (e.g. integrating spheres) 
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and tedious pulp sample pre-treatments, however, these methods cannot be easily 

implemented in a non-idealized mill environment. 

Despite the difficulties involved, a calibration model was created that accurately 

predicted the kappa values for six different mill pulp samples.  This result is very 

promising, because in practice calibrations will most likely be tailored for a specific mill.  

Eventual calibrations built for online control will certainly be more robust due to their 

specificity.
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APPENDIX A 

PULP SAMPLE DATA 

 

Sample Set A (samples 1-32) 

Run 
# 

Cook Time 
(h) 

Cook Temp. 
(C) 

EA (g/L as 
Na2O) Yield Kappa 

1 1 160 36.9 61.4 74.2
2 1 160 42.2 60.8 66.7
3 1 160 51.3 56.8 58.6
4 1 160 57.0 52.7 51.4
5 1 160 63.8 54.1 41.3
6 1 160 71.6 53.1 35.1
7 1 160 76.7 50.0 33.1
8 1 160 84.0 48.3 32.4
9 1 165 36.9 54.6 39.9

10 1 165 42.2 50.0 32.6
11 1 165 51.3 46.4 30.0
12 1 165 57.0 45.1 26.4
13 1 165 63.8 46.0 25.5
14 1 165 71.6 45.2 26.8
15 1 165 76.7 42.3 22.3
16 1 165 84.0 40.6 21.9
17 1 170 36.9 52.0 34.3
18 1 170 42.2 48.6 30.7
19 1 170 51.3 45.1 23.7
20 1 170 57.0 44.0 23.4
21 1 170 63.8 42.5 21.0
22 1 170 71.6 41.8 20.4
23 1 170 76.7 38.5 19.9
24 1 170 84.0 36.6 16.4
25 1 175 36.9 49.0 31.7
26 1 175 42.2 45.9 26.1
27 1 175 51.3 43.1 22.3
28 1 175 57.0 41.6 21.6
29 1 175 63.8 39.1 19.2
30 1 175 71.6 37.8 18.6
31 1 175 76.7 35.3 17.0
32 1 175 84.0 34.6 16.2
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Sample Set A (samples 33-80) 

Run 
# 

Cook Time 
(h) 

Cook Temp. 
(C) 

EA (g/L as 
Na2O) Yield Kappa 

33 1.5 165 36.9 53.5 33.1
34 1.5 165 42.2 47.5 30.3
35 1.5 165 51.3 46.4 27.0
36 1.5 165 57.0 44.9 26.4
37 1.5 165 63.8 43.2 24.7
38 1.5 165 71.6 44.4 26.2
39 1.5 165 76.7 35.6 18.8
40 1.5 165 84.0 33.0 14.6
41 1.5 170 36.9 44.6 28.1
42 1.5 170 42.2 47.6 30.1
43 1.5 170 51.3 44.7 26.7
44 1.5 170 57.0 42.3 23.7
45 1.5 170 63.8 41.3 18.9
46 1.5 170 71.6 40.9 18.2
47 1.5 170 76.7 36.1 14.2
48 1.5 170 84.0 36.5 16.1
49 1.5 160 36.9 59.9 39.9
50 1.5 160 42.2 53.5 35.5
51 1.5 160 51.3 47.8 30.0
52 1.5 160 57.0 49.0 29.1
53 1.5 160 63.8 47.5 29.2
54 1.5 160 71.6 46.2 27.8
55 1.5 160 76.7 43.2 22.4
56 1.5 160 84.0 42.7 23.0
57 2 160 36.9 62.4 46.4
58 2 160 42.2 52.1 36.3
59 2 160 51.3 47.4 28.1
60 2 160 57.0 45.5 24.0
61 2 160 63.8 43.1 22.9
62 2 160 71.6 42.8 22.9
63 2 160 76.7 41.5 21.5
64 2 160 84.0 39.8 20.0
65 2 165 36.9 55.6 36.3
66 2 165 42.2 48.7 29.2
67 2 165 51.3 45.4 26.5
68 2 165 57.0 44.3 24.5
69 2 165 63.8 41.8 21.5
70 2 165 71.6 40.3 20.8
71 2 165 76.7 38.7 19.8
72 2 165 84.0 37.9 18.4
73 2 170 36.9 49.2 29.9
74 2 170 42.2 46.4 27.0
75 2 170 51.3 45.9 27.1
76 2 170 57.0 43.6 22.5
77 2 170 63.8 41.3 22.1
78 2 170 71.6 39.2 19.1
79 2 170 76.7 38.6 19.7
80 2 170 84.0 36.7 18.1
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Sample Set B  

Run 
# 

Cook Time 
(h) 

Cook Temp. 
(C) 

EA (g/L as 
Na2O) Yield Kappa 

1 1.5 170 68.5 36.8 21.0
2 1.5 170 80.4 34.6 17.8
3 1.5 170 76.5 37.7 15.7
4 1.5 170 72.4 35.1 14.3
5 1.5 170 89.6 32.7 12.7
6 1.5 170 82.5 34.0 14.4
7 1.5 170 87.5 32.4 12.5
8 1.5 170 93.5 30.1 13.0
9 2 170 90.2 34.9 15.8

10 2 170 100.2 32.2 18.2
11 2 170 106.8 31.8 21.1
12 2 170 114.1 28.2 17.0
13 1 170 90.2 37.5 22.7
14 1 170 100.2 35.0 19.4
15 1 170 106.8 35.9 28.0
16 1 170 114.1 34.3 24.0
17 1.5 170 90.2 35.1 15.0
18 1.5 170 100.2 32.6 17.2
19 1.5 170 106.8 32.9 21.1
20 1.5 170 114.1 31.1 18.4
21 0.5 170 90.2 40.2 29.8
22 0.5 170 100.2 37.1 24.5
23 0.5 170 106.8 39.2 39.4
24 0.5 170 114.1 37.8 40.6
25 2 160 90.2 40.5 24.2
26 2 160 100.2 38.7 20.0
27 2 160 106.8 40.9 35.9
28 2 160 114.1 39.7 33.8
29 1 160 90.2 42.3 27.3
30 1 160 100.2 40.5 27.5
31 1 160 106.8 43.7 55.4
32 1 160 114.1 42.9 57.6
33 1.5 160 90.2 42.5 26.5
34 1.5 160 100.2 39.7 23.3
35 1.5 160 106.8 43.2 41.0
36 1.5 160 114.1 41.0 53.2
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Sample Set C 

Run 
# 

Cook Time 
(h) 

Cook Temp. 
(C) 

EA (g/L as 
Na2O) Yield Kappa 

1 1 170 90.0 39.9 18.2
2 1 170 60.0 45.9 41.7
3 1 170 30.0 56.7 13.7
4 1.5 170 90.0 36.7 31.1
5 1.5 170 60.0 42.6 38.5
6 1.5 170 30.0 51.0 83.5
7 0.5 170 90.0 44.1 27.8
8 0.5 170 60.0 51.8 74.1
9 0.5 170 30.0 54.6 16.7

10 0.5 170 90.0 42.9 20.0
11 0.5 170 60.0 50.9 16.7
12 0.5 170 30.0 60.4 20.2
13 2.5 170 90.0 36.8 14.2
14 2.5 170 60.0 44.9 17.9
15 2.5 170 30.0 48.7 26.4
16 2 170 90.0 38.8 28.2
17 2 170 60.0 42.1 99.8
18 2 170 30.0 57.6 18.3
19 3 170 90.0 34.7 17.9
20 3 170 60.0 41.4 63.3
21 3 170 30.0 51.3 17.0
22 1 170 80.0 46.2 18.6
23 1 170 70.0 46.9 61.6
24 1 170 50.0 58.5 13.1
25 1.5 170 80.0 42.4 13.0
26 1.5 170 70.0 43.5 52.5
27 1.5 170 50.0 52.9 37.7
28 2 170 80.0 41.7 66.7
29 2 170 70.0 44.5 28.0
30 2 170 50.0 53.2 25.6
31 2.5 170 80.0 38.3 44.0
32 2.5 170 70.0 40.6 23.8
33 2.5 170 50.0 51.0 37.5
34 2.5 160 90.0 47.9 28.6
35 2.5 160 60.0 54.2 21.8
36 2.5 160 80.0 47.7 33.8
37 3 160 90.0 44.3 23.1
38 3 160 60.0 50.2 16.6
39 3 160 70.0 46.6 18.8
40 2.5 165 40.0 51.2 14.6
41 2.5 165 50.0 48.6 28.1
42 2.5 165 60.0 46.7 30.1
43 3 165 40.0 50.8 26.7
44 3 165 50.0 43.2 23.7
45 3 165 60.0 41.9 18.9
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APPENDIX B 

MATLAB M.FILES 

 

Data Reorganization:  Reorganizes text files of spectra from the NIR analyzer into MxN 

matrices of wavelength and absorbance values.   

% rcdatreorg.m 
  
function datmtrx = rcdatreorg(a,N,nscans,br,ss,er) 
  
% a = ASCII data matrix originally exported from Black Box program 
% datmtrx = new ASCII data matrix reorganized into spts x (nscans*N+1) 
matrix 
% N = number of samples 
% nscans = number of scans pers sample (usually 9) 
% br = begining point of wavelength range 
% ss = step size (wavelength sample increment) 
% er = end point of wavelength range 
  
spts = length(br:ss:er);    % spts = number of sample points 
[ra,ca] = size(a);  % ra = number of rows of a, ca = number of columns 
of a 
  
datmtrx = [a(1:spts,2)];    % wavelength values 
  
n = ra/spts;    % sets range for "for loop" counter 
  
for i = 1:n 
   datmtrx = [datmtrx a(1+(spts*(i-1)):(spts*i),3)]; 
end 
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Linearization:  Performs the Beer-Lambert linearization using the sample and reference 

matrix.   

%addref.m 
  
function newmtrx=addref(pulpmtrx,refmtrx) 
  
%pulpmtrx=original pulp spectra matrix 
%refmtrx=reorganized reference matrix of same size as pulpmtrx 
%newmtrx=new pulp spectra divided through by reference  
  
[r,c] = size(pulpmtrx); % r = # rows of rcdmtrx, c = # col's of rcdmtrx 
  
newmtrx = [pulpmtrx(:,1)];  % column of wavelength values 
  
for n = 2:c 
   newmtrx = [newmtrx log10(refmtrx(:,n)./pulpmtrx(:,n))]; 
end 
 

DCT:  Performs DCT low pass filtering on spectra. 

%dctlpf.m 
  
function xfil = dctlpf(x,l) 
  
%x=matrix or column vector to dct lowpass filter 
%l=length of filter(i.e. number of poits to keep in dct domain) 
  
y=dct(x); 
y(l+1:end,:)=0; 
xfil=idct(y); 
 

R2:  Computes R2 values for calibration and prediction curves. 

% rsqd.m 
 
function rsquared = rsqd(yobs,ypred) 
  
r = yobs - ypred; 
sse = norm(r).^2; 
sst = norm(yobs - mean(yobs)).^2; 
rsquared = 1 - (sse/sst); 
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Disturbance:  Adds random offset and slope to spectra. 

% adddisturb.m 
  
function avgwdist = adddisturb(avgmtrx,m,b,wvspt,wvept) 
  
% avgmtrx = matrix generated by avgtempscan.m 
% m = slope disturbance (-m to +m) 
% b = offset disturbance (-b to +b) 
% wvspt = wavelength start point 
% wvept = wavelength end point 
  
% avgwdist = matrix of average scan at each temp and avergae scan at 
each temp 
% plus disturbance (i.e., slope and offset) 
  
[r,c] = size(avgmtrx); 
lsm = wvept - wvspt;  
  
% lambda shift multiplier 
% LS = lambda shift 
  
for i = 1:c-1 
   LS = wvspt + lsm*rand(1); 
   distmtrx(:,i) = avgmtrx(:,i+1) + (m*2*(rand(1)-.5)*(avgmtrx(:,1)-LS) 
+ b*2*(rand(1)-.5)); 
end 
  
avgwdist = [avgmtrx distmtrx]; 
 
 

 


