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ABSTRACT 

 

The use of nondestructive deflection testing has become an integral part of the structural 

evaluation and rehabilitation process of pavements in recent years. The falling weight 

deflectometer (FWD) is commonly used to obtain material properties that can be used in 

mechanistic-empirical pavement design. These properties are currently obtained through an 

iterative process called backcalculation which has several limitations with one of the most 

notorious: the non-uniqueness of the results. The use of artificial neural networks (ANN) is 

currently being studied as a more reliable methodology and an advanced alternative. In addition, 

the loading frequency of the FWD impact loading can be considered similar to that of vehicle 

loading at a high speed. Hence, significant error could result between calculated from FWD and 

measured strain responses from traffic loads at operational speeds.  

The objectives of this study were to develop neural networks capable of predicting 

pavement layer moduli rapidly and reliably; and to determine correction factors for the high 

frequency/high speed FWD pavement responses to typical operating speed responses. The 

deflection basin database from the 2009 structural sections at the NCAT Test Track and the FWD 

test results from a section of the low volume route Lee 159 were used for verification of ANN 

models. The software 3D-Move was used to determine pavement theoretical response correction 

factors that were applied to actual values. 

The results indicated that the backcalculation process tended to overestimate the moduli 

of the asphalt concrete layer while the moduli of the subgrade were little or not affected. Besides 

the significant reduction in computed errors, the use of ANNs showed a clear advantage over 

conventional backcalculation: a couple of seconds to obtained ANN outputs versus minutes to 
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hours from backcalculation. The capability for ANNs to predict pavement layer moduli was 

validated using multiple load levels and full slip condition as a layer interaction. This presented a 

clear advantage over previous studies that have been focused on one load level and full bond 

conditions. 

The analysis of measured versus predicted pavement responses indicated that significant 

errors can be obtained from using  high speed/high frequency FWD backcalculated moduli to 

predict highway speed pavement responses. Therefore, correction factors should be applied on 

pavement responses from backcalculated moduli to represent highway speed loads. For the 

conditions and scenarios evaluated in this study, correction factors helped close the gap between 

measured and predicted pavement responses. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

The management and maintenance of pavements can be a complicated decision making process. 

In order to make decisions quickly and more efficiently, new tools and techniques are continually 

being introduced. Techniques such as expert systems and artificial neural networks (ANN) have 

been used in pavement management systems to perform structural evaluation of pavements (1-3).  

The use of nondestructive deflection testing has become an integral part of the structural 

evaluation and rehabilitation process of pavements in recent years. The falling weight 

deflectometer (FWD) is commonly used by state highway agencies to apply patterns of loading 

and record deflection data along the pavement. Current deflection analysis procedures utilize 

deflections, thicknesses and load levels as the input variables to solve for layer properties. This is 

an iterative process that compares calculated deflections with the measured deflections. The 

problem with this process is the non-uniqueness of the results. A good match between the 

deflections does not guarantee that the backcalculated moduli are reasonable for a given cross-

section. Thus, the exploration for a more accurate and reliable methodology to estimate pavement 

materials properties and pavement responses is still an important task of any pavement 

management system. 

The new Mechanistic–Empirical Pavement Design Guide (MEPDG) developed by 

NCHRP under AASHTO sponsorship requires that structural analysis be performed more than 

1,000 times for a single design simulation of a pavement structure (4). For rigid pavement design, 

the MEPDG already takes advantage of neural networks to reduce processing time.  For flexible 

pavement design the process can become extremely time consuming due to its reliance on 

mechanistic computations throughout the analysis. This processing time can be reduced, even 

more, by the incorporation of artificial neural networks.  Furthermore, the results obtained from 

FWD tests are widely used for pavement condition analysis and selection of maintenance 

strategies that can be also incorporated within the MEPDG. The integration of ANNs capable of 
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predicting pavement critical responses not only can help identify pavement distresses but also 

could complement existing pavement management systems.  

Even though the use of more advanced techniques can provide pavement properties more 

accurately, caution is needed when using predicted layer moduli from either backcalculation or 

ANN in mechanistic analysis. The loading frequency of FWD loading is similar to that of vehicle 

loading at a very high speed (loading pulse from FWD is estimated to be between 0.025 to 0.035 

seconds). Hence, significant error could result between calculated and measured strain responses 

under slower speeds when using predicted moduli in a mechanistic model. In addition, the 

viscoelastic nature of asphalt concrete (AC) renders its properties to be frequency-dependent. 

Static backcalculation of layer moduli from FWD testing does not take into account this 

frequency-dependence. Therefore, the exploration for a methodology to incorporate frequency-

dependent material properties to estimate pavement responses similar to those applied by moving 

vehicles becomes another important task of any pavement management system. 

1.2 Mechanistic-Empirical (M-E) Pavement Design (Rehabilitation) 

Mechanistic-empirical (M-E) pavement design, for new pavements and for rehabilitation, is used 

to determine the appropriate materials and layer thicknesses to provide the structural capacity for 

the required performance period. Mechanical properties of the pavement structure along with 

information on traffic, climate, and observed performance are used to more accurately model the 

pavement structure and predict its remaining life. Most mechanistic-empirical methods for 

determining the remaining life of an existing pavement rely on the use of deflection-based non-

destructive evaluation (NDE) devices. Figure 1.1 is a schematic of the M-E process. This process 

integrates the NDE results, and material properties of all the exiting layers and environmental 

conditions into the pavement structure. The structure is then modeled using a mechanical analysis 

program, and the pavement response is calculated given the axle load and tire configuration. The 

pavement response is then used to estimate the remaining life from empirically-derived transfer 
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functions. Finally, if the rehabilitation technique requires the design of an overlay, an iterative 

process is carried out until the remaining life of the new structure matches the new design life.  

 

FIGURE 1.1 M-E Design Schematic. 
 

1.3 Backcalculation of Pavement Layer Modulus  

One of the most common field tests used to evaluate the structural condition of a pavement is 

done with an FWD. This apparatus drops a circular load on the pavement structure that is 

representative of a heavy vehicle tire load. With the use of deflection sensors, the resulting 

deflection basin of the pavement surface can be measured. Backcalculation is an inverse process 

that utilizes deflections, thicknesses and load levels as the input variables to solve for layer 

moduli. The computational procedure to solve this problem includes both a pavement response 

model and an optimization algorithm. Basically, it is an iterative process that compares calculated 

deflections with the measured deflections. If the difference between the calculated and measured 

deflections is acceptable, then the assumed layer moduli are treated as the actual moduli. The 

problem with the backcalculation process is the non-uniqueness of the results. A good match 

between the deflections does not guarantee that the backcalculated moduli are reasonable for a 
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σ ε
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given cross-section. However, some investigators have compared measured strains to 

backcalculated (theoretical) strains based on layered elastic analyses with satisfactory results (5).  

Artificial neural networks (ANN) are part of the new tools also used to backcalculate 

pavement layer moduli and critical pavement responses from the results of FWD tests. These 

neural networks provide the same solutions as existing programs, only thousands of times faster 

(1-3). A methodology based on ANNs to compute the remaining life of flexible pavements and 

compare results with field data has been found to be another useful application of ANNs (3). One 

of the most important benefits of this approach was that the backcalculation process for 

determining layer moduli was not necessary.    

An artificial neural network can be defined as a massively parallel distributed processor 

that has a natural propensity for storing experimental knowledge and making it available for use 

(5). Consequently, knowledge is acquired by the network through a learning (training) process; 

the strength of the interconnections between neurons is implemented by means of the synaptic 

weights used to store the knowledge. The learning process is a procedure of adapting the weights 

with a learning algorithm in order to most accurately capture the knowledge. In other words, the 

aim of the learning process is to map a given relation between inputs and outputs of the network.  

One of the most common networks selected by pavement researchers uses a back-

propagation algorithm to train the network (1-3). This learning algorithm is applied to multilayer 

feed-forward networks consisting of processing elements with continuous and differentiable 

activation functions. Such networks associated with the back-propagation learning algorithm are 

also called back-propagation networks (6). With this network, error is calculated from outputs 

and used to update output weights. Additionally, the error at hidden nodes is calculated and 

updated by back propagating the error at the outputs through the new weights. The process 

continues until the minimum mean square error (MSE) calculated between outputs and targets is 

obtained. Further explanation of neural networks can be found in chapter 2 of this document. 
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Pavement layer thicknesses are important elements to calculate layer properties. Accurate 

information of layer thicknesses is not always available due to numerous reasons: records of very 

old structures are missing, overlays and maintenance records not up to date, etc. Generation of 

this information involves additional testing at an extra cost. This testing can be performed either 

by using nondestructive techniques such as the ground-penetrating radar or destructive techniques 

such as coring. Consequently, research is needed to identify and evaluate methods for estimating 

pavement layer thicknesses and/or pavement responses based on deflection measurements 

resulting in no additional cost to the agencies. 

1.4 Analysis of Moving Loads  

Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for 

accurate prediction of flexible pavement performance. The time and temperature-dependency of 

AC materials calls for utilizing advanced material characterization and mechanistic theories, such 

as viscoelasticity and stress/strain analysis. State-of-the-art load modeling is required for 

pavement structures subject to dynamic loads. One example is the application of finite element 

methodology or FEM. In finite element modeling, viscoelastic behavior of AC materials can be 

characterized through relaxation moduli and dynamic loads can be modeled in terms of duration 

of the load and velocity. Another example is the implementation of the layered elastic theory in 

the Mechanistic-Empirical Pavement Design Guide (MEPDG).  In this guide, the time 

dependency is accounted for by calculating the loading times at different AC layer depths. 

Loading times or frequencies are matched to material frequencies to compute the response. 

However, this procedure has been significantly criticized and its applicability to model dynamic 

responses is still questionable (4).  

 More recently, the application of finite layer methodology has gained popularity and one 

example of this can be found in the newly developed software 3D-Move. The analytical software 

3D-Move was created by the Asphalt Research Consortium and it is currently on its version 1.2 
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(7).  This tool accounts for moving traffic loads with complex contact stress distributions of any 

shape, vehicle speed, and viscoelastic properties of asphalt concrete layers to calculate pavement 

responses using a continuum-based finite-layer approach. The finite-layer approach treats each 

pavement layer as a continuum and uses the Fourier transform technique (8). Since pavements are 

horizontally layered and pavement responses are required only at a few selected locations 3D-

Move takes advantage of the finite layer approach (8). Asphalt concrete layers can be modeled 

using dynamic complex modulus master curves allowing the computation of pavement response 

as a function of vehicle speed and temperature.  

1.5 Summary 

Assessment of pavement layer properties, pavement responses and prediction of layer thicknesses 

using ANN’s has been performed previously. However, these evaluations were limited to the use 

of one load level and the assumption of full bond interaction between layers. Therefore, the 

development of ANNs that can predict pavement layer moduli rapidly and reliably for multiple 

load levels and for layer interface other than fully bonded was necessary. The literature also 

suggested that the frequency of FWD loading can be similar to that of vehicle loading at a very 

high speed. Therefore, it was necessary to find the speed to which the FWD can be compared 

with and to evaluate the potential error that could result from the use of backcalculated high 

frequency pavement responses compared to operational speed/frequency responses.   

1.6 Objectives 

The main objectives of this research study were to: 

• Develop neural networks capable of predicting pavement layer moduli rapidly and reliably.  

• Determine correction factors for converting the high frequency/high speed FWD pavement 

responses to typical operating speed responses.  

Secondary objectives of this study were to evaluate the effect of tolerance levels in the 

conventional backcalculation process, to assess the potential use of ANN’s to predict layer 
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thickness, to examine the use of ANNs to predict layer moduli under full slip layer interaction 

and to analyze differences between measured and predicted pavement responses. 

1.7 Scope of Work 

To accomplish the above objectives, several Artificial Neural Networks were created to perform 

forward calculations of pavement layer moduli and critical responses from non-destructive testing 

information. Synthetic databases were created using a modified version of the software PerRoad 

(developed uniquely for this study) for a three layer flexible pavement. These databases consisted 

of layer moduli, deflection basins, critical pavement responses and layer thicknesses. The 

software MATLAB 7.1 was utilized to train and develop ANN’s. These networks were created, 

first, with deflection basins and thicknesses to estimate layer moduli and responses. In later cases, 

deflections were set as the only inputs used to calculate the remaining variables.  The deflection 

basin database from the 2009 structural sections at the NCAT Test Track was used for 

verification purposes where ANN estimated results were compared against backcalculated results. 

Backcalculated results were obtained using the software EVERCALC. Finally, the software 3D-

Move was used to first determine the loading pulse produced by a moving load equivalent to the 

loading pulse produce by the FWD and second to determine correction factors to be applied on 

pavement responses using backcalculated modulus. 

1.8 Organization of Dissertation 

This dissertation contains a literature review of the current backcalculation technique used for 

characterization of material properties and the use of Artificial Neural Networks (ANNs) for 

similar purposes (chapter 2). The effects of time- and temperature-dependency properties of 

asphalt concrete mixtures on pavement responses within a non-destructive testing perspective 

were also reviewed. Following the literature review is a basic overview of the pavement 

structures (test sections) used to conduct this research (chapter 3). Chapter 4 describes the 

methodologies to develop ANNs and the analysis of FWD loading versus traffic loading. The 
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body of this investigation included two main studies related to advance material characterization 

techniques. The first one was focused on the application of ANNs as an alternative procedure to 

conventional backcalculation (chapters 5 and 6). Chapter 5 discusses the results of ANN analyses 

performed with synthetic databases its comparison with backcalculated results while chapter 6 

has to do with the verification of ANNs using actual data. The second study, also related to non-

destructive testing, was focused on the correction of predicted responses from high 

frequency/speed FWD loading to represent typical operational vehicle speeds. The conclusions 

and recommendations for future work are discussed in the last chapter. 
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CHAPTER TWO: LITERATURE REVIEW 

In the mechanistic-empirical framework, accurate material characterization from non-destructive 

testing is imperative in successfully predicting pavement responses and pavement performance. 

On this topic, a literature review of the conventional backcalculation process and the application 

of artificial neural networks used to predict pavement layer moduli was performed.  The effects of 

time and temperature dependency properties of asphalt concrete mixtures on pavement responses 

and load pulse durations were also investigated. The literature review on this topic included not 

only theoretical analyses but also findings from actual results.  

2.1 Nondestructive Testing 

Nondestructive testing (NDT) of pavements involves applying a known load to the pavement 

structure and measuring the resulting surface deflection basin. With respect to flexible pavements, 

NDT deflection measurements can be used to determine the following: 

• Modulus of each of the structural layers. 

• Pavement structural adequacy, 

• Overlay thickness design, 

• Remaining structural life. 

In NDT, the pavement structure is evaluated without any material disturbance or 

modification and the tests are relatively quick and inexpensive. This allows a large number of 

tests to be completed with limited disruption to traffic (9). Figure 2.1 illustrates the Falling 

Weight Deflectometer (FWD).  The FWD contains up to nine high speed velocity transducers that 

measure pavement deflections. These transducers are lowered hydraulically to the pavement 

surface where the deflection data are to be obtained. Locations of the sensors can be adjusted 

depending upon the purpose of the study (Figure 2.2). 



 

 
10 

 
 

 

FIGURE 2.1 Diagram of the Falling Weight Deflectometer (10). 
 

 

FIGURE 2.2 Typical location of loading plate and deflection sensors for impulse deflection 
equipment (13).  
 

The FWD utilizes a transient impulse loading which simulates the impact of a moving 

wheel load. The loads produced are normally between 2,000 lb and 25,000 lb depending on the 

traffic type and weight to be simulated (11). The load pulse duration is between 25 and 30 

milliseconds (Figure 2.3). The force is typically applied to the pavement structure through a 5.91 

in. radius steel plate underlain by a rubber pad. A transducer within the loading plate measures 

the actual time history of the load applied to the pavement. The FWD impulse load duration is 

considered to approximate the same load duration of a vehicle traveling at 40 to 50 mph (12). 
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FIGURE 2.3 Typical force output from falling weight deflectometers (time from A to B is 
variable, depending on drop height): A = time at which weights are released; B = time at 
which weight package makes first contact: C = peak load reached (13). 
 

2.2 Backcalculation 

Backcalculation is the process of computing pavement layer moduli and the subgrade resilient 

modulus based on pavement deflection basins generated by FWD (14). To conduct a 

backcalculation, the initial moduli of pavement layers should be first assumed, the values are 

usually estimated base on an engineer’s experience or equations. After assuming the initial layer 

moduli, pavement surface deflections can be calculated using pavement response models. The 

calculated deflections are then compared to the measured values. By adjusting the pavement layer 

moduli, a good match (within some tolerable error) between the measured and theoretical 

deflections can be reached. The process of backcalculation is iterative. Many programs were 

developed for backcalculation such as Modulus 6.0, Elmod 6.0, and EVERCALC 5.0. Figure 2.4 

presents a basic flowchart of backcalculation procedure utilized in EVERCALC 5.0.  
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FIGURE 2.4 Flow chart of the backcalculation of layer moduli (14). 
 

The main components in a backcalculation process include: 

• Layer thicknesses and loads: Thickness of each pavement layer and load levels applied 

on the pavement surface. 

• Measured deflections: Surface deflections measured during FWD tests. 

• Seed moduli: Initial moduli used to compute theoretical surface deflections. 

• Deflection calculation: Use pavement response models to calculate theoretical surface 

deflections. 

• Error check: Compare the calculated and measured deflections. 

• Search for new moduli: Iteratively search for the new moduli of pavement layers until the 

calculated and measured deflection are matched (within acceptable error). 
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• Controls on the range of moduli: The backcalculation programs usually can define a 

range of modulus for each pavement layer to prevent unreasonable pavement layer 

moduli. 

2.3 Layer Moduli Backcalculation Methodologies 

Different methodologies exist to obtain pavement layer moduli. In general, methodologies of 

backcalculation involve an application of elastic theory and the application of finite element 

methodology. 

• Traditional elastic programs. These are based on numerical integration (i.e. ELSYM5, 

CHEVRON, BISAR, WESDEF, EVERCALC). The analytical models and the material 

parameters used are the elastic parameters (Young’s modulus and Poisson’s ratio). 

• Finite element (FE) programs. These programs use a Finite Element Method that consists 

of dividing a structure into multiple elements, describing the behavior of each element in 

a simple way, and reconnecting elements at “nodes”. In stress analysis, the equations on 

the program are equilibrium equations of the “nodes”. Some backcalculation programs 

that use FE are ILLIPAVE and MICHPAVE. 

• General structural analysis. Some general structural programs such as ANSYS, ABACUS 

and ADINA apply Finite Element Methods. 

2.3.1 Problems Encountered In Backcalculation 

Traditional elastic programs use an iterative backcalculation process. The iterative 

process stops when measured and predicted deflections match within tolerance levels or when the 

maximum number of iterations set by the user is reached. Ullidtz (16) described some limitations 

about this procedure: 

1. It requires the user to enter starting values and ranges for the moduli. Then, unless 

appropriate starting values are selected, the program will never converge to a solution within 

the selected ranges.  
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2. The solution depends on the initial “seed modulus” values selected. Thus, the values of 

boundaries must be selected judiciously.  

2.1 If the limits were too narrow, they would prevent the program from converging to the 

correct solution. 

2.2 If the limits were too broad, they would allow the program to converge to an incorrect 

solution. 

3. As the layers of a pavement structure increase, the time consumed by the software during 

backcalculation will increase. 

4. Reliability of the results decreases as the layers of a pavement increase due to the limited 

degrees of freedom. 

Differences between the theoretical deflections and the FWD measured deflections are 

due to some problems encountered in the real pavement structure such as the following: 

 Pavement distress. 

 Variations in layer thickness. 

 Nonlinear material response. 

 Presence of bedrock or other stiff layer. 

 The effects of moisture and temperature (the weather, the presence of cloud cover, water 

table depth, effect of trees, and the effects of vegetation near the paved surface) (15). 

In 2002 Romanoschi and Metcalf (16) evaluated the potential error in pavement layer 

moduli backcalculation due to improper modeling of the layer interface condition. The finite 

element program ABAQUS was used to simulate different interface conditions and then obtain 

deflections for typical flexible and semirigid road structures. The layer moduli were 

backcalculated from the deflection data using the MODULUS backcalculation software, and the 

values obtained were compared to the initial moduli values. It was found that the condition of the 

wearing-binder layer interface leads to an error in backcalculated moduli for the granular base 

layers, for both flexible and the semirigid structures. The asphalt surface layer moduli were 
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overestimated, up to 120 percent of the initial values, while the modulus of the stabilized base 

was underestimated (up to six times smaller than the original values). The backcalculated 

subgrade modulus was the least influenced by the simulated layer interface condition. 

Lenngren and Olsson (17) studied the effect of performing conventional backcalculation 

on a four-layer system with full slip (air gap) condition between layers. Their results indicated 

that the backcalculated modulus of the unbound base was most affected by adding friction 

between layers (Figure 2.5). The effect on the unbound base is considerable and may explain a lot 

of underestimated modulus on base courses. The modulus of the base course was found to be 

about 50% lower than the actual modulus when the full bond condition was used in the 

backcalculation process. The asphalt layer modulus was little or not affected; however, the 

horizontal strain at the bottom of the layer was somewhat underestimated. The subgrade and 

subbase moduli were only marginally affected.  

 
Air Gap = 0 means full slip, Air Gap > 1000 means full bond. 
 
FIGURE 2.5 Air gap influence on a four-layer asphalt concrete system (18).  
 

 

 

 



 

 
16 

 
 

2.4 Advanced Approaches to Backcalculation 

Artificial neural networks (ANN) are part of the new tools also used to predict pavement layer 

moduli and critical pavement responses from the results of FWD tests. Meier and Rix (1) were 

first to introduce neural network methodology for pavement backcalculations. This is an 

advanced approach that achieves a real-time backcalculation with higher precision. Figure 2.6 is 

the flow chart of the approach followed by Meier and Rix in 1994. In their study, a mechanistic 

pavement analysis model was used to calculate a synthetic deflection basin for a presumed set of 

pavement layer properties. The artificial neural network was then trained to perform the inverse 

operation of mapping the synthetic deflection basin (input layer) back onto the presumed set of 

properties (output layer). Training of the network was an iterative process. At the beginning, the 

neural network generated higher differences (errors) between actual or measured values and 

computed values. The inverse function was reached (training process stops) when a minimum 

error was achieved. 

 

FIGURE 2.6 Approached followed by Meier and Rix (1). 
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Trained ANN models need to be tested based on an independent dataset within the ranges 

that they were trained. A sufficiently wide dataset obtained from the pavement analysis can be 

chosen independently considering the given ranges of material and geometry properties and used 

as the testing dataset for the verification of proper ANN learning (6). The remaining data are then 

used for the training and learning procedure. Although training takes a long computation time, 

testing is often much faster (on the order of micro seconds). Meier et al. (1-2) developed an ANN 

as a complement of the layered elastic analysis software WESDEF. With the addition of the 

neural networks, WESDEF was able to backcalculate pavement layer moduli 42 times faster, on 

average, than it did through conventional methods.  

An optimal ANN, trained to achieve the minimum possible error, should also produce 

outputs with low errors when applied on an independent dataset. Figure 2.7 shows the cumulative 

frequency distributions of the relative output errors (i.e., output error divided by target output) for 

a 10,000 deflection basin database for four different pavement scenarios studied by Meier et al. 

(2). In every case, 99 percent of the calculated deflections were in error by 5 percent or less. 

Ferregut et al. (3) developed a methodology based on ANNs to compute the remaining life of 

flexible pavements and compare results with field data from the Texas Mobile Load Simulator. In 

this study the inputs of the network were layer thickness and deflection basins. The outputs were 

the best estimate of the remaining life (or critical responses needed to calculate it) and the 

pavement performance curve. One of the most important benefits of their approach was that the 

backcalculation process for determining layer moduli was not necessary. Figure 2.8 is a plot of 

the predicted (ANN output) versus desired (synthetic) remaining life in millions of equivalent 

single axle loads (ESALs). This plot shows that the error between predicted and desired values 

was not constant and in fact, the error increased as the number of ESALS increased. The authors 

considered an interval of ± 20% error acceptable for predicting the remaining life of flexible 

pavements. 

 



 

 
18 

 
 

 

FIGURE 2.7 Frequency distributions of relative error for four neural networks (2). 
 

 

FIGURE 2.8 Performances of ANN backcalculation models for predicting layer moduli of 
conventional flexible pavements (3). 
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Ceylan et al. (18) focused on the development of ANN-based forward and 

backcalculation type flexible pavement analysis models to predict critical pavement responses 

and layer moduli. The ILLI-PAVE finite element program, which considers the nonlinear stress-

dependent geomaterial characterization, was utilized to generate a solution database for 

developing ANN-based structural models to accurately predict pavement deflection basins, and 

pavement layer moduli from realistic FWD deflection profiles. 

Tutumluer et al. (19) developed a Soft Computing Based Pavement and Geomaterial 

System Analyzer (SOFTSYS) framework as a software tool to backcalculate nonlinear stress-

dependent geomaterial properties for conventional flexible pavements and the total AC 

thicknesses of full-depth asphalt pavements. Artificial neural network pavement structural models 

were developed using the results of the synthetic data obtained from ILLI-PAVE FE solutions. 

Their results indicated that performance of ANN backcalculation models for predicting layer 

moduli of granular bases for conventional flexible pavements provided the highest average 

absolute errors (AAEs) on the order of 6% (Figure 2.9). Their results also indicated that AAEs on 

the order of 6% and 9% were obtained for the HMA thickness estimation for full depth 

pavements and full depth pavements built on lime stabilized soil layers (Figure 2.10). In addition, 

the thickness data obtained from GPR testing matched reasonably well with the SOFTSYS 

results. However, in some locations the maximum difference between the two methodologies 

reached 3 inches. 

 



 

 
20 

 
 

 

FIGURE 2.9 Performances of ANN backcalculation models for predicting layer moduli of 
granular bases for conventional flexible pavements (19). 
 

 

FIGURE 2.10 Estimation of pavement layer properties using SOFTSYS (19). 
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In 2007, Gopalakrishnan (20) used artificial neural networks for predicting non-linear 

layer moduli of flexible airfield pavements subjected to new generation aircraft (NGA). This 

study was based on the deflection basins obtained from heavy weight deflectometer (HWD) data. 

HWD tests were performed the Federal Aviation Administration’s National Airport Pavement 

Test Facility (NAPTF) to monitor the effect of Boeing 777 (B777) and Boeing 747 (B747) test 

gear trafficking on the structural condition of flexible pavement sections. The pavement sections 

at NAPTF were modeled in ILLI-PAVE and a synthetic database was generated for a range of 

moduli values. A multi-layer, feed-forward network with error-back propagation algorithm was 

trained to approximate the HWD backcalculation function using that database. The ILLI-PAVE 

synthetic database was used in the ANN training to account for the stress-hardening behavior of 

unbound granular materials and stress-softening behavior of fine-grained subgrade soil. The 

model was able to predict the asphalt concrete (AC) and subgrade non-linear moduli from actual 

HWD field test data. Figure 2.11 shows the plot of predicted ANN modulus of the AC layer 

versus backcalculated modulus using the software BAKFAA. It was noted that the rut depths in 

the NAPTF flexible test sections reached significant levels (3 in to 4 in) towards the end of traffic 

testing and that explained not only the significant difference in results but also the significant 

variability during the final stages of traffic testing. 

 

FIGURE 2.11 ANN AC moduli predictions compared with BAKFAA predictions (20). 
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On a more elaborate scale, the new Mechanistic–Empirical Pavement Design Guide 

(MEPDG) procedure, developed by NCHRP under AASHTO sponsorship, requires that structural 

analysis be performed more than 1,000 times for a single design simulation of a pavement 

structure (4). For rigid pavement design, the MEPDG already takes advantage of the neural 

networks to reduce processing time. The MEPDG uses a stress prediction neural network in 

conjunction with a fatigue transfer function, originally derived from field slab test results of the 

U.S. Army Corps of Engineers, to predict either bottom-up or top-down transverse fatigue 

cracking near the mid-slab edge.  

2.4.1 Neural Networks Definition 

A neural network is an information processing system that is nonalgorithmic, nondigital, and 

intensely parallel (21). It consists of a number of very simple and highly interconnected 

processors called neurons, which are the analogs of the biological neurons, in the brain (Figure 

2.12). The neurons are connected by a large number of weighted links, over which signals can 

pass. Each neuron typically receives many signals over its incoming connections (dendrites). 

 

FIGURE 2.12 Schematic of Neural Networks. 
 

The neuron usually has many incoming signal connections; however, it never produces 

more than single outgoing signals. That output signal transmits over the neuron's outgoing 
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connection (corresponding to the biological axon of a neuron), which usually splits into a very 

large number of smaller connections, each of which terminates at a different destination. 

2.4.2 Benefits of Neural Networks 

The use of neural networks offers the following useful capabilities: 

1. Neural networks are capable to adapt themselves (the synapses connections between 

units) to special environmental conditions by changing their structure or strength of 

connections.  

2. Every new state of a neuron is a nonlinear function of the input pattern created by the 

firing nonlinear activity of the other neurons.  

3. Their different states are characterized by high robustness or insensitivity to noisy and 

fuzzy of input data due to use of a highly redundant distributed structure (6, 21).  

2.4.3 Artificial Feedforward Neural Networks 

This type of ANN is also a massively parallel distributed processor that has a propensity for 

storing experimental knowledge and making it available for use. It means that knowledge is 

acquired by the network through a learning (training) process (6). The strength of the 

interconnections between neurons is implemented by means of the synaptic weights used to store 

the knowledge. The learning process is a procedure of the adapting the weights with a learning 

algorithm in order to capture the knowledge. In other words, the goal of the learning process is to 

map a given relation between inputs and outputs of the network.  

Figure 2.13 shows an example of feedforward ANNs. In this case, the neurons are 

grouped into layers. The input layer consists of neurons that receive input from the external 

environment. The output layer consists of neurons that communicate the output of the system to 

the user or external environment. There are usually a number of hidden layers between these two 

layers. This is also a simple structure with only one hidden layer.  An ANN is of the feedforward 

type as depicted in Figure 2.13 if a neuron’s output is never dependent on the output of 
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subsequent neurons. Signals only go forward through the network with no loops. When the input 

layer receives the input its neurons produce output, which becomes input to the other layers of the 

system. The process continues until a certain condition is satisfied or until the output layer is 

invoked and fires their output to the external environment (21). 

 

FIGURE 2.13 Schematic of a feedforward neural network (6). 
 

The main advantages of utilizing feedforward ANN models are the speed to compute the 

outputs; they are easy to use, and capable to process large amounts of data. The two main 

limitations that the model does not have the ability to extrapolate beyond the range of parameters 

used in training (it can be overcome by carefully selecting the training set), and the developing 

time is very long (it affects the model developers).  ANNs are also considered black boxes. They 

cannot explain why a given pattern has been classified as x rather than y. 

2.4.4 Back-Propagation Training Technique 

Back-propagation is often used in conjunction with feedforward networks and it provides a way 

of using examples of a target function to find the weights that make the mapping function 

approximate the target function as closely as possible (6). Figure 2.14 shows a flow chart of this 

training process. Training begins with an arbitrary set of weights. Series of computations 
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(iterations) are done in which the calculated output is compared with the known values, adjusting 

the weights in such a way that the difference between the calculated values and the target function 

is minimized (21). With each iteration, the hidden layer passes information through based on 

values of the weights in memory and the output values are calculated. The output nodes are then 

informed of the difference between the actual and target values. Each output neuron determines in 

which direction its weights must be adjusted to reduce the error and propagates the information to 

the hidden layer, which in turn determines in which direction its weights must be changed. At the 

hidden layer level the weights are adjusted in such a way as to reduce the error across the full set 

of output neurons thus minimizing the error in the network. For each iteration, there is a forward 

pass followed by a backward pass during which error information is propagated backward from 

the output neurons to the hidden neurons. 

 

FIGURE 2.14 Flow chart of backpropagation training process (21). 
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2.5 Simulation of Moving Vehicle Loads and Load Pulse Durations 

2.5.1 FWD Load Versus Moving Loads 

The viscoelastic nature of asphalt concrete (AC) renders its properties to be frequency-dependent. 

Static backcalculation of layer moduli from falling weight deflectometer (FWD) testing does not 

take into account this frequency-dependence. In 1999, Chatti and Kim (22) evaluated the effect of 

frequency-dependent AC properties on the horizontal strain and vertical deflection using the 

computer program SAPSI-M and field results. The analysis showed that the decrease in 

horizontal strain with increasing truck speed can be duplicated only by using frequency-

dependent properties for the asphalt concrete layer (Figure 2.15). However, using a constant 

backcalculated AC surface layer modulus and static analysis seemed to be sufficient for giving a 

prediction that is reasonably close to the actual tensile strain under moving loads at high speeds. 

They also mentioned that backcalculated modulus for the AC layer was generally higher than the 

creep modulus, and the horizontal tensile strain was not affected by speed when using a constant 

AC layer modulus. 

 

FIGURE 2.15 Comparison of measured and predicted strain under moving loads (22). 
 

The response of pavements to FWD tests has been examined by Hoffman and Thompson 

(23) as part of an investigation on a range of nondestructive testing devices. Their results showed 
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that FWD pulse durations were of the order of 30 msec, in contrast to typical truck pulse 

durations at 50 mph that were estimated at 120 msec. In addition, neither the deflection pulse 

duration nor the accelerations imposed by the FWD agree well with those measured for moving 

wheel loads. It was indicated in this study that a fixed-in-place nondestructive testing device 

cannot simulate the loading effect of a moving load. However, they point out that FWD and 

moving truck deflections measured in their study compare very favorably. 

In a more recent study by Jianfeng Q. (24), the impulse durations caused by moving 

vehicles were found to be about two to seventeen times longer than the pulse duration caused by 

the FWD. For a truck driven at a speed of 45-55 mph, the pulse duration of the truck was about 

two to three times longer than the FWD loading (Figure 2.16). On the other hand, the author 

indicated that for the same level of loading (single wheel), strains under FWD loading were close 

to the strain caused by a controlled load vehicle (CVL) driving at 55 mph (Figure 2.17). This 

study was performed on perpetual pavements with average AC layer thickness of 16.0 inches and 

maximum recorded strain responses of 75 microns.  

 

FIGURE 2.16 Average duration of the impulses under different loading conditions (24). 
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FIGURE 2.17 Comparison of strain responses under FWD loading and truck loading at the 
same level of loads (24). 
 

2.5.2 Simulation of Moving Loads 

The finite element methodology (FEM) along with a simplified version such as finite 

layer methodology has been widely accepted as a methodology to simulate moving loads. In 

finite element modeling, viscoelastic behavior of AC materials can be characterized through 

relaxation moduli and dynamic loads can be modeled in terms of duration of the load and 

velocity.  One example of this can be found in the newly developed software 3D-Move and 

several verification studies have been conducted to validate the applicability and versatility of it 

(8, 25-27).  This tool accounts for  moving traffic loads with complex contact stress distributions 

of any shape, vehicle speed, and viscoelastic properties of asphalt concrete layers to calculate 

pavement responses using a continuum-based finite-layer approach. The finite-layer approach 

treats each pavement layer as a continuum and uses the Fourier transform technique (8). Since 

pavements are horizontally layered and pavement responses are required only at a few selected 
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locations 3D-Move takes advantage of the finite layer approach (8). Some of these efforts 

included field calibrations from the Penn State University test track, MN/Road and an UNR off-

road vehicle study. These studies compared a variety of independently-measured pavement 

responses (stresses, strains, and displacements) with those computed. For instance, Siddharthan et 

al. (26-27) studied the capability of 3D-Move to predict pavement response and compared the 

results to full-scale field-measurements at the bottom of the asphalt concrete (AC) layer. The 

results indicated good agreement between predicted and field-measured strain responses, with the 

difference between them less than 14 percent (Figure 2.18). In addition, tensile microstrain 

decreased by as much as 50 percent when the speed of the vehicle increased from 20 to 50 mph. 

 

FIGURE 2.18 Validation of the software 3D-Move (26-27). 
 

In 2010, Kim (28), showed the results of a study related to analysis of moving loads.  In 

this paper, a linear viscoelastic solution for the multilayered system subjected to a cylindrical unit 

step (static) load was derived from the elastic solution by using the principle of elastic-

viscoelastic correspondence and the numerical inversion of Laplace transforms. The solution was 

then extended to simulating pavement responses subjected to a moving load by employing the 
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Boltzmann’s superposition principle. The soundness of output from the viscoelastic solution was 

confirmed by comparing them to those of the finite-element analysis (FEA). Compared to the 

time and effort required in FEA, the analysis based on the viscoelastic solution was much faster.  

Figure 2.19 shows a verification of Kim’s approached (viscoelastic V-Layer) using the finite-

element method. For this figure, the horizontal stress calculated at the bottom of the AC layer 

obtained from the viscoelastic solution matched the results obtained from finite-element analysis. 

 

FIGURE 2.19 Viscoelastic versus FEA analysis (28). 
 

A study by Elsefi et al. (29) was meant to characterize hot-mix asphalt (HMA) 

viscoelastic properties at intermediate and high temperatures and to incorporate laboratory-

determined parameters into a three-dimensional finite element (FE) model to accurately simulate 

pavement responses to vehicular loading at different temperatures and speeds. Results of the 

developed FE model were compared against field-measured pavement responses from the 

Virginia Smart Road. Results of this analysis indicated that FE viscoelastic model were in better 

agreement with field measurements than the layered elastic theory. Figure 2.20 shows that the 

vertical stress calculated at the bottom of the AC layer obtained from the viscoelastic solution 

were reasonably close to stresses measured at 45 mph. 
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FIGURE 2.20 Comparison between measured and calculated vertical stress at a speed of 45 
mph (29). 
 

2.5.3 Load Pulse Duration 

In the NCHRP Project 1-37A Mechanistic–Empirical Pavement Design Guide (MEPDG), 

the dynamic modulus master curve is constructed as a function of loading time, t (4). Because 

dynamic modulus results are obtained as a function of frequency, a conversion from frequency to 

loading time is needed. The MEPDG uses an iterative procedure to compute the load duration 

under dynamic loading. The MEPDG assumes the load duration as the length of time for one 

complete haversine stress pulse in the longitudinal direction for an applied load (4). A simplified 

procedure based on a 45 degree influence zone was adopted to calculate the frequency of the 

applied load as a function of the vehicle speed and the cross-section of the pavement structure. 

Through the use of the complex modulus master curve, the MEPDG software internally selects 

the applicable complex modulus depending on the pertinent temperature and loading frequency.  

Concerns were raised that the current MEPDG methodology may be overestimating the 

frequency resulting in under prediction of distress levels (30). In addition, the current frequency 
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calculation procedure was also reported to override the effect of temperature compared with the 

effects in other mechanistic–empirical design procedures.  To quantify the level of inaccuracy in 

MEPDG to account for load frequency, Al-qadi et al. (31), evaluated the MEPDG methodology 

for calculation of the loading time, the results of the MEPDG procedure were compared with 

those of an advanced three-dimensional (3-D) finite element (FE) approach that simulates the 

approaching-leaving rolling wheel at a specific speed. Comparison of these two methods showed 

that the frequencies calculated on the basis of the MEPDG procedure were greater than the ones 

determined by the 3-D FE method. Ultimately, this would result in underestimation of the 

pavement response to a load and, therefore, greater errors in calibrations of the pavement 

response to field distress. Correction factors were presented to ensure the correctness of the 

loading time calculation in MEPDG.  

The elastic—viscoelastic correspondence principle can be applied directly to moving 

loads, as indicated by Huang (11) in a multilayer system. The complexities of the analysis and the 

large amount of computer time required make these methods unsuited for practical use. 

Therefore, a simplified method has been used in KENLAYER. In this method, it is assumed that 

the intensity of load varies with time according to a haversine function, as shown in Figure 2.21. 

With t = 0 at the peak, the load function is expressed in equation 2.1.  

𝐿(𝑡) = 𝑞𝑠𝑖𝑛2 �𝜋
2

+ 𝜇𝑡
𝑑
�    Eq. 2.1 

Where; 

d = the duration of load 

q = peak load 

t = time  
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FIGURE 2.21. Moving load as a function of time (11). 
 

When the load is at a considerable distance from a given point, or t = ±d/2, the load above 

the point is zero, or L(t) = 0. When the load is directly above the given point, or t = 0, the load 

intensity is q. The duration of load depends on the vehicle speed (s) and the tire contact radius (a). 

A reasonable assumption is that the load has practically no effect when it is at a distance of 6a 

from the point, or  

𝑑 = 12𝑎
𝑠

      Eq. 2.1 

Where; 

d = the duration of load, 

a = the tire contact radius, 

s = the moving load speed 

If a = 6 in and s = 40 mph  (58 .7 ft/s), then d = 0.1 s . On the other hand, if d = 0.03 s 

(FWD load pulse duration) and a = 5.91 in (FWD plate radius), s = 134 mph (197 ft/s). Therefore, 

it would be necessary to simulate a moving load with a speed of 134 mph to make it comparable 

to the FWD impact load.  

 The relationship between frequency and loading time for asphalt concrete mixtures was 

defined by Jacobs et al. (32) as the dynamic modulus frequency equals the inverse of loading time 

t (1/t). Jacobs et al. also suggested that a loading frequency of 8 hz corresponded to a vehicular 

speed of 37 mph. On the other hand, Kim and Lee (33) compared the uniaxial dynamic modulus 
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results with the resilient modulus results obtained by the indirect tensile test at a frequency of 10 

Hz, assuming that the loading time in the resilient modulus test is inversely related to the dynamic 

modulus test frequency (in hertz), such that t = 1/f . The same relationship was used to convert a 

falling weight deflectometer loading time of 0.03 s to a dynamic modulus test frequency of 33 

Hz. To convert the dynamic modulus as a function of frequency to the dynamic modulus as a 

function of loading time for input in MEPDG, Bonaquist and Christensen (34) and Witczak et al. 

(35) suggested that a frequency of 10 Hz be used to represent highway speeds and, therefore, that 

the dynamic modulus result at 10 Hz be used. 

Loulizi et al. (36) at the Virginia Smart Road facility characterized the effects of speed, 

depth and temperature on measured vertical compressive stress pulse times (2002). Pulse 

durations were measured for truck speeds ranging from 5 mph to 45 mph at various pavement 

depths. Similar testing conducted at a later date was used for temperature comparisons, resulting 

in maximum in-situ temperature differences between test dates of 55.8ºF and 44.2ºF for the two 

pavement types investigated. Due to the lack of symmetry in the stress pulses, the loading time 

was taken to be twice the time of the rising normalized vertical compressive stress pulse 

beginning at a normalized stress of 0.01 psi. The results led to the conclusion that normalized 

compressive stress pulse durations generally increased with depth and were related to vehicle 

speed by a power function. Figure 2.22 shows the effect of vehicle speed on the normalized 

vertical stress pulse duration. The influence of the load and the duration of the pulse decreased as 

the speed of the vehicle increased. 
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FIGURE 2.22 Measured compressive stress pulse (36). 

 
In 2008, Garcia and Thompson (37) utilized strain signals to measure the loading pulse 

duration. A traffic load simulator, the Advanced Transportation Loading Assembly (ATLAS), 

was employed to apply loads with no lateral displacement under a single tire inflated to 110 psi. 

ATLAS testing was conducted at very low speeds, 2 mph, 6 mph, and 10 mph for loads ranging 

from 5-11 kips. Load duration measurements were taken at various depths in the pavement and 

were compared with computed load pulse durations from Equations 2.1 and 2.2.  These results 

showed that measured longitudinal strain pulse durations were overestimated by only 2.21% 

Leff = 200 + 2z      Eq. 2.1 

Where: 

Leff = effective length of load pulse (mm) 

z = actual depth (mm) 

t = Leff / v      Eq. 2.2 

Where: 

t = time of loading (s) 

v = vehicle speed (mm/s) 
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In 2009, Robbins (38) studied the effects of speed, depth and temperature on measured 

strain pulse duration. From the individual relationships, the combined effect of these three factors 

on load duration was then characterized to provide a means to predict the load duration for any 

set of conditions. The load durations computed by the MEPDG procedure were compared with 

the strain pulse durations measured during the field investigation. The results showed that the 

MEPDG procedure consistently over-predicts the load durations (Figure 2.23). Over-prediction of 

load duration would be expected to result in lower modulus of the AC layer and consequently an 

over-prediction of pavement responses. 

 

FIGURE 2.23 Measured load duration versus theoretical (38). 
 
 
2.6 Summary 

The literature suggests that the current backcalculation process is highly dependent on initial seed 

values. Therefore, the starting values and ranges for the moduli must be selected judiciously. The 

number of layers of a pavement structure, the selected level of tolerance, the number of deflection 
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basins to be analyzed and starting values can significantly affect the time consumed and 

reliability during backcalculation. On the contrary, the results obtained from ANNs are unique, 

will be the same no matter the times the ANN is applied and time consumed is minimal. The 

literature also suggests that a there is a potential error in pavement layer moduli backcalculation 

due to improper modeling of the layer interface condition. The granular base modulus is more 

likely to be the most affected by considering a full bond layer interface condition when the actual 

conditions tend to be full slip layer interface. 

 Regarding the capability to the FWD to simulate moving loads, the literature suggests 

that significant differences were observed when the load pulse duration of the FWD was 

compared to vehicles moving at operational speeds. A frequency of 10 Hz has been 

recommended for laboratory dynamic modulus tests and to simulate operational moving loads.  

However, a 33 Hz frequency has been acknowledged to represent the FWD load frequency. 

Finally, the literature proposes that the proper determination of the loading pulse duration is not 

only essential to deal with frequency dependent materials such as asphalt concrete but also to 

properly predict pavement responses and ultimately performance.  
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CHAPTER THREE: EXPERIMENTAL DESIGN 

To accomplish the objectives of this study, two main experimental designs were created. The first 

one had to do with creation and implementation of artificial neural networks as an alternative to 

conventional backcalculation. The second design pertained to the capability for the falling weight 

deflectometer to represent moving loads and the determination of correction factors applied to 

backcalculated pavement properties to obtain more accurate pavement responses. An overview of 

the different tasks followed to complete each experimental design are described in the following 

subsections.  The following chapters present the results and discussion of these tasks.  

3.1 Accelerated Testing Facility  

FWD test results and measured pavement responses from the NCAT Test Track were used in this 

study. Therefore, in the following chapter, a brief description of the test facility and tests sections 

was necessary to provide background concerning the available information.  

3.2 ANN Development to Predict Pavement Material Properties 

Artificial Neural Networks were created to perform forward calculations of pavement layer 

moduli and critical responses from non-destructive testing information. Synthetic databases were 

created using a modified version of the software PerRoad (WESLEA-based software) for a three 

layer flexible pavement. These databases included layer moduli, deflection basins, critical 

pavement responses and layer thicknesses. 

3.2.1 Analysis of Conventional Backcalculation Process 

This analysis was performed to investigate the non-uniqueness of backcalculated results when 

setting different initial conditions. The software EVERCALC 5.0 was used to analyze the effect 

of the level of tolerance, calculated by means of the root mean square error (RMSE), on estimated 

pavement layer moduli.  EVERCALC uses WESLEA as the mechanistic engine to perform the 

forward analysis. The forward analysis involves the calculation of surface deflections at the 
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specified radial offsets using different combinations of initially assumed layer moduli. The 

calculated surface deflections are then compared to the field-measured deflections. For each 

combination of layer moduli, the error between these calculated and measured moduli is 

determined. This step is repeated several times until the error is minimized. This process is 

known as the error minimization or optimization of solution. A modified Gauss-Newton 

algorithm is used for error minimization. FWD data from a maximum of ten sensors can be used 

and it can analyze twelve drops at each station. During the error minimization process, a trial is 

stopped whenever one of the following conditions is satisfied first (14): 

• Moduli tolerance is based on the modulus difference between two consecutive iterations.  

• Deflection tolerance calculates the deflection error between the field measured and the 

calculated deflections using the following formula: 

𝑅𝑀𝑆𝐸 = � 1
𝑛𝑑
∑ �𝑑𝑐𝑖−𝑑𝑚𝑖

𝑑𝑚𝑖
�
2
x 100%    Eq. 3.1 

Where; 

RMSE = root mean square of the error, 

dci = calculated pavement surface deflection at sensor i, 

dmi = measured pavement surface deflection at sensor i, and 

nd = number of deflection sensors used in the backcalculation process. 

The effect of the root mean square error (RMSE) on estimated pavement layer moduli 

and pavement responses was evaluated by setting three different levels of tolerance: 0.1%, 1.0% 

and 3.0%. A forward-calculated synthetic dataset was created using layered elastic analysis 

(WESLEA) which is the same mechanistic engine used to perform backcalculation. All the 

deflection basins were introduced in EVERCALC and a conventional backcalculation process 

was performed. 
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3.2.2 Analysis of ANN vs. Conventional Backcalculation 

The back-propagation algorithm was used as a learning algorithm to be applied on multilayer 

feed-forward networks. A synthetic database was generated using LEA for a three-layered 

flexible pavement structure. Inputs for the ANN’s were deflection basins, layer thicknesses and 

load. The targets were layer moduli and critical pavement responses. An additional dataset was 

used to test the accuracy of the ANN and the results were compared to the outcomes obtained 

using EVERCALC. Figure 3.1 shows the flow chart followed to create and train ANNs [step 1]. 

This process was repeated three times and the network with the lower error was selected as the 

optimal ANN to be used for predicting a new deflection data set and compared with the results 

from EVERCALC [step 2].  

 

 

 

 

FIGURE 3.1 Training of ANNs flow chart. 
 

2 

1 
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3.2.3Analysis of Potential Use of ANN to Predict Layer Thickness 

A back-propagation algorithm was used to obtain ANNs capable of determining the layer 

thickness of pavement structures using synthetic deflection data. A sensitivity of the deflection 

data due to thickness variation also helped determine the predictability of layer thicknesses using 

the ANN approach. A typical FWD sensor configuration requires the use of seven geophones to 

generate a deflection basin with seven deflection points. At the NCAT Test Track, the FWD 

sensor configuration utilizes nine geophones to provide a more detailed deflection basin. For this 

study, the number of input deflections (7, 9 and higher) was tested to evaluate the accuracy of 

thickness prediction. 

3.2.4 Verification Using Field Data from NCAT FWD Testing 

The quality of the existing databases was important to minimize variation in the results simply 

due to testing, and construction practices. The NCAT Test Track database was used as the source 

of data for this study. Non-destructive testing using the FWD was performed several times per 

month at the Test Track and pavement temperature at different depths was also collected during 

testing. Backcalculated moduli and critical pavement responses were compared against the 

predicted moduli and critical responses obtained using ANN. 

3.2.5 Training Tool (MATLAB 7.10.0 – R2010a) 

The following illustrations show some of the elements found in MATLAB used to create and 

train ANNs.  Figure 3.2 shows MATLAB’s default desktop. Here the Command Window is used 

to enter variables and to run MATLAB functions and scripts. Statements entered in the Command 

Window are logged with a timestamp in the Command History. In the MATLAB workspace the 

set of variables and data are entered and stored in memory (39). 
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FIGURE 3.2 Matlab default desktop. 
 

Figure 3.3 shows an example of the training tool (window) used with MATLAB. During 

training, the progress is constantly updated in the training window. Of most interest are the 

performance, the magnitude of the gradient of performance and the number of validation 

checks. The magnitude of the gradient and the number of validation checks are used to 

terminate the training. The gradient will become very small as the training reaches a minimum 

performance level. The number of validation checks represents the number of successive 

iterations when the validation performance value fails to decrease. If this number reaches 6 (the 

default value), the training will stop. In this example, the training did stop because of the 

number of validation checks.  For this example, training stops when any of these conditions 

occurs: 

• The maximum number of epochs (repetitions) is reached. 

• The maximum amount of time is exceeded. 

• Performance is minimized to the goal. 
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FIGURE 3.3 Example of the training tool. 
 

The training process for this type of ANN can be explained as follows: In general, under-

fitted models will have a high bias and over-fitted models will have a high variance. To avoid 

either of these, the network is normally divided into two main sets: training and validation, and 

sometimes a testing set is included. The network is trained using only the training data. The 

training process is continuously tested for performance using the independent validation set. The 

testing data set is used to check the applicability of the network on a completely independent 

dataset. While the performance of the training data will continue improving and leading to over-

fitting, performance on the validation set will stop improving, and will typically get worse. The 

typical performance function used for training feedforward neural networks is the mean sum of 

squares of the network errors as shown in Equation 3.2. 
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𝑀𝑆𝐸 = 1
𝑁
∑ (𝑡𝑖 − 𝑜𝑖)2𝑁
𝑖=1      Eq. 3.2 

Where; 

MSE = Mean square error 

N = total number of target values, 

ti = target values, 

oi = output values. 

A linear regression between the network outputs and the corresponding targets can be 

also obtained at any point of the training process (Figure 3.4). Single correlation (R-value) is also 

used to check the performance of the network by targeting values close to 1.0.   

 

FIGURE 3.4 Example of performance regression plots. 
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3.3 Correction Factors for the High Frequency/High Speed FWD Pavement Responses to 

Typical Operating Speed Responses 

The mechanistic analysis software 3D-Move was used to determine the speed of a moving load 

that produces a load pulse duration equivalent to the loading pulse produced by the FWD. 

Pavement responses were calculated at that equivalent FWD speed and at the NCAT Test Track 

operating speed of 45 mph. Correction factors were calculated as the difference between these 

responses at different temperatures. Finally, these factors were applied to pavement responses 

from actual backcalculated moduli and compared against measured pavement responses. 

3.3.1 Determination of FWD Loading Pulse from Instrumented Pavements 

The FWD loading pulse was obtained from measured pavement response signals. FWD tests were 

performed on nine structural sections built in 2009 at the Test Track. The signal measured from a 

pressure plate was used to calculate the loading pulse. FWD stress and strain pulses followed a 

haversine waveform with distinguishable termination points. Stress pulses due to moving loads 

produced a waveform very similar to the FWD one and therefore it was used in the analysis. An 

example of a FWD wave form can be seen in Figure 2.3 and an example of stress pulse can be 

seen in Figure 2.20. 

3.3.2 Determination of Equivalent Loading Pulse and Equivalent Loading Speed 

The 3D-Move software was used to estimate the speed which produced an equivalent pulse to the 

pulse obtained in the previous task. A single uniform load of 9000 lb with radius of 5.91 inches 

was modeled in 3D-Move to simulate the dynamic load applied by the FWD. Backcalculated 

moduli were used to model base and subgrade layer properties, while dynamic moduli and 

frequencies were calculated at the mid-depth temperature measured during field testing. The 

loading speed was varied until the target loading pulse was obtained. 
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3.3.3 Determination and Application of Correction Factors  

Pavement responses were calculated at 5 different temperatures (40, 70, 100, 115 and 130°F) and 

at 5 different operating speeds (15, 25, 35, 45 and 60 mph). These responses were compared to 

those responses calculated at the “equivalent speed”. Correction factors were applied to 

backcalculated pavement responses and then compared to actual responses measured at 45 mph. 

3.3.4 Mechanistic Modeling Tool 

The analytical software 3D-Move was created by the Asphalt Research Consortium at the 

University of Nevada in Reno and it is currently on version 1.2.  This tool accounts for  moving 

traffic loads with complex contact stress distributions of any shape, vehicle speed, and 

viscoelastic properties of asphalt concrete layers to calculate pavement responses using a 

continuum-based finite-layer approach. 3D-Move has the following features:  

• SI / US units 

• Static / Dynamic analysis 

• Uniform contact pressure distribution (Circle, Ellipse and Rectangle) 

• Non-Uniform contact pressure distribution from database 

• Semi-Trailer truck including vehicle dynamics (uniform / non-uniform contact pressure 

distribution) 

• Special non-highway vehicle loading (e.g., End-Dump Truck, Forklift) 

• Braking/Non-Braking condition (Interface Shear Stresses) 

• Dynamic variation of tire load (Dynamic Loading Coefficient, DLC) 

• Dynamic Modulus, |E*|, from laboratory data or using the Witczak model for asphalt 

materials (34) 

• Response computations at an array of points 

• Text output (Text files and Microsoft Excel files) 

• Graphical output 
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Figure 3.5 shows the main window of 3D-Move. In the top left corner, a user needs to 

define the unit system to be used for the scenario under consideration. Also the user is prompted 

to input the project details and to define the analysis type: Static or Dynamic. At the bottom left 

corner the user starts specifying the vehicle loading condition followed by details of the pavement 

structures such as thickness and material type (viscoelastic or linear elastic). 

 

FIGURE 3.5 Main Window of 3D-Move Analysis.  
 

Figure 3.6 shows the pavement layers properties window for asphalt materials. Here, the 

asphalt layer material can be characterized as a linear elastic material or as a viscoelastic 

material.  The dynamic modulus, |E*|, is required for the viscoelastic analysis.  |E*| can be input 

in three different ways: 

Dynamic Modulus Lab Data 

Asphalt materials properties can be specified using the dynamic modulus lab data. The 

3D-Move Analysis incorporates the master curve, which enables the input of dynamic modulus at 

any selected pavement temperature in the analysis.  It uses an optimization tool which is 

independent of Microsoft Excel to construct the master curve from the lab data.  
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Witczak Model   

In this version of 3D-Move Analysis, the Witczak model (35) is included to calculate the 

frequency-dependent dynamic modulus based on the gradation and binder properties of the 

mixture. 

User Defined Materials Properties 

A set of data of |E*| as function of frequency can be specified by the user.  Other input 

variables (Poisson’s and Damping ratios) can be either specified as constants or as a function of 

frequency. 

 

FIGURE 3.6 Pavement Layer Properties Window for Asphalt Materials.  
 

The required properties for unbound materials are Young’s modulus, Poisson’s ratio, 

damping ratio and unit weight.  Figure 3.7 shows the input window for unbound 

materials. Finally, response points can be defined as individual points or as an array of data points 

located in a vertical plane. Figure 3.8 shows the response points window.  
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FIGURE 3.7 Layer Properties Window for Unbound Materials.  
 

 

FIGURE 3.8 Response Points Window. 
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3.4 Summary 

 Two main experimental designs were created to accomplish the objectives of this study. In the 

first one, different ANN models used to predict layer moduli were trained using the software 

MatLab 7.10. Synthetic databases were created using a unique version of the software PerRoad. 

These ANN models were implemented and compared with backcalculated results. Backcalculated 

moduli were obtained from the NCAT test track FWD testing database.  For the second design, 

the mechanistic analysis software 3D-Move was used to determine the speed of a moving load 

that will produce a loading pulse equivalent to the loading pulse produce by the FWD. Pavement 

responses were calculated at that equivalent FWD speed and at different vehicle operational 

speeds. Correction factors were applied on predicted pavement responses obtained from 

backcalculated layer moduli to account for the difference between loading pulse durations. 

Finally, these corrected responses were compared with measured pavement responses from the 

NCAT test track.  

The following chapter provides an overview of the tests sections from which the field 

information was acquired. Chapters five and six show the results related to ANNs and chapter 

seven the results from the moving loads/FWD analyses. A summary of findings, conclusions and 

recommendations are shown in the final chapters.   
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CHAPTER FOUR: TEST FACILITY AND SECTIONS PROPERTIES 

Field information used in this study such as deflection basins, measured pavement responses and 

performance were obtained from the structural sections built at the National Center for Asphalt 

Technology Test Track in 2009. Such information was used for verification of ANN models and 

application of dynamic (moving loads) analyses aimed to achieve accurate pavement responses.  

The NCAT Test Track is a facility where instrumentation is used to study many issues 

pertaining to mechanistic-empirical (M-E) design. The Test Track (FIGURE 4.1) is a 1.7 mile 

pavement test facility and consists of 46 test sections with various asphalt mixtures (FIGURE 

4.2). Ten million equivalent single axle loads are applied over a two-year period with field 

performance documented weekly (40). It has been in operation for ten years and the construction 

of the fourth experiment cycle took place in 2009. Inclusion of instrumented sections started in 

2003 (second cycle) where only eight sections were utilized for a structural experiment. 

Currently, that number has been doubled to sixteen sections. 

 

FIGURE 4.1 The NCAT Test Track. 
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FIGURE 4.2 Layout of test track (40). 
 

4.1 Test Sections 

Two design gradations were used in this study.  The surface layers utilized a 9.5 mm nominal 

maximum aggregate size (NMAS) while the intermediate and base mixtures used a 19 mm 

NMAS gradation.  The aggregate gradations were a blend of granite, limestone and sand using 

locally available materials.  These gradations were developed for each mixture (surface, 

intermediate and base) to achieve the necessary volumetric targets as the binder grade and 

nominal maximum aggregate size (NMAS) changed between layers.  Figure 4.3 contains as-built 

thickness for each lift in each section.  The primary differences between S9 (the control section) 

and the other eight sections were the mixture technology and overall AC thickness. 
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FIGURE 4.3 Structural sections at the 2009 NCAT Test Track. 
 

Table 4.1 contains pertinent as-built information for each lift in all the studied sections.  

The primary difference between S9 (control) and sections S10 and S11 was the technology used 

to create the mixture at the plant. This technology allows production of asphalt mixtures at lower 

temperatures compared to conventional mixtures. This technology is known as warm mix asphalt 

(WMA). Each lift of S10 was produced with a foam-based WMA technology and each lift of S11 

was produced with an additive. Further details of these types of mixtures can be seen elsewhere 

(41).  The primary difference between S9 (control) and S12 was the 25% asphalt modifier used in 

S12 compared to conventional polymer modification used in the upper lifts of the control section.  

The virgin binder PG grade of the S12 mixtures was 67-28 which after modification resulted in a 

PG 76-16.  The primary differences between S9 and N7 were the amount of polymer and overall 

AC thickness.  Section N7 contained 7.5% styrene butadiene styrene (SBS) polymer in each lift 

while S9 utilized 2.8% SBS in the upper two lifts with no polymer in the bottom lift.  The 

nominal binder PG grade of the modified mixtures in N7 was PG 88-22.  

The surface layers in sections N5 and N6 were the same as in S9 (surface control 

mixtures). The intermediate lifts in N5 and lift 2 in N6 were designed to have 40% of a sulfur-

0

2

4

6

8

10

12

14

16

S9 
Control S10 S11 S12 N5 N6 N7 N10 N11 

De
pt

h 
fr

om
 S

ur
fa

ce
, i

n

Surface Lift NMAS = 9.5mm Intermediate Lift NMAS = 19mm

Bottom Lift NMAS = 19mm Aggregate Base



 

 
54 

 
 

based modifier, while the bottom lifts in N5 and N6 were intended to have 30% modifier. Higher 

total asphalt contents in the lower lifts of N5 and N6 relative to the control resulted from 

designing these mixes with the expectation of better fatigue cracking performance.  The primary 

difference between S9 (control) and sections N10 and N11 was amount of reclaimed asphalt 

concrete (RAP), the asphalt modifier and the technology used to create the mixture at the plant. 

Mixes in N10 and N11 were used without asphalt modifier and each lift was design to incorporate 

50% RAP in the mixture. In addition, N11 was produced as a WMA mixture at the plant. The 

effect of the aged binder contained in the RAP resulted in the highest Superpave performance 

grade for the intermediate and bottom lifts of N10 (PG 94-10). Overall, all sections and lifts met 

or exceeded 92% of maximum theoretical density (less than 8.0% air voids). 

 

TABLE 4.1 Asphalt Concrete Layer Properties – As Built  
Lift 1-Surface 

Section S9 S10 S11 S12 N5 N6 N7 N10 N11 
%Modifier 2.8 2.8 2.8 25 2.8 2.8 7.5 0.0 0.0 
PG Gradea 76-22 76-22 76-22 76-16 76-22 76-22 88-22 82-10 80-16 
RAPb, % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50 50 

Asphalt, % 6.1 6.1 6.4 6.1 6.1 6.1 6.3 6.0 6.1 
Air Voids, % 6.9 7.5 6.4 5.5 5.9 6.2 6.3 7.4 8.0 

Lift 2-Intermediate 
Section S9 S10 S11 S12 N5 N6 N7 N10 N11 

%Modifier 2.8 2.8 2.8 7.5 40 40 7.5 0.0 0.0 
PG Gradea 76-22 76-22 76-22 88-22 67-22 67-22 88-22 94-10 88-10 
RAPb, % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50 50 

Asphalt, % 4.4 4.7 4.6 4.6 5.7 5.7 4.6 4.4 4.7 
Air Voids, % 7.2 7.0 7.2 7.3 7.0 7.1 7.3 7.1 6.8 

Lift 3-Base 
Section S9 S10 S11 S12 N5 N6 N7 N10 N11 

%Modifier 0.0 0.0 0.0 25 30 30 7.5 0.0 0.0 
PG Gradea 67-22 67-22 67-22 76-16 67-22 67-22 88-22 94-10 88-10 
RAPb, % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50 50 

Asphalt, % 4.7 4.7 5.0 4.9 6.2 6.1 4.6 4.7 4.6 
Air Voids, % 7.4 7.9 6.2 6.1 6.4 6.3 7.2 5.0 5.8 
aSuperpave Asphalt Performance Grade 
b Reclaimed asphalt pavement 
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4.2 Traffic 

Trafficking at the 2009 Test Track was conducted using four triple flat-bed trailer trucks (Figure 

4.4) and one triple box trailer which loaded the pavement five days per week. Trafficking began 

in August, 2009 and ended in September, 2011 after approximately 10 million ESALs had been 

applied to the pavement structures. Table 4.2 provides the axle weights for each of the five trucks 

under normal loading conditions.  The trucks were normally operated at 45 mph. 

 

FIGURE 4.4 Example of the triple flat-bed trailer truck. 
 

TABLE 4.2 Axle weights (lbs) for trucking fleet at NCAT Test Track  
Truck 

# 
Steer Front 

Drive 
Tandem 

Rear 
Drive 

Tandem 

Single # 
1 

Single # 
2 

Single # 
3 

Single # 
4 

Single # 
5 

1 9,400 20,850 20,200 20,500 20,850 20,950 21,000 20,200 
2 11,200 20,100 19,700 20,650 20,800 20,650 20,750 21,250 
3 11,300 20,500 19,900 20,500 20,500 21,000 20,650 21,100 
4 11,550 21,200 19,300 21,000 21,050 21,000 20,750 20,800 
5 11,450 20,900 19,400 20,100 20,450 21,000 20,050 20,650 

Average 10,980 20,710 19,700 20,550 20,730 20,920 20,640 20,800 
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4.3 Performance Monitoring  

Surface condition studies were conducted every Monday to document performance of all 

experimental sections. Field performance evaluations focused on the middle 150 feet of each 200-

foot test section to eliminate the effects of transitions near section ends. The ARAN (Automated 

Road Analyzer) van was used to capture rutting measurements and texture while driving at 

highway speeds. Rutting was quantified by determine the depth of the permanent deformation at 

the wheel paths; texture was quantified using the mean texture depth (MTD) and the international 

roughness index (IRI) was used to quantify the amount of roughness.  Cracking was determined 

by manually inspecting the surface of the test sections. 

During the two-year research cycle, the control section was subjected to FWD testing 

three Mondays per month.  The remaining sections were tested several Mondays per month 

(Figure 4.5).  Within each section, twelve locations were tested with three replicates at four drop 

heights (6, 9, 12 and 16 kip loads). The three repetitions of each loading scenario were recorded 

in the inside wheelpath, outside wheelpath, and between the wheelpaths at three random locations 

over the length of the test section.  A fourth location, the middle of the gauge array, was also part 

of the regular FWD testing scheme (Figure 4.6). 

 

FIGURE 4.5 Falling weight deflectometer testing at the Test Track. 
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FIGURE 4.6 Schematic of test locations. 
 

4.4 Pavement Instrumentation 

Information obtained from the last two Test Track research cycles that is related to the installation 

of gauges, methodology for data collection and data analysis has been well documented (41-43).  

A typical structural section at the Test Track contained 12 strain gauges and two pressure cells 

(Figure 4.7). One earth pressure cell was placed at the top of the base material layer and the other 

on top of the subgrade material layer. The strain gauge array was centered along the outside 

wheel path of the pavement structure. The array consisted of two rows of three longitudinal 

gauges and two rows of three transverse gauges. Each asphalt gauge had an offset of 2 ft from 

each other (43). All these devices were connected to a data acquisition unit. During gauge 

installation, trenches for the conduits containing the cables and cavities for pressure cells were 

excavated. Prior to the placement of the next layer these elements were hand-backfilled and hand-

compacted. Finally, all the asphalt strain gauges were covered with the respective mix sieved 

through the No. 4 sieve prior to compaction by rollers. Temperature probes were also installed in 

each structural section. Probe bundles were designed on a per-section basis where the tips of the 
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temperature probes measured the surface temperature, mid-depth temperature, full-depth 

temperature, and the temperature three inches into the aggregate base material.   

 

FIGURE 4.7 Typical strain gauge array. 
 

Dynamic pavement responses were measured weekly at the Test Track.  During the 

collection process, strain and pressure were measured for three passes of the five test vehicles on 

each test section.  Further details regarding data processing are documented elsewhere (44). 

These measurements were then compiled into a database where a representative strain response 

(95th percentile strain) was calculated for a given axle type each day of testing. Each strain 

response was defined as an amplitude (Figure 4.8) while a maximum value (peak) was used to 

define stress (Figure 4.9). The amplitude was taken as the difference between the preceding 

inflection point and the peak reading. 
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FIGURE 4.8 Strain amplitude definition. 

 
 

 

FIGURE 4.9 Example of compressive stress signal. 
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4.5 Low Volume Road Section 

FWD testing was performed in 2012 on a small segment of Lee Road 159 in Auburn, AL. This 

section was selected by NCAT as an experimental project to investigate different pavement 

preservation strategies. For this study, this section was selected to further validate the results 

obtained from a highly controlled facility such as the NCAT Test Track and apply these results to 

typical roadways found in Alabama. Contrary to the highly characterized sections at the Test 

Track, the only known fact about this roadway is that the foundation (subgrade material) is 

similar to the one found at the Test Track. The thickness of the asphalt concrete layer was 

calculated to be 5.75 inches and the thickness of the granular base was estimated to be 6.0 inches. 

The length of the section was 2500 ft and FWD testing was performed at 51 stations equally 

distance from each other (every 50 ft). Figure 4.10 shows an overview of the condition of this 

section. 

 

 
 
FIGURE 4.10 Condition of the low volume road section. 
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4.6 Summary 

All the field information used in this study was collected mainly at the Test Track. A brief 

description of the test facility and test sections was necessary to provide a background concerning 

the available information and to help explain observed trends. Information such as FWD tests 

results and backcalculated layer moduli was used for verification of ANN models. On the other 

hand, information regarding measured pavement responses was used in dynamic (moving loads) 

analyses aimed to incorporate viscoelastic properties of asphalt concrete mixtures and to help 

obtain accurate pavement responses. Results from FWD testing and measured pavement 

responses are shown in chapters 6 and 7, respectively.  
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CHAPTER FIVE: ASSESSMENT OF CONVENTIONAL BACKCALCULATION AND 
ARTIFICIAL NEURAL NETWORKS 

The analysis of conventional backcalculation was performed to investigate the non-uniqueness of 

the results when setting different initial conditions. The software EVERCALC 5.0 was used to 

analyze the effect of the level of tolerance, calculated by means of the root mean square error 

(RMSE), on estimated pavement layer moduli. Artificial Neural Networks were created to 

perform forward calculations of pavement layer moduli and critical responses from non-

destructive synthetic information. Synthetic databases were created using a modified version of 

the software PerRoad for a three-layer flexible pavement. Other analyses performed in this 

chapter included the potential use of ANNs to predict layer thickness and the potential errors in 

pavement layer moduli backcalculation due to improper modeling of the layer interface condition. 

5.1 Effect of Tolerance Error on Backcalculated Moduli 

The backcalculation of pavement layer moduli is commonly carried out by assuming a set of 

pavement-layer moduli (seed moduli) that can produce a deflection basin similar to the measured 

one from the FWD test. To minimize the error between the measured and calculated deflections, 

the relative root-mean-square error (RMSE) is used to control the convergence of the 

backcalculated deflections and to assess the acceptance or rejection of the final set of pavement 

moduli. To study the effect of the RMSE on the moduli and strains in flexible pavements, a three-

layer pavement section was selected. The flexible pavement section containing a range of 

thicknesses and moduli for a total of 2000 combinations is shown in Figure 5.1. Responses were 

forward-calculated for a circular load with a radius of 5.91 in and a load of 9,000 lb using a 

modified version of the software PerRoad. The backcalculated moduli, pavement responses and 

the associated error were determined using EVERCALC for three different levels of RMSE 

tolerance (0.1%, 1.0% and 3.0%). The range of moduli was first kept similar to the ones shown in 

Figure 5.1 and then expanded by 50%. The seed moduli were set in all cases as the midpoint of 

the range.  
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FIGURE 5.1 Schematic of pavement structure. 
 

The effect of RMSE tolerance error on estimated moduli can be observed in Figures 5.2 

and 5.3. Since the dataset used for this exercise was synthetic, it was expected to have 

backcalculated moduli highly correlated to the actual values when the tolerance level was set to 

0.1% and applied on synthetic deflection basins. This behavior was achieved at a tolerance level 

of 0.1% which showed the highest R2 values (above 0.9) and the lowest standard error of the 

estimate/standard deviation (Se/Sy) values (below 0.35) as shown in Figure 5.2.   
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Criteria (35) Se/Sy R2 
Excellent < 0.35 > 0.9 

Good 0.36 - 0.55 0.7 - .089 
Fair 0.56 – 0.75 0.4 - 0.69 
Poor 0.76 - 0.90 0.20 - 0.39 

 

FIGURE 5.2 Estimated moduli at a 0.1% tolerance level. 
 

As can be seen in Figure 5.3, at a tolerance level of 1.0%, the data seemed to be slightly 

scattered with strong correlations (high R2 values) for the asphalt concrete layer (top layer) and 

base layer moduli. In the case of subgrade moduli the results still met the excellent criteria. When 

the level of tolerance was increased to 3.0% the data became highly scattered and the correlation 

had a significant decrease especially in the case of the top layer. It can be seen that some data 

points tended to reach the upper limit of the moduli range which could be an indication that the 

process tended to overestimate the moduli of the top layer. Even at a set tolerance level of 3.0% 

the results in terms of subgrade modulus were little or not affected.  
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Tolerance 1.0% Tolerance 3.0% 

FIGURE 5.3 Estimated moduli at two different tolerance levels. 
 

Overall, as the tolerance level was increased the R2 values decreased and the Se/Sy values 

increased for the top and base layer moduli. The top layer modulus was the most affected by the 
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increase on the level of tolerance. As mentioned in the literature review, if the limits were too 

broad, these would allow the program to converge to an incorrect solution. The highlighted values 

on Table 5.1 represent backcalculated moduli using wider seed ranges to make sure the process 

could not reach the upper or lower limits. This action decreased even more the R2 values and 

increased Se/Sy values with the top layer moduli being the most affected (the program converged 

to an incorrect solution).   

TABLE 5.1 Effect of tolerance error on estimated moduli 
Tolerance RMSE Modulus R2 Se/Sy R2 (E) Se/Sy (E) 

0.1 0.01 - 0.21 
E1 0.999 0.034 0.999 0.039 
E2 0.999 0.026 0.999 0.026 
E3 1.000 0.002 1.000 0.002 

1.0 0.01 - 1.0 
E1 0.969 0.186 0.959 0.202 
E2 0.996 0.064 0.995 0.076 
E3 1.000 0.010 0.999 0.011 

3.0 0.01 - 2.98 
E1 0.816 0.476 0.738 0.589 
E2 0.971 0.171 0.979 0.145 
E3 1.000 0.024 0.999 0.027 

(E) Expanded moduli range 
E1 Modulus of the AC layer 
E2 Modulus of the granular base 
E3 Modulus of the subgrade 
 

5.2 ANN vs. conventional backcalculation process 

Figure 5.4 is an example of performance curves normally applied for training ANN. For this 

exercise, the same flexible pavement section shown in Figure 5.1 was used. The database 

consisted of 10,000 combinations of thicknesses and moduli. Deflection basins and critical 

pavement responses were forward calculated using a modified version of the software PerRoad. 

Layer thicknesses H1 and H2 along with nine deflections were used as inputs for this network. 

Layer moduli and pavement responses were used as targets.  

In an analogy to the brain, an entity made up of interconnected neurons, neural networks 

are made up of interconnected processing elements called “units”, which respond in parallel to a 

set of input signals given to each. This “unit” is the equivalent of its brain counterpart, the neuron. 
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To make the connection between inputs and targets an intermediate layer containing the neurons 

has to be defined. This intermediate layer is also called hidden layer. The ANN for this exercise 

had one hidden layer with 20 neurons and the network was trained using the neural network 

application of the software MATLAB 7.1. The selection on the appropriate number of neurons is 

a trial and error process. Under-fitted models with high bias can be obtained with the use of too 

few neurons in the hidden layer. On the other hand a model too difficult to train (too complex) 

can be produced when too many neurons are used in the hidden layer. This difficulty to train a 

network also had to do with memory and time constraints. In this case, the best result was 

obtained with the use of 20 neurons.   

The training process for this type of ANN can be explained as follows: In general, under-

fitted models will have a high bias and over-fitted models will have a high variance. To avoid 

either of these, the network is normally divided into two main sets: training and validation, and 

sometimes a testing set is included. The network is trained using only the training data. The 

training process is continuously tested for performance using the independent validation set. The 

testing data set is used to check the applicability of the network on a completely independent 

dataset. While the performance of the training data will continue improving and leading to over-

fitting, performance on the validation set will stop improving, and will typically get worse. 

Therefore, training stops where performance on the validation set is optimal. For this example, 

the network had a typical setting of 80/10/10 which means that the input vectors and target 

vectors were randomly divided, with 80% used for training, 10% for validation and 10% for 

testing.  

To determine when to stop training the network for this exercise, the performance 

measure “Mean Square Error” (MSE) was used. This training stopped when the validation error 

increased for six iterations, which occurred at iteration 507 as can be seen in Figure 5.4.  The 

result seemed to be reasonable because 1) the final mean-square error was small, 2) the test set 

error and the validation set error had similar characteristics and 3) no significant over-fitting (the 
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model does not have a high variance) has occurred by iteration 507 (where the best validation 

performance occurred).  

 

FIGURE 5.4 Training performance plot. 
 

Table 5.2 shows the effect of the number of neurons in the hidden layer on the training of 

two networks: layer moduli and strain responses. In general, as the number of neurons increased, 

the number of iterations (epochs) and training time increased, especially for predicted strain 

responses. On the other hand, the mean square error decreased as the number of neurons 

increased, especially for predicted layer moduli. Though the R2 values slightly increased, these 

could be considered insensitive to the change in number of neurons. This result indicated that R2 

values cannot be used solely as indicators of performance and a combination of parameters, MSE 

values and R2 values, are needed to evaluate performance.  

While training a network could take several hours, calculating results from a trained 

network only takes several seconds. For instance, it took about 4 hours, on average, to train the 

networks in this chapter; however, it only took about 2 seconds to obtain the outputs from the 

synthetic input dataset.  On the other hand, obtaining the backcalculated moduli can be time 

consuming. For example, it took about 5 minutes to backcalculate 2000 deflection basins (the 
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results shown in Table 5.1) at a level of tolerance of 3.0% and about 10 minutes at 0.1% tolerance 

level. This is important for agencies and researchers that may be dealing with relatively large data 

sets spanning years of testing. 

 
TABLE 5.2 Effect of number of neurons on training 
Parameter/Range Neurons Epochs Time, s MSE R2 

E1, E2, E3                   
3 - 700 ksi 

2 200 165 92 0.9982 
6 250 277 18 0.9994 

12 420 1092 5.17 0.9998 
20 490 2204 2.38 0.9998 
30 765 5436 1.43 0.9998 

εt and εv                    
100 - 3000 μ 

2 200 178 4210 0.9628 
6 300 440 675 0.9940 

12 684 1833 78.5 0.9992 
20 710 3155 27.4 0.9996 
30 897 6473 9.7 0.9998 

 
 

As mentioned above, the learning method used to develop these ANN models was a feed-

forward back propagation with the sigmoidal function, equation 5.1, as the transfer function. It 

was found that the two-layer network with 20 nodes in the hidden layer was the most appropriate 

for this dataset. The basic form of the ANN is given by equations 5.1 through 5.3. For these 

equations, a single index indicates an array; dual indices represent a matrix with the first letter 

indicating the values in the row and the second letter indicating the values in the column. The 

index i represents the input parameters and the index k represents the hidden layer. 

𝑓(𝑇) = 2
1+𝑒−2𝑇

− 1      Eq. 5.1 

𝐻𝑘1 = 𝐵𝑘1 +∑ 𝑊𝑖𝑘
𝑚
𝑖=1 𝑃𝑖      Eq. 5.2 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓�𝐵𝑂 +∑ 𝐻𝑘1𝑊𝑘
𝑚
𝑗=1 �    Eq. 5.3 

Where; 

T = placeholder variable, 

𝐻𝑘1 = transferred value of nodes at the hidden layer, 
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Pi  = input variables, 

𝑊𝑖𝑘  = weight factors for the hidden layer, 

𝑊𝑘 = weight factors for the output layer, 

𝐵𝑘1 = bias factors for first layer, 

B0 = bias factor for outer layer, 

m = number of nodes in hidden layer,  

Output = layer moduli or pavement responses. 

Table 5.3 shows a comparison between backcalculated and ANN-predicted layer moduli 

along with critical pavement responses. Backcalculated results were obtained using EVERCALC 

for a level of tolerance of 0.1%, as previously shown in Table 5.1. When comparing the results 

using simple correlation, both methodologies seemed to have similar R2 values for all the 

parameters. On the other hand, ANN-predicted values seemed to have slightly higher Se/Sy 

values. The results also suggested that ANN-predicted parameters can be equivalent to 

backcalculated parameters calculated at a level of tolerance as low as 0.1%.  

TABLE 5.3 Comparison of backcalculated and ANN predicted parameters 

Parameter Range Backcalculated  ANN Predicted 
R2 Se/Sy R2 Se/Sy 

E1 400 - 700 ksi 0.999 0.034 0.999 0.034 
E2 5 - 50 ksi 0.999 0.026 0.996 0.064 
E3 3 - 30 ksi 1.000 0.002 1.000 0.004 

εt AC 300 - 650 1.000 0.005 1.000 0.014 
εv Sub 100 - 2100 1.000 0.006 1.000 0.022 

 

5.3 Removing the Input Variable “Thickness” 

In conventional backcalculation, the thickness of the structure is an indispensable input variable 

and without knowing the thickness the process cannot be performed. In ANNs adding or 

removing input variables can be performed without completely interrupting the prediction 

process. Therefore, several ANNs were trained with and without the inputs H1 (asphalt concrete 
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thickness) and H2 (granular base thickness). Figures 5.5 and 5.6 show the effect of predicting 

strain responses and layer moduli, respectively, when thicknesses are removed from the analysis. 

In terms of strain responses (Figure 5.5), removing the thicknesses produced more scattered 

results and higher variability (higher Se/Sy values). The compressive microstrain (εv) located at 

the top of the subgrade was more affected than the tensile microstrain calculated at the bottom of 

the top layer. Data were more scattered with a significantly higher Se/Sy value and a lower R2 

value was obtained for εv. 

  

  
With Thickness Without Thickness 

FIGURE 5.5 Predicted responses from ANN with and without thickness. 
 

In terms of predicted layer moduli, the results showed that the most affected parameter 

was the base modulus with the lowest R2 value and the highest relative increase in the Se/Sy 

value. This was followed by the top layer modulus and finally the subgrade modulus which was 

y = 0.9995x + 0.0498
R² = 0.9998

300

400

500

600

700

300 400 500 600 700

AN
N

 P
re

di
ct

ed
 M

ic
ro

st
ra

in

Tensile Microstrain

y = 0.9991x + 0.3911
R² = 0.9969

300

400

500

600

700

300 400 500 600 700

AN
N

 P
re

di
ct

ed
 M

ic
ro

st
ra

in

Tensile Microstrain

y = 0.9994x + 0.2198
R² = 0.9995

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

AN
N

 P
re

di
ct

ed
 M

ic
ro

st
ra

in

Compressive Microstrain

y = 0.9446x + 20.24
R² = 0.9578

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

AN
N

 P
re

di
ct

ed
 M

ic
ro

st
ra

in

Compressive Microstrain

Se/Sy = 0.014 

Se/Sy = 0.022 

Se/Sy = 0.055 

Se/Sy = 0.213 



 

 
72 

 
 

not sensitive to the input variables H1 and H2. In general, ANNs without the thicknesses H1 and 

H2 as inputs tended to produce more scattered results with higher relative errors. However, 

material properties and pavement responses can still be estimated at a fair level of accuracy given 

the scenario that thicknesses are unknown. 

  

  

  

With Thickness Without Thickness 

FIGURE 5.6 Predicted layer moduli from ANN with and without thickness. 
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5.4 Potential Use of ANNs to Predict Layer Thickness 

The same synthetic dataset previously mentioned in this chapter was used to evaluate the 

possibility to predict pavement layer thickness from deflections only. Different ANNs were 

trained to predict the thickness of the AC layer (H1), the base thickness (H2) and the total 

thickness placed over the subgrade (H1+H2).  Figure 5.7 shows the results obtained from this 

analysis using ANN. The results indicated that H1 can be easily predicted from synthetic 

deflection basins. On the other hand, prediction of H2 was difficult and highly scattered results 

were obtained in this process (Figure 5.7.b). Determination of the total pavement structure 

(H1+H2) also produced highly scattered results (Fig. 5.7.c) and a different attempt to predict H2 

from deflections and H1 as input variables (Fig. 5.7.d) reflected the poor capability for ANNs to 

predict the thickness of the base layer.  

  
a. H1 b. H2 

  
c. H1+H2 d. H2 with H1 as input 

FIGURE 5.7 ANN Predicted thicknesses. 
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A three layer flexible pavement structure was modeled using the software WESLEA to 

evaluate the relationship between deflection and thickness. A baseline structure had the following 

properties: H1=7 in, H2 = 8 in, E1= 500 ksi, E2 = 30 ksi, E3 = 10 ksi. Seven more structures were 

generated by changing some of these properties. The center deflection (D0) was forward 

calculated for a circular load with a radius of 5.91 in and a load of 9,000 lb. To evaluate the effect 

of H1 on D0, H1 was varied while the remaining properties were kept constant for the different 

scenarios. Figure 5.8 shows a strong relationship (logarithmic type) between H1 and D0 for all 

the cases. This strong relationship indicates that H1 can be considered as good predictor of D0 

and vice versa. Therefore, this can be used to explain the theoretically high predictability of H1 

when using ANNs.  

 

FIGURE 5.8 Effect of H1 on deflection. 
 

To evaluate the effect of H2 on D0, H2 was varied while the remaining properties were 

kept constant for the different scenarios. Figures 5.9 and 5.10 show a great variability in 

relationships between H2 and D0 contrary to the unique trend for H1. The change in the observed 

trend not only led to poor relationships but also indicates that a wide variety of H2 values can be 
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associated with the same or similar deflection.  This indicates that H2 can be considered as poor 

predictor of D0 and vice versa explaining the poor predictability of H2 when using ANNs.  

 

FIGURE 5.9 Effect of H2 on deflection. 
 

 

FIGURE 5.10 Effect of H2 on deflection-continued. 
 

Further investigation was performed to evaluate the use of different number of input 

variables on ANNs as another attempt to predict pavement layer thickness. The effect of number 
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of deflections (sensors) on the ANN used to estimate the total thickness of a three-layer pavement 

structure (H1+H2) is shown in Figure 5.11. Four different networks were trained using 4, 7, 9, 11 

and 13 deflection sensors as inputs. The 7 and 9 sensor configurations are typical in FWD testing 

(45-46). An increase in the number of sensors between 4 and 7 showed a significant reduction in 

error and significant increase in R2 values. Increasing from 9 to 11 sensors had very little effect 

on the calculated error and the use of more than 11 sensors had no effect on the ANN 

performance. A configuration of 13 sensors where not only the number of variables was increased 

but the sensor spacing was changed did not have a significant effect in reducing the error. 

Therefore, little or no gain was obtained in the attempt to improve the predictability of the total 

thickness. In general, the results showed that the minimum recommended sensor configuration 

should be 7. 

 

 

Sensors 
Number 

 

Configuration 

4 D0, D12, D24, D36 
 

7 D0, D8, D12, D18, D24, D36, D60 
 

9 D0, D8, D12, D18, D24, D36, D48, 
D60, D72 

 
11 D0, D8, D12, D18, D24, D30, D36, 

D42, D48, D60, D72 
 

13 D0, D8, D10, D12, D14, D18, D24, 
D30, D36, D42, D48, D60, D72 

 

 
FIGURE 5.11 Effect of number of deflections (sensors) on training performance. 
 

The analyses performed up to this point, regarding the layer thickness determination, 

indicated that ANNs may be use to predict the thickness of asphalt concrete layers. However, 

these analyses were performed using synthetic data based on layered-elastic theory. On the other 

hand, results indicated that ANNs cannot be use to predict the thickness of the granular base. 

Therefore, efforts need to be focused on evaluating the applicability of ANNs to predict AC layer 

thickness on actual data.  
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5.5 Errors in Pavement Layer Moduli Backcalculation Due to Improper Modeling of the 

Layer Interface Condition  

The layer moduli and thicknesses of the synthetic database were finally used to compute 

deflections under a full slip layer interface condition (Figure 5.12) and then to perform 

conventional backcalculation which considers full bond conditions. An increase in the root mean 

square error of the backcalculation process was expected due to the inability of the software 

EVERCALC to simulate full slip layer interface conditions during the backcalculation process. 

Figure 5.13 shows the cumulative distribution plots of the RMSE values obtained from this 

analysis. Given that synthetic data were used, the expected RMSE values under these conditions 

should be close or equal to zero. Such significant errors indicated that significant differences can 

be obtained between actual and predicted layer moduli when the actual condition of the layer 

interface is full slip between layers and the simulated conditions are full bond between layers. 

 

 

 

 

 

 

 

FIGURE 5.12 Modeled interface conditions. 
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FIGURE 5.13 Cumulative distributions of RMSE values. 
 

Figure 5.14 exhibits the cumulative distribution plots of the errors due to the improper 

modeling of the layer interface condition. In terms of the modulus of the asphalt concrete layer, 

the tendency was to significantly overestimate the modulus. On average, the AC (E1) modulus 

was overestimated by 30%. The modulus of the granular base (E2) was the most affected and the 

tendency was to underestimate the modulus, on average, by 74%. The modulus of the subgrade 

(E3) was the least affected with an average difference below 3%. Paired t-tests were performed to 

evaluate the significance of the relative differences and the results are shown in Table 5.4. As 

expected, statistically significant differences were obtained for the AC modulus and the granular 

base modulus at α = 0.05. On the other hand there was no evidence to conclude that the moduli of 

the subgrade were different. These results not only served as evidence to the limitations of 

conventional backcalculation but also indicated a need for proper modeling of the layer interface 

condition. In the following chapter there are proposed ANN models capable of overcoming the 

limitations mentioned in this chapter.  
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FIGURE 5.14 Cumulative distributions of moduli relative errors. 
 
 
TABLE 5.4 Paired t-test results on moduli relative error 

Parameter Mean St. Dev. t-value p-value 
E1 Actual 498.3 113.5 

28.46 <<0.05 E1 Back 647.1 190.2 
Difference 148.6 222.3 
E2 Actual 27.7 13.1 

-64.85 <<0.05 E2 Back 7.1 3.61 
Difference -20.5 13.4 
E3 Actual 16.2 7.82 

1.63 0.104 E3 Back 16.6 7.62 
Difference 0.42 10.9 

 

Paired t-tests were also performed to evaluate the significance of the relative differences 

between pavement responses from full bond and full slip layer interface conditions.  As shown in 

Table 5.5, statistically significant differences (at α = 0.05) were obtained for the maximum 

deflection located at the center of the load plate (D0), for the horizontal tensile strain calculated at 

the bottom of the AC layer (εt), for the compressive stress calculated at the top of the granular 

base (σbase) and for the compressive stress at the top of the subgrade (σsubgrade). On average, 

deflections increased by 15%, tensile strains increased by 21%, compressive stresses of the 

granular base increased by 20% and the least affected were the compressive stresses of the 
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subgrade by 5.6%. Overall, these results indicated that pavement responses can be significantly 

under predicted when modeling pavement structures considering full bond layer interaction 

instead of full slip interaction. In addition, these results could also help explain differences 

between predicted or simulated pavement responses and measured or field pavement responses. 

TABLE 5.5 Paired t-test results on pavement responses relative errors 
Parameter Mean St. Dev. t-value p-value 

D0 Full Bond 16.5 6.84 
-40.87 <<0.05 D0 Full Slip 19.5 8.42 

Difference -3.03 1.83 
εt Full Bond 216.6 93.8 

-33.19 <<0.05 εt Full Slip 274.4 123.5 
Difference -57.8 42.9 

σbase FB 16.2 10.4 
-42.47 <<0.05 σbase FS 19.6 10.9 

Difference -3.35 0.78 
σsubgrade FB 8.96 3.72 

-25.64 <<0.05 σsubgrade FS 9.50 5.20 
Difference -0.53 1.75 

 

5.6 Summary 

Up to this point, the conventional backcalculation process used to estimate layer moduli can be 

considered sensitive to seed values such as setting the level of tolerance. Since a set synthetic 

deflection basins was used to backcalculate layer moduli it was expected to obtain minimum error 

no matter what the seed values were.  In other words, a perfect match between actual values and 

backcalculated ones was expected when using synthetic values at not only the 0.1% level of 

tolerance. On the other hand, ANN-predicted layer moduli can be equivalent to backcalculated 

parameters calculated at a level of tolerance as low as 0.1%. In theory, layer moduli and 

pavement responses can still be estimated with the application of ANN when only deflections are 

used as inputs.  More scattered results with higher relative errors can be expected for this type of 

analysis. The results also suggest that the thickness of the asphalt concrete layer could be 

estimated with an acceptable level of accuracy given that similar conditions used for this analysis 
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were found with field measurements. Finally, significant differences can be obtained between 

actual and predicted layer moduli when the actual condition of the layer interface is full slip 

between layer and the simulated conditions are full bond between layers. 
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CHAPTER SIX: APPLICATION OF ANN ON ACTUAL FWD TESTING RESULTS 

FWD deflection testing results serve as the beginning to this chapter to examine trends and 

differences/similarities among test sections. Validation of the ANN approach was performed 

using the Test Track FWD database and a selected section of the Lee Road 159 deflection dataset. 

The capability for ANNs to predict pavement layer moduli was first analyzed on a very specific 

situation: pavement structures with similar thicknesses, but with multiple load levels. In order to 

incorporate a typical range of thicknesses the ANN models was limited to one load of 9,000 lb. 

Further implementation of ANN models was performed on a low volume roadway section (Lee 

Road 159, Auburn, AL).  

6.1 Deflections and Backcalculated Material Properties 

Figure 6.1 shows the strong relationship between mid-depth asphalt concrete (AC) 

temperature and the deflection at the center of the FWD load plate (D0).  The deflection-

temperature relationships for all sections exhibited in Figure 6.1 represent the results at the 9,000 

lb load level. An exponential function has been found in the past to serve as the best fit for these 

datasets and therefore its used was continued in this study (47-49). For each test section, the 

measured deflection was expressed as a function of mid-depth temperature using Equation 6.1. A 

positive relationship between temperature and deflection was expected because as the 

temperature in a pavement structure increases higher deflections are expected under the 

application of FWD load (11). 

𝐷 = 𝑘1𝑒𝑘2𝑇      Eq. 6.1 

Where: 

D = Measured deflection, mills 

T = Mid-depth AC temperature, °F 

k1, k2 = Regression coefficients.  
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FIGURE 6.1 Deflection-temperature relationships. 
 

Table 6.1 shows regression coefficients and R2 values for all sections. The coefficient k1 

is related to the overall deflection magnitude while k2 has to do with the sensitivity to changes in 

temperature. To determine if the deflection-temperature relationships were statistically different 

among the sections, 95% confidence intervals (CI) were obtained for the intercepts (k1) and 

slopes (k2). If the intervals overlapped, it could be concluded that the differences in the regression 

coefficients were not statistically significant. Therefore, at a 95% confidence level, all the 

sections had statistically different k1 values from the control with the exception of S11 and S12. 

Therefore, sections S10 and N7 should exhibit higher stress and strain levels than S9. Conversely, 

sections N5, N6, N10 and N11 should exhibit lower stress and strain levels.  In terms of the slope 

of the curve k2, only sections N5, N7 and N11 were statistically different from S9. However, N5 

can be considered more temperature susceptible than S9 and N7 less susceptible than S9.  
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TABLE 6.1 Deflections equations coefficients 

Section k1 
k1 Lower 

95% 
k1Upper 

95% k2 
k2 Lower 

95% 
k2 Upper 

95% R2 
S9 4.411 3.883 4.360 0.0164 0.0158 0.0171 0.920 

S10 5.281 4.865 5.731 0.0146 0.0137 0.0155 0.907 
S11 4.603 4.236 5.000 0.0169 0.0160 0.0178 0.931 
S12 4.689 4.293 5.122 0.0150 0.0140 0.0159 0.904 
N5 2.158 2.013 2.312 0.0199 0.0191 0.0207 0.956 
N6 3.196 3.026 3.376 0.0169 0.0163 0.0176 0.960 
N7 7.818 7.376 8.287 0.0101 0.0094 0.0108 0.884 

N10 2.439 2.211 2.692 0.0186 0.0174 0.0197 0.906 
N11 3.27 3.050 3.506 0.0143 0.0135 0.0151 0.934 

 

Conventional backcalculation of actual deflection basins collected at the Test Track was 

performed using the software EVERCALC 5.0. The backcalculated layer moduli presented below 

only represent the results at the 9,000 lb load level with RMSE errors less than 3%. These results 

will be later used to compare with ANN-predicted moduli; therefore, not only similar results are 

expected from ANN models but also similar trends/behavior.  

 Figure 6.2 shows the backcalculated AC layer moduli over the entire 2009 Test Track 

cycle (2 years). This figure shows the expected behavior (seasonal variation) of viscoelastic 

material sensitive to changes in temperature. During the cold season, the modulus of the AC 

mixture is higher and during the warm season the modulus is lower.  
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FIGURE 6.2 Backcalculated AC moduli.   
 

During FWD testing, temperatures were recorded at the mid-depth of the AC layer. 

Figure 6.3 illustrates the strong relationship between mid-depth asphalt concrete (AC) 

temperature and backcalculated AC modulus (control section). An exponential function has been 

used in past research cycles at the NCAT Test Track (50-51) and it was also found to be the best 

fit to represent this strong relationship in this study.  For each test section, the AC modulus was 

expressed as a function of mid-depth temperature using Equation 6.2. A negative relationship 

between temperature and AC modulus was expected because as the temperature in a pavement 

structure increases its modulus decreases (11). 

𝐸1 = 𝑘1𝑒𝑘2𝑇      Eq. 6.2 

Where: 

E1 = Backcalculated AC modulus, ksi 

T = Mid-depth AC temperature, °F 

k1, k2 = Regression coefficients.  
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FIGURE 6.3 AC modulus versus temperature.  
 

Table 6.2 shows regression coefficients and R2 values for all sections. The coefficient k1 

is related to the overall modulus magnitude while k2 has to do with the sensitivity to changes in 

temperature. To determine if the modulus-temperature relationships were statistically different 

among the sections, 95% confidence intervals (CI) were obtained for the intercepts (k1) and 

slopes (k2). If the intervals overlapped, it could be concluded that the differences in the regression 

coefficients were not statistically significant. At 95% confidence level, all the sections had 

statistically different k1 values from the control with the exception of S11, S12 and N11. 

Therefore, sections S10, N11 and N7 can be considered to have lower backcalculated AC moduli 

than S9 while the remaining statistically different sections can be considered to have higher 

modulus levels. On the other hand, only the slope of section S11 cannot be considered was 

statistically different from S9. In this case, sections S10, S12, N7 and N11 were less sensitive to 

temperature changes than S9 while N5, N6 and N10 were more susceptible to changes in 

temperature than S9.  

Further investigation showed that the best-fit exponential regression lines for S9 and N7 

crossed at approximately 77°F with section N7 exhibiting lower moduli than S9 at cooler 
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temperatures and higher moduli at higher temperatures. This analysis was extended to sections 

N5 and N6 which had slightly higher k2 coefficients than S9. It was found that the best-fit 

exponential regression lines crossed at approximately 70°F with sections N5 and N6 exhibiting 

slightly higher moduli at cooler temperatures and slightly lower moduli at higher temperatures.  

 
TABLE 6.2 AC modulus equation coefficients 

Section k1 
k1 Lower 

95% 
k1Upper 

95% k2 
k2 Lower 

95% 
k2 Upper 

95% R2 
S9 8074.8 7637 8538 -0.033 -0.0336 -0.0322 0.980 

S10 5854.5 5432 6310 -0.029 -0.0299 -0.0282 0.979 
S11 7700.6 6943 8541 -0.033 -0.0343 -0.0318 0.971 
S12 8310.7 7660 9016 -0.030 -0.0311 -0.0294 0.977 
N5 13953 12621 15427 -0.039 -0.0407 -0.0382 0.983 
N6 10723 10023 11472 -0.037 -0.0380 -0.0364 0.988 
N7 5655.6 5392 5932 -0.024 -0.0250 -0.0239 0.986 

N10 10446 9564 11408 -0.035 -0.0357 -0.0336 0.978 
N11 8183.9 7787 8601 -0.031 -0.0317 -0.0306 0.993 

 

 The modulus of unbound layers is a function of the material density, the amount of water 

present and the level of applied stress, and is generally assumed to be independent of temperature. 

Figure 6.4 shows the variation of the backcalculated granular base moduli over time for all the 

sections. This property showed small sensitivity to seasonal effects. This was expected since 

unbound materials are less affected by changes in temperature. Sections S10, S11 and S12 

exhibited slightly lower moduli than S9 while sections N5, N6, N7, N10 and N11 had slightly 

higher moduli than S9. Table 6.3 exhibits the results of a Tukey-Kramer analysis performed on 

the modulus of the granular base at a 95% significance level (α=0.05). These results indicated that 

on average all the sections were significantly different from S9 with the exception of N5 and N7.  
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FIGURE 6.4 Backcalculated moduli of the granular base for all sections. 
                                                                                                                       
TABLE 6.3 Tukey-Kramer analysis of granular base modulus 

Section Difference of means SE of Difference T-Value P-Value 
S10 0.432 0.098 4.43 0.00 
S11 0.789 0.100 7.89 0.00 
S12 0.875 0.098 8.98 0.00 
N5 0.025 0.094 0.26 1.00 
N6 -0.836 0.094 -8.87 0.00 
N7 -0.219 0.117 -1.88 0.63 

N10 0.767 0.101 7.56 0.00 
N11 -1.147 0.093 -12.29 0.00 

 

Figure 6.5 shows the variation of the backcalculated subgrade moduli over time for all 

the sections. This property was slightly sensitive to seasonal effects. This behavior could be 

explained the variation in stress conditions due to the seasonal variation of the AC layer.  At a 

95% confidence level, it was determined that sections S10, S11, S12 and N7 exhibited similar 

moduli compared to section S9 while sections N5, N6, N10 and N11 had significantly higher 

moduli than S9 (Table 6.4). These differences in modulus could be attributed or explained as an 

artifact of the backcalculation process. It appears that EVERCALC attributed the increased 
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deflection at warmer temperatures to slight reductions in subgrade modulus in addition to 

reductions in AC modulus.   

 
 
FIGURE 6.5 Backcalculated moduli of the subgrade for all sections. 
 

TABLE 6.4 Tukey-Kramer analysis of subgrade modulus 
Section Difference of means SE of Difference T-Value P-Value 

S10 0.759 0.870 0.873 0.99 
S11 0.333 0.892 0.374 1.00 
S12 1.364 0.870 1.569 0.82 
N5 -7.794 0.841 -9.269 0.00 
N6 -7.009 0.841 -8.335 0.00 
N7 -1.474 1.041 -1.415 0.89 

N10 -8.990 0.832 -10.810 0.00 
N11 -20.620 0.904 -22.810 0.00 

 

The granular base can be considered as a “thin” base course located beneath “thick” 

surfacing layers which explained the lower base moduli. In other words, the properties of the 

granular base are hidden by the high modulus/ thicker layer. In addition, the base modulus may be 

relatively “low” due to the stress sensitivity of granular materials (14). The use of a stiff layer 

generally improves the modulus estimate for base/subbase layers. However, an earlier study 
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performed at the previous Test Track research cycle indicated that the stiff layer analysis was not 

appropriate because of the higher RMSE values compared to the obtained results without the stiff 

layer (52). 

6.2 Indications of Weakening Bond between the AC Layer and the Granular Base Layer 

Prior to the application of traffic loads at the Test Track, all the new sections were tested with the 

FWD device.  Backcalculated layer moduli were obtained at 4 load levels (6, 9, 12 and 16 kips) 

and were defined as pre-traffic layer moduli. These results were compared to matching post-

traffic backcalculated layer moduli as shown in Figure 6.6. For the pre-traffic moduli, only five 

sections had mid-depth temperature data to perform the matching.  Post-traffic moduli were 

obtained from modulus-temperature relationships computed at the same temperature of the pre-

traffic results (match in temperature) and then normalized at 6, 9, 12 and 16 kips (match in load 

level). The results indicated statistically significant differences in terms of the asphalt concrete 

modulus at a significance level of α =0.05. These differences tended to increase as the load level 

increase with relative errors ranging from 1% to 35%. The least affected section was N10 which 

has high RAP contents and stiffer binder. This was shown in Figure 6.a by the smaller deviation 

of N10 data points from the equality line.  Conversely, the most affected section was N7 which 

has the thinnest AC structure. In terms of the granular base modulus, the opposite was observed 

with significant differences ranging from 42% to 60% decrease in modulus. This behavior was 

previously described by Lenngren and Olsson (17). In this case, the results also indicated that the 

backcalculated modulus of the unbound base was the most affected by the change in friction 

between layers and the modulus of the subgrade was only marginally affected with differences 

below 5%. Overall, the results indicated a significant drop in the modulus of the granular base 

due to the application of traffic loads that consequently affected the bond between the AC and 

base layers. These results also justified the development of artificial neural networks that 
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considered a full slip layer interface condition discussed in the following sections of this 

documents.     

 
a. 

 
b. 

 
c. 
FIGURE 6.6 Pre-traffic layer moduli versus post-traffic layer moduli. 
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6.3 Development of ANN for Selected Sections at the 2009 Test Track 

A synthetic database was generated using layered-elastic analysis (LEA) for a three-layered 

flexible pavement structure. Two customized ANNs were created considering full bond and full 

slip condition between layers for structural sections built in 2009 with a designed asphalt concrete 

thickness of 7.0 inches (sections S9, S10, S11, S12, N6, N10 and N11). Table 6.5 shows the 

range of values used to generate deflection basins. For each ANN, a total of one hundred 

thousand data points were generated using multiple load levels ranging from 5,000 lb to 20,000 

lb. To create each ANN, variables such as deflection basins, layer thicknesses and load were 

selected as input signals. The target signals were layer moduli (E1, E2 and E3). The outputs 

(layer moduli) generated by the ANN’s using the synthetic inputs were compared against the 

backcalculated moduli to check for adequacy of the networks. Finally, the FWD test database was 

used to perform conventional backcalculation and ANN computation of layer moduli.     

TABLE 6.5 Artificial database variables 
Layer Moduli Range, ksi Thickness, in Poisson Ratio 
Asphalt Concrete (E1) 50 - 3000 5.0 - 8.0 0.35 
Base (E2) 1 - 100 4.5 - 7.5 0.4 
Subgrade (E3) 1 - 100 Infinite 0.45 
 

The learning method used to develop these ANN models was a feed-forward back 

propagation with the sigmoid function, Equation 6.3, as the transfer function. It was found that 

the three-layer network with twenty nodes in the two hidden layers was the most appropriate for 

this dataset. This network configuration was selected by trial and error along with previous 

experiences found in the literature (18-20).  The basic form of the ANN is given by Equations 6.3 

through 6.6. For these equations, a single index indicates an array; dual indices represent a matrix 

with the first letter indicating the values in the row and the second letter indicating the values in 

the column. The index i represents the input parameters, the index k represents the first hidden 
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layer, and the j subscript represents the second hidden layer. An illustration of the model and the 

training process are shown in Figure 6.7. 

𝑓(𝑇) = 2
1+𝑒−2𝑇

− 1     Eq. 6.3 

𝐻𝑘1 = 𝐵𝑘1 +∑ 𝑊𝑖𝑘
1𝑚

𝑖=1 𝑃𝑖     Eq. 6.4 

𝐻𝑗2 = 𝑓�𝐵𝑗2 + ∑ 𝐻𝑘1𝑊𝑘𝑗
2𝑛

𝑘=1 �    Eq. 6.5 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐿𝑛(𝐸1,𝐸2,𝐸3) = 𝑓�𝐵𝑂 +∑ 𝐻𝑗2𝑊𝑗
3𝑛

𝑗=1 � Eq. 6.6 

Where; 

T = placeholder variable, 

𝐻𝑘1 = transferred value of nodes at first hidden layer, 

𝐻𝑗2 = transferred value of nodes at second hidden layer, 

Pi  = input variables, 

𝑊𝑖𝑘
1  = weight factors for first hidden layer, 

𝑊𝑘𝑗
2  = weight factors for the second hidden layer, 

𝑊𝑗
3= weight factors for the output layer, 

𝐵𝑘1 = bias factors for first layer, 

𝐵𝑗2 = bias factors for second layer, 

B0 = bias factor for outer layer, 

m = number of nodes in first hidden layer  

n = number of nodes in second hidden layer  

𝐿𝑛(𝐸1 ,𝐸2 ,𝐸3) = natural logarithm of the AC, base and subgrade modulus, respectively. 
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FIGURE 6.7 Schematic of ANN model and training process. 
 

The synthetic deflection basins were used to check the adequacy of the trained ANN’s. 

Since the dataset used for this exercise was synthetic, it was expected to have backcalculated 

moduli highly correlated to the actual values and with minimum errors. Backcalculated results 

were obtained using the software EVERCALC 5.0. RMSE values below 1.0% were obtained and 

statistical parameters such as R2 values were found to be close to 1.0 as well as minimum Se/Sy 

values. These results can be seen in Table 6.6 for parameters E1, E2 and E3. Following a similar 

exercise using ANNs to predict moduli, the results showed that similar R2 values and Se/Sy 

values can be obtained for the three parameters using the same synthetic deflection basins. In 

conclusion, the results suggested that ANN-predicted parameters can be considered equivalent to 

backcalculated parameters calculated at a level of tolerance below 1.0% and consequently 

adequate to predict layer moduli.  
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TABLE 6.6 Comparison of backcalculated and ANN Parameters for Synthetic Database 

Parameter Backcalculated 
ANN Predicted – 

Full Bond 
ANN Predicted – 

Full Slip 
R2 Se/Sy R2 Se/Sy R2 Se/Sy 

E1 0.99 0.034 0.99 0.069 0.99 0.057 
E2 0.99 0.026 0.99 0.083 0.99 0.071 
E3 1.00 0.002 1.00 0.009 1.00 0.010 

 

 ANNs were used to estimate the moduli of eight structural sections built in 2009 for the 

full bond (FB) condition and the full slip (FS) condition. Table 6.7 shows the backcalculated and 

ANN-predicted layer moduli range for all sections. In general, the predicted moduli from ANN-

FB were similar to backcalculated for all three layers. The same trend was observed between 

ANN-FS predicted moduli and backcalculated for E1 and E3. In the case of E2, the results 

showed that ANN-FS predicted moduli were more than double the backcalculated ones. These 

results suggested that the moduli of the granular base was underestimated for considering a full 

bond condition when applying conventional backcalculation or when predicting moduli with 

ANN-FB. This also seemed to agree with the results obtained by Lenngren and Olsson (17) which 

suggested that predicting layer moduli considering air gap or in this case full slip condition could 

be a more accurate approach. An analysis of the root mean square error was performed to ratify 

the previous statement.  
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TABLE 6.7 Range of predicted layer moduli for all sections 
Technique Section E1, ksi E2, ksi E3, ksi 

Conventional 
Backcalculation 

S9 134 - 2357 1.0 - 11.2 14 – 42 
S10 122 - 1946 1.0 - 8.1 17 - 38.8 
S11 124 - 2060 1.0 - 7.8 13 - 43.9 
S12 117 - 2829 1.0 - 10.4 14.5 - 40.1 
N6 104 - 2716 1.7 - 13.2 23.1 - 62.5 

N10 172 - 2440 1.0 - 9.8 26.1 - 64.2 
N11 161 - 2173 1.6 - 13.1 28.5 - 52.6 

ANN Full Bond 

S9 129 - 2519 1.0 - 12.5 12.2 - 38.8 
S10 108 - 2073 1.0 - 7.0 13 - 35.1 
S11 115 - 2190 1.0 - 6.4 10.2 - 41.5 
S12 116 - 2767 1.0 - 9.2 12.6 - 37.1 
N6 135 - 3040 1.1 - 13.4 20.5 - 52.4 

N10 230 - 2536 1.0 - 11.2 17.1 - 54.8 
N11 185 - 2336 1.3 - 13.4 25.1 - 46.6 

ANN Full Slip 

S9 151- 2231 1.1 - 26.2 12.1 – 39 
S10 129 - 1817 1.3 - 15.8 14.1 - 36.6 
S11 135 - 1941 1.1 - 13.1 9.1 - 41.7 
S12 144 - 2546 1.1 - 30.6 11.7 - 37.6 
N6 112 - 2626 2.6 - 48.1 22.4 - 53.4 

N10 117 - 2313 1.1 - 35.3 14.9 - 55.7 
N11 159 - 2169 2.6 - 48.6 27.3 - 48.7 

 

Figure 6.8 shows the cumulative distribution plot (CDP) of the RMS error for three 

different scenarios. CDPs for ANN-FB and ANN-FS showed a significant decrease in the level of 

error from backcalculated values. In addition, the consideration of a full slip condition yielded 

even better results. A maximum RMS error of 3.0% was set to determine the amount of data to be 

used for all the analyses regarding the 2009 Test Track research cycle. Approximately 84% of the 

backcalculation solutions generated by conventional backcalculation had RMS errors below 

3.0%. In the case of ANN-FB method, 88% of the results had RMS errors below 3.0%. Finally, 

for ANN-FS method, 92% had RMS errors below 3.0%. When the amount of data below 1.0% 

were considered as an “excellent” match between measured and calculated deflections (14), only 

20% were found below 1.0% for backcalculated values, 73% for ANN-FB and 88% for ANN-FS. 
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These results demonstrated the significant advantage of using ANNs over conventional 

backcalculation that does not consider a full-slip condition.  

 

FIGURE 6.8 Cumulative distribution plot for estimated moduli. 
 

Table 6.8 shows an extension of the previous analysis applied to all sections. A 

significant increase in the amount of data that was considered as “excellent” match between 

measured and calculated deflections was obtained when using ANNs compared to conventional 

backcalculation for all sections. The largest increase was observed from conventional 

backcalculation to ANN-FS for all the sections. Section S10 had the lowest overall increment 

followed by S11 and N10. These results were attributed to the higher variability observed in the 

layers moduli due to the higher permanent deformation (rutting) for sections S10 and S11. 

Rutting is a type of distress that changes the shape of the pavement surface increasing the 

variability in terms of thickness and density. The amount of data below 3.0% was also increased 

when using ANN-FB for all sections but S10. However, the increment was significant when using 

ANN-FS for all sections. In general, the quality of the layer moduli prediction (RMSE < 1.0%) 

was significantly increased by the use of ANNs and the amount of usable data (RMSE < 3.0%) 
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was also significantly increased by the consideration of full slip condition between layers (ANN-

FS). 

TABLE 6.8 Analysis of RMS errors for all sections 

RMSE Section 
Percent data below cutoff value  

Conv. Back. ANN FB ANN FS 

Below 
1%  

S9 21.5 76.2 93.2 
S10 22.9 40.9 78.3 
S11 21.9 54.5 79.8 
S12 25.1 71.5 90.9 
N6 14.5 94.6 99.8 

N10 8.28 53.8 65.1 
N11 8.2 92.9 99.9 

Below 
3% 

S9 85.8 94.8 99.2 
S10 89.9 81.3 97.2 
S11 74.7 83.2 95 
S12 76.7 94.6 97.8 
N6 89.7 99.7 99.9 

N10 86.1 86.2 87.6 
N11 92.8 100 100 

 

Based on the results observed in Figure 6.8 and Table 6.8, a difference was expected in 

the estimated moduli when using ANNs rather than conventional backcalculation. Figure 6.9 

shows an example of how the moduli obtained from EVERCALC 5.0 and predicted moduli using 

ANN-FS are related. The slope of a linear trend-line plotted between backcalculated moduli and 

ANN moduli was used to quantify the expected difference. For this case, the slope indicated that 

an overall decrease of 6.0% in the modulus of the AC layer was obtained when using ANN-FS. In 

this case an R2 value close to 1.0 indicates that the relationship between variables can be 

expressed with a linear function.     
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FIGURE 6.9 Backcalculated vs. ANN Predicted E1 of the Control Section (S9). 
 

Table 6.9 shows the slope of a linear function calculated between backcalculated moduli 

and ANN predicted moduli and its associated R2 value for each section. These results were used 

to quantify the expected difference and overall trend. When considering the observed difference 

for all the sections and for all the layer moduli, the results indicated that an overall decrease in the 

estimated moduli was obtained for the three layers (from 5.0% to 10.0%) when comparing 

backcalculated and ANN-FB methods. The largest decrease in modulus was obtained for section 

S10 followed by S11 in the case of E1. The results also indicated that an overall decrease in the 

estimated moduli was obtained E1 and E3 when comparing backcalculated and ANN-FS 

methods. However, a significant increase (overall 234%) was observed in the case of E2. Section 

N10 was the most affected with an increase in 327%. Although the use of ANNs in full slip 

condition indicated that the moduli of the granular base can be more than twice the estimated by 

conventional backcalculation, the results provided lower RMSE values and more realistic moduli 

for the base. The modulus of the granular base obtained from conventional backcalculation 

ranged from 1.0 psi to 15.7 psi. The modulus of the granular base obtained from ANN-FS ranged 
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from 1.1 psi to 48 psi which can be considered as more realistic moduli range and closer to the 

observed in previous research cycles at the Test Track for the granular base (50-52). 

TABLE 6.9 Overall changes in moduli for all sections 

ANN Section 
Slope of Back. Mod. Vs ANN 

Mod. 
R2 of Back. Mod. Vs ANN 

Mod. 
E1 E2 E3 E1 E2 E3 

Full 
Bond 

S9 0.95 0.88 0.93 0.98 0.85 0.85 
S10 0.84 0.97 0.89 0.96 0.65 0.70 
S11 0.85 0.97 0.94 0.97 0.78 0.84 
S12 0.99 0.90 0.87 0.98 0.90 0.81 
N6 1.00 0.85 0.88 0.99 0.91 0.92 

N10 0.91 0.88 0.94 0.97 0.90 0.81 
N11 1.01 1.11 0.89 0.99 0.89 0.88 

Average 0.93 0.94 0.90 0.98 0.84 0.83 

Full 
Slip 

S9 0.94 2.16 0.94 0.99 0.96 0.94 
S10 0.90 1.90 0.96 0.98 0.93 0.91 
S11 0.91 1.91 0.95 0.98 0.94 0.93 
S12 0.92 2.20 0.95 0.99 0.96 0.93 
N6 0.97 2.59 0.85 1.00 0.90 0.94 

N10 0.98 2.36 1.07 0.99 0.94 0.86 
N11 0.99 3.27 0.84 1.00 0.90 0.89 

Average 0.95 2.34 0.94 0.99 0.93 0.91 
 

6.4 General Application of ANNs  

In theory, a combination of a high load level and a thin AC layer can produce a similar response 

than having a low load level with a thick AC layer. This could be considered as a confounding 

effect in regression analysis because the regression coefficients cannot represent the independent 

contributions of each independent variable to the prediction of the dependent variable (poor or 

non-existing correlation).  This effect was observed in ANN models with wider range of layer 

thicknesses compared to the models explained in the previous section of this chapter. Significant 

errors in the predicted layer moduli along with poor ANN model performance (R2 values below 

0.3 and high Se/Sy values above 0.7) confirmed the previous statement.  
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In the previous analysis (Chapter 6, section 6.3), the thickness of the simulated pavement 

structure was relatively constant and the load was variable. To account for a wider range of 

thicknesses, it was decided to keep a constant load while the thickness of the AC layer and 

granular base were variable. A synthetic database was generated using layered-elastic analysis 

(LEA) for a three-layered flexible pavement structure.  ANNs were created considering full bond 

and full slip condition between layers. Table 6.10 shows the range of values used to generate 

deflection basins. For each ANN, a total of 100,000 data points were generated using one load 

level of 9,000 lb ± 10%. To create each ANN, variables such as deflection basins, layer 

thicknesses and load were selected as input signals. The target signals were layer moduli (E1, E2 

and E3). The outputs (layer moduli) generated by the ANNs using the synthetic inputs were 

compared against the backcalculated moduli to check for adequacy of the networks. Finally, the 

FWD test database was used to performed conventional backcalculation and ANN computation of 

layer moduli.  

TABLE 6.10 Artificial database variables 
Layer Moduli Range, ksi Thickness, in Poisson Ratio 
Asphalt Concrete (E1) 50 - 3000 3.0 - 18.0 0.35 
Base (E2) 1 - 100 4.0 - 20 0.40 
Subgrade (E3) 1 - 100 Infinite 0.45 
 

Figure 6.10 shows the cumulative distribution plot (CDP) of the RMS error for three 

different scenarios and for all the sections described in this study. CDPs for ANN-FB and ANN-

FS showed a significant decrease in the level of error from backcalculated values. Moreover, the 

consideration of a full slip condition yielded even better results. A cut off RMS error of 3.0% was 

set to determine the amount of data to be used for all the analyses regarding the 2009 Test Track 

cycle. Approximately 85% of the backcalculation solutions generated by conventional 

backcalculation had RMS errors below 3.0%. In the case of ANN-FB method, 99% of the results 

had RMS errors below 3.0%. Finally, for ANN-FS method, 99% had RMS errors below 3.0%. 
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When the amount of data below 1.0% were considered as an “excellent” match between 

measured and calculated deflections (14), only 12% were found below 1.0% for backcalculated 

values, 85% for ANN-FB and 85% for ANN-FS. These results demonstrated the significant 

advantage of using ANNs over conventional backcalculation. 

 

FIGURE 6.10 Cumulative distribution of RMSE for estimated moduli. 
 

Figure 6.11 shows a strong linear relationship between backcalculated layer moduli and 

predicted moduli from ANN models (full bond – FB and full slip - FS) for the control section. 

The slope of a linear trend-line was used to quantify the overall expected difference. A slightly 

lower modulus was predicted for the AC layer (E1) and the subgrade (E3) for both ANN models. 

On the other hand, the tendency was to obtain higher granular base modulus (E2). As mentioned 

earlier, these results were significantly higher when using ANN-FS with almost twice the 

backcalculated moduli. A similar trend was observed for all the sections as shown in Table 6.11. 

It was found that higher differences in the estimated AC layer and subgrade moduli were 

associated with the higher RMSE values. For instance, the ANN-FS predicted modulus of the AC 

layer for N5 was 22% below the backcalculated modulus (on average) and had the highest root 

mean square error (1.09%). Conversely, sections with low RMSE values had slopes closer to 1.0 
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and consequently lower differences. Once again, the use of ANNs in full slip condition indicated 

that the moduli of the granular base can be around twice the estimate from conventional 

backcalculation, which can provide more realistic moduli for the granular base. 

  

  

  
 
FIGURE 6.11 Backcalculated vs. ANN predicted moduli. 
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TABLE 6.11 Relationship between backcalculated and ANN predicted moduli 
ANN 

Model Section Slope of Back. Mod. Vs. ANN RMSE, % 
E1 E2 E3 

Full 
Bond 

S9 0.941 1.181 0.908 0.38 
S10 0.913 1.328 0.870 1.05 
S11 0.879 1.277 0.888 0.76 
S12 0.965 1.113 0.904 0.48 
N5 0.971 1.054 0.897 0.45 
N6 0.997 0.996 0.961 0.17 
N7 0.877 1.028 1.005 0.88 

N10 1.003 1.082 0.899 0.75 
N11 1.024 0.979 0.955 0.24 

Average 0.952 1.115 0.921 0.57 

Full 
Slip 

S9 0.972 1.843 0.992 0.16 
S10 0.942 1.739 0.972 0.35 
S11 0.943 1.763 0.994 0.29 
S12 0.967 1.925 0.979 0.21 
N5 0.784 2.035 0.913 1.09 
N6 1.001 1.909 0.980 0.11 
N7 0.948 1.608 1.040 0.21 

N10 1.024 1.850 0.902 0.96 
N11 1.010 2.074 0.968 0.12 

Average 0.955 1.861 0.971 0.39 
 

6.5 Application of ANNs on Low a Volume Roadway 

FWD testing was performed in 2012 on a small segment of Lee Road 159 in Auburn, AL. This 

section was selected by NCAT as an experimental project to investigate different pavement 

preservation strategies. For this study, this section was selected to further validate the results 

obtained from a highly controlled facility such as the Test Track and apply these results to typical 

roadways found in Alabama. The thickness of the asphalt concrete layer was calculated to be 5.75 

inches and the thickness of the granular base was estimated to be 6.0 inches. The length of the 

section was 2500 ft and FWD testing was performed on 51 stations equally distance from each 

other (every 50 ft). The measured air temperature on the day of the test ranged from 65.1 to 68.4 

°F with an average of 66.7 °F while the temperature measured at the surface of the AC layer 

ranged from 71.9 to 90.5 °F with an average of 85.6 °F.   
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One of the assumptions behind layered elastic analysis is that each and every layer is 

infinite horizontally. Therefore, it does not consider any discontinuities in the layer of the 

pavement. If the load plate is near a crack, the analysis result may have some error. The main 

distress of this low volume road section was a low to medium severity cracking and therefore 

higher errors (RMSE), relative to the Test Track sections, were expected. Low severity cracking 

consisted of few interconnected cracks and was observed close to the center of the left wheel path 

(LWP). Medium severity cracking consisted of networks of cracks that may have material lightly 

broken-down along the side of the cracks and was observed mostly on the right wheel path 

(RWP). Figure 6.12 shows a comparison of layer moduli obtained from backcalculation and the 

use of ANNs. Measured deflection basins from between wheel paths (BWP) were used for this 

comparison, specifically the deflection measured directly below the applied load (D0). The 

observed variability can be attributed to the variability in thickness, the level of distress and 

differences in material properties. For instance, the modulus of the three layers, more than 

doubles between some stations. 

The average deflection (D0) was 13.46mils with a standard deviation of 2.74mils. In 

terms of calculated error, the average RMSE from backcalculated moduli was 3.01% (std. dev. = 

1.16%) while the average RMSE from ANN moduli was 0.45% (std. dev. = 0.36%). To 

statistically examine the differences between errors in estimated moduli, a paired t-test indicated 

that RMSE values from ANN and backcalculation were statistically different (α = 0.05).  
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a.  

b.  

c.  

d.  
 
FIGURE 6.12 ANN vs. backcalculated properties (BWP). 
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A paired t-test indicated that AC moduli from ANN and backcalculation were statistically 

different (α = 0.05). This tendency to overestimate the modulus of the AC layer as the error 

increases was discussed in Chapter 5 and it was confirmed with these results. Additional paired t-

tests indicated that there was no statistical evidence to conclude that the moduli of the granular 

base and the subgrade were different from the application of ANN models or backcalculation.   

The previously-mentioned ANN-Full Slip model was included in this analysis to evaluate 

the results especially on the granular base. Application of this model produced layer moduli with 

low errors with an average RMSE of 0.44% (std. dev. = 0.39%). To statistically examine the 

differences between models in predicted layer moduli a Tukey-Kramer analysis was performed 

(Figure 6.13). The results indicated that the AC layer moduli (E1) from backcalculation were 

statistically different, in this case higher than ANN-predicted layer moduli (about 15%). The 

average modulus of the granular base (E2) from ANN-FS was statistically different (45% higher) 

and there was no statistical evidence to conclude that moduli of the subgrade were different. 

 

FIGURE 6.13 Comparison of predicted layer moduli from different models. 
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BWP and RWP were 10.41mils, 13.46mils and 14.41mils, respectively. To statistically examine 

the differences between locations in measured deflections (D0) a Tukey-Kramer analysis was 

performed. The results indicated that the following pair locations were statistically different (α = 

0.05): LWP-BWP and LWP-RWP.  

The ANN-FB model was used to predict the results shown in Figure 6.14. Tukey-Kramer 

analysis performed on predicted ANN layer moduli showed that the AC layer moduli (E1) at the 

LWP location were statistically different (higher). On the other hand, there was no statistical 

evidence to state that BWP and RWP had different AC moduli. In terms of the granular base 

modulus (E2), significant differences were only obtained between LWP and RWP. Despite the 

small practical difference among locations for the modulus of the subgrade (E3), there were 

statistically significant differences for all three locations due to the low variability. In general, 

there was statistical evidence to confirm that the higher moduli of the LWP location can be 

explained by the lower obtained deflections and the lower severity in the observed distress. The 

ANN-FS model was also used in this analysis and the results indicated that only the modulus of 

the granular base was statistically different from the ANN-FB results. On average, the predicted 

base modulus was 65% higher on the LWP location, 45% on the BWP (as shown in Figure 6.14) 

and 41% on the RWP. 

Once again, the application of ANNs exceeded the performance of the conventional 

backcalculation process by reducing the RMSE parameter significantly. As mentioned above, low 

severity cracking was observed close to the center of the lane in the left wheel path (LWP) and 

medium severity cracking was observed mostly on the right wheel path (RWP). The predicted 

layer moduli followed the expected trends from the results observed in the field (cracking level) 

and from measured results (deflections). Overall, the clear advantage of ANNs over 

backcalculation was further confirmed and validation of ANNs was also achieved.  
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FIGURE 6.14 Comparison of layer moduli at different locations. 
 

6.6 Additional ANN Models 

As discussed in the previous chapter, removing the input variable “thickness” to predict pavement 

responses was, in theory, viable. Several ANN models were created using the same dataset 

presented in section 6.3 for a load magnitude of 9,000 lb. These models had the variable thickness 

removed from the analysis. When applying actual data from the Test Track FWD testing 

database, the results were highly scattered and inconsistent with backcalculated results. Figure 

6.15 shows a poor relationship between predicted strain from ANNs with thickness and without 

thickness. The tendency was to over-predict strains at low levels and under-predict at the upper 

end of strains. This higher-than-expected variability was attributed to the high variability 
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observed in measured deflections and to the higher relative importance of the independent 

variable thickness to predict pavement responses. Further investigation is recommended on this 

matter to help reduce the gap between theory (chapter 5) and practice.  

 

FIGURE 6.15 Predicted strain from ANN model with thickness as input versus predicted 
strain from ANN model without thickness as input. 
 

 Another significant discrepancy between theory and practice was found with ANN 

models used to predict the thickness of the asphalt concrete layer. Several ANN models were 

created as an attempt to estimate the AC layer thickness from actual deflections. When applying 

actual thickness data from the Test Track database, the results were highly scattered and 

inconsistent with actual thicknesses. Figure 6.16 shows the relationship between predicted and 

actual AC thickness for all the sections used in this study. In general, the models tended to under-

estimate the AC layer thickness with standard deviations above 2.0 inches. This higher-than-

expected variability was attributed to the high variability observed in measured deflections and to 

the higher relative importance of the independent variable thickness to predict pavement 

responses. Further investigation is recommended on this matter to help reduce the gap between 

theory (Chapter 5) and practice. 
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FIGURE 6.16 ANN-predicted versus actual AC thickness. 
 

6.7 Summary 

Up to this point, the capability for ANNs to predict pavement layer moduli was first validated on 

a very specific situation: pavement structures with similar thicknesses with multiple loads. In 

order to incorporate a typical range of thicknesses the ANN models had to be limited to one load 

of 9,000 lb due to the confounding interaction between thickness and load. In this case, the 

capability for ANNs to predict pavement layer moduli was also verified. Further implementation 

of ANN models was performed on a low volume roadway section. Validation of ANN models 

was also achieved for this scenario. Overall, the use of ANNs showed a clear advantage over 

conventional backcalculation by providing layer moduli with significantly lower errors. In 

addition, the use of ANNs considering full slip condition between layers has proven to be another 

innovative attempt to create models capable of predicting more realistic layer moduli. Finally, 

exclusion of the thickness to predict pavement responses from ANN models did not seem viable 

up to this point. Further investigation was recommended to help explain the differences between 

results from synthetic and actual data.     
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CHAPTER SEVEN: DETERMINATION OF EQUIVALENT LOADING PULSE AND 
STRAIN CORRECTION FACTORS 

The loading frequency of the falling weight deflectometer (FWD) impact load of 33 Hz is 

significantly higher compared to the recommended loading frequency (34, 35) of a vehicle 

traveling at typical highway speeds (10 Hz). In theory, significantly higher moduli are expected at 

33 Hz and consequently lower pavement responses compared to 10 Hz. In other words, the 

asphalt concrete layer moduli could be overestimated when using FWD test results and 

conversely the pavement responses could be underestimated. Hence, significant error could result 

between calculated and measured strain responses under slower speeds when using 

backcalculated moduli in a mechanistic model.  

Prior to evaluating the effect of loading frequencies on pavement responses it was 

necessary to investigate the effect on the modulus of asphalt concrete mixtures. The difference in 

modulus calculated at 33 Hz and 10 Hz and the observed trend of nine sections built at the NCAT 

test track were evaluated and the significance of the difference was quantified. This analysis 

helped explain the trends and differences observed in pavement responses.  

The FWD loading pulse duration was obtained from measured pavement response signals 

and it was compared to a single axle loading pulse duration traveling at 45 mph. This analysis 

also helped confirm the significance of the difference between FWD impact loading and traffic 

loading. Once it was determined the effect of loading type on layer moduli and pulse duration, the 

3D-Move software was used to estimate the speed of a moving load, which in theory should 

produce an equivalent FWD loading pulse. Finally, pavement responses were calculated at the 

equivalent FWD speed and at 45 mph to obtain the correction factors.   

7.1 Viscoelastic Properties of Asphalt Concrete (AC) Layers 

For linear viscoelastic materials such as asphalt concrete mixes, the stress-to-strain relationship 

under a continuous sinusoidal loading is defined by its complex dynamic modulus (E*). E* 

reflects the time and temperature dependency of AC mixtures. E* can be defined as the ratio of 
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stress to strain (σ/ε) for an individual mixture at a specific temperature and loading frequency.  

The modulus of AC mixtures, at all levels of temperature and time rate of loading, is determined 

from a master curve constructed at a reference temperature (i.e. 70 °F). Master curves are 

constructed using the principle of time-temperature superposition. The 2002 Design Guide: 

Design of New and Rehabilitated Pavement Structures, developed under NCHRP Project 1-37A 

(4) provides, in detail, the procedures needed to create master curves. 

 All the dynamic modulus testing was performed according to AASHTO TP62 (53) and 

master curves were created for all the mixtures (three lifts) for each structural section. Once a 

master curve has been created the dynamic modulus can be computed at any temperature and 

frequency.  An effective dynamic modulus (Eeffective) of three-layer pavement can also be 

calculated using Equation 7.1 (11, 54-55). An effective modulus is a mathematical combination 

of the individual layer E* that has been used to compared against backcalculated AC modulus.  

𝐸𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = �𝐶1�ℎ1 �𝐸13 +ℎ2 �𝐸23 �+ℎ3 �𝐸33

ℎ1+ℎ2+ℎ3
�
3
   Eq. 7.1 

Where; 

E1, E2 and E3 = dynamic modulus of top layer, intermediate and base layer, 

h1, h2, and h3 = the thickness of respective layers.  

C1 = correction factor (0.8 to 0.9) used to obtain better agreement with exact theory of elasticity 

(54-55). The value of correction factors depend on the layer thicknesses, modular ratios, Poisson 

ratios and the number of layers in pavement structure. In the present study correction factor was 

taken as 0.85 (midpoint of range). 

Figure 7.1 shows a comparison of effective E* values computed from master curves for 

all the AC mixtures used in the 2009 Test Track experiment. The Eeffective of the control section 

was used as baseline and the relative difference between that baseline and the Eeffective from 

another mixture was the parameter of comparison. These values were calculated at four 

temperatures (40, 70, 100 and 130°F) and at two frequencies (10 and 33 Hz). These two 
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frequencies were used to represent highway speeds (10 Hz) and the FWD test frequency (33 Hz) 

as shown in the literature (33-35). This analysis showed which sections had higher, similar and 

lower moduli compared to the control section. Sections S10 and S11 had lower modulus at any 

temperature while sections N5, N6, N10 and N11 had higher modulus at any temperature. On the 

other hand, sections S12 and N7 had slightly higher modulus at any temperature but at 130°F. 

Overall, N10 had the highest AC modulus and S11 the lowest and the same trend was observed at 

both frequencies 10 Hz and 33 Hz. Moreover, these results were later used to help explain the 

effect of temperature and frequency on the differences and trends obtained in pavement responses 

at operational highway speeds (10 Hz) and equivalent FWD speed (33 Hz). 

  
a. 10Hz b. 33Hz 

 
FIGURE 7.1 Dynamic modulus relative differences from the control section at 10 and 33 
Hz. 
 

Figure 7.2 shows the relative difference in effective modulus calculated at 10 and 33 Hz 

as function of temperature. Higher dynamic moduli were calculated at a frequency of 33 Hz than 

at 10 Hz. A significant increase of the relative difference in effective modulus as the temperature 

increases was observed for all sections. Additionally, the mean difference in effective modulus 

considering all the sections was found to be 164 ksi and it was significant at a confidence level of 

95% (α = 0.05, paired t-test). With respect to the control section, S10 and S11 had higher relative 

differences which corresponded to lower effective modulus. Sections N5, N6, N10 and N11 had 
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lower relative differences which matched the respective higher effective modulus. Sections S12 

and N7 showed similar results and were closer to the results obtained for S9. Based on these 

results, a higher relative difference in pavement responses are expected for sections with lower 

relative difference in effective modulus and the opposite apply for sections with higher relative 

difference in effective modulus. 

 

FIGURE 7.2 Relative differences between dynamic moduli at 10 and 33 Hz. 

 Backcalculated AC moduli were compared to calculated effective modulus at 10 and 33 

Hz and at selected (matching) temperatures contained within the range of measured AC mid-

depth temperatures for all sections. Figure 7.3 shows that the effective modulus calculated at 33 

Hz was closer to the backcalculated with an average deviation of 5.6% (below the equality line). 

A two sample t-test (α=0.05, two tails) found no significant differences between backcalculated 

and effective modulus calculated at 33 Hz (p-value = 0.0601). On the other hand, the 

backcalculated modulus was underestimated by about 18.4% when the effective modulus was 

calculated at 10 Hz. A two sample t-test (α=0.05, two tails) found statistically-significant 

differences between backcalculated and effective modulus calculated at 10 Hz (p-value = 0.0327). 

The variability of the backcalculated AC moduli was responsible for the scattered results shown 
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in Figure 7.3. These results not only exhibited the significant difference between effective moduli 

at 10 Hz and backcalculated moduli, but also suggested a potential error in the prediction of 

pavement responses when using backcalculated moduli to represent moduli at highway speeds 

(about 10 Hz). Therefore, the need to quantify the potential error to correctly predict pavement 

responses became more evident for this study. This analysis not only suggested that the choice of 

33 Hz to match E* to FWD results can be appropriate but also questioned the ability for the FWD 

to match traffic loads at operational highway speeds.  

 

FIGURE 7.3 Backcalculated AC modulus versus Eeffective. 
 

7.2 FWD Loading Pulse from Instrumented Pavements 

Field data for this investigation were generated in August 2009. FWD testing was performed on 

every single piece of instrumentation (asphalt gauges and pressure plates) to quantify the in-place 

gauge variability. Response signals were taken for three repetitions of the FWD at four load 

levels (6, 9, 12 and 16 Kip) but only the data generated at a load of 9 kip were used in this study 

because this is the load level close to the equivalent single axle load (ESAL). Measured response 

traces provided not only the magnitude of the strain or stress but also the pulse duration. Stress 

traces from a pressure sensor located at the bottom of the AC layer were used to calculate the 
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pulse duration from FWD testing. Figure 7.4 shows a comparison between a measured stress 

pulse resulting from an FWD impact load and the simulated stress pulse from a moving load with 

a speed of 130 mph for the control section S9. The simulated stress pulse is an example of the 

output that was obtained from the software 3D-Move for a single moving load of 9 kip as an 

attempt to reproduce the measured FWD signal. The pulse duration was measured from the point 

where the signal starts deviating from the base line to the point where it returns to the base line.  

  
a. FWD measured pulse b. Simulated pulse (130 mph) 
 
FIGURE 7.4 Measured versus simulated FWD loading pulse. 
 

Table 7.1 shows the measured pulse duration obtained from different instrumentation 

devices from the FWD 9 kip load and from a single axle dual-tire load moving an average speed 

of 45 mph for section S9. All the signals were recorded at the same temperature (115 °F) but a 

month passed between FWD testing and single axle loading. Pulse durations for FWD loading 

were consistent among gauges varying from 30 to 38 milliseconds (ms). Pulse durations for 

single axle load were significantly longer than FWD pulse durations.  The results were 2 to 3 

times larger for the cases of the transverse strain pulse (T) and the base plate stress pulse (B). For 

the longitudinal strain pulse (L) and subgrade stress pulse (Sg) the results were at least 3 times 

greater than FWD pulse durations. Such discrepancies suggest that the loading frequency of FWD 

loading should be similar to that of vehicle loading at a significantly higher speed. Table 7.2 
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shows the measured pulse duration obtained for the remaining sections. These results were 

acquired at different dates because it was desired to have comparable results in terms of 

temperature. The results followed the same trend observed for section S9 with longer pulse 

durations under traffic than FWD loading.  

 
TABLE 7.1 Pulse durations on different gauges, Section S9 

Gauge Type 
Pulse Duration, ms  

FWD Single Axle  

Longitudinal  
(L) 33 - 37 137 - 146 

 

Transverse 
(T) 30 - 35 94 - 103 

 

Base Plate 
(B) 32 - 38 94 - 96 

Subgrade 
Plate 
(Sg) 

33 - 38 106 - 119 

 
 
TABLE 7.2 Pulse durations on different gauges, remaining sections 
Section Date Pulse duration, ms 

L  T B Sg 
S10 5/27/2010 136 127 97 126 
S11 5/27/2010 134 133 103 122 
S12 9/22/2010 139 104 90 104 
N5 10/28/2010 235 205 197 203 
N6 9/15/2009 194 158 149 153 
N7 11/3/2009 142 111 108 128 

N10 10/21/2009 177 168 140 151 
N11 5/26/2011 159 146 128 NA 
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Figure 7.5 shows a comparison among pulse durations under different loading 

frequencies: FWD loading and single axle loading at variable speed.  The data for the variable 

speed loading were generated in May, 2010 at an average temperature of 113 °F (2 degrees lower 

than FWD testing). Stress traces from the pressure sensor in section S9 located at the bottom of 

the AC layer were used to calculate the pulse duration.  For a truck driven at a speed of 41 mph, 

the pulse duration of the single axle load was about three times longer than the FWD loading, 

about 3.4 times longer for a truck driven at a speed of 33 mph, 4.7 times longer for 24 mph and 

6.7 times longer for a truck driven at a speed of 16 mph. These results indicate that even more 

caution is needed when using predicted pavement layer moduli in mechanistic analysis as the 

operational speed is decreased below 45 mph.   

 

FIGURE 7.5 Pulse duration under different loading speeds. 
 

7.3 Determination of Equivalent Loading Pulse and Equivalent Loading Speed 

To determine the speed which may produce a loading pulse equivalent to the FWD impact load, a 

single circular load with a magnitude of 9 kips and a radius of 5.91 inches was modeled in 3D-

Move. This load configuration is normally used in mechanistic analysis to represent a typical 
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FWD load. Different speeds starting at 25 mph were modeled to determine an equivalent loading 

pulse. Figure 7.6 provides an example of the effects of temperature and vehicle speed/frequency 

on loading pulse duration for a simulated FWD load (section S9). This figure shows how the 

simulated loading pulse duration for section S9 decreases as the simulated single circular load 

speed increases. Higher pulse durations were obtained at lower temperatures and the reduction in 

simulated loading pulse with the increase in vehicle speed seems much more significant for lower 

temperatures. Higher pulse durations are expected for mixtures with higher modulus (lower 

temperature) since the stress is distributed in a wider area, while lower pulse durations are 

expected for mixtures with lower modulus (higher temperature) because of the more concentrated 

stress distribution. The target pulse duration for S9 was within 0.032 and 0.038 seconds at 115 °F. 

The simulated curve 115F reached the target range at a speed of 130 mph.  

 

FIGURE 7.6 Influence of vehicle speed on pulse duration – Control Section S9. 

 

Table 7.3 shows the range of loading pulse durations from FWD tests performed on 
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0.030 to 0.055 seconds and the measured mid-depth temperature during the FWD tests ranged 

from 75 to 120 °F. The speed of a moving load that produces a loading pulse equivalent to the 

loading pulse produced by the FWD was determined to be over 120 mph. 

The differences in measured pulse durations and resulting equivalent speeds can be 

explained by the effect of mid-depth temperature and total AC thickness has on the modulus of 

the AC.  It was expected that an increase in the pulse duration would result from a decrease in 

pavement temperature and with an increase in AC thickness (39). The thicker AC layer and lower 

temperature obtained for sections N5, N6, N10 and N11 with respect to S9 explained the higher 

measured pulse durations and higher equivalent speeds. For the case of N5, a combination of 

lower temperature and thicker AC layer resulted in the highest pulse duration/equivalent speed. In 

the case of N7, the lower temperature and thinner AC layer resulted in similar pulse 

duration/equivalent speed than S9. In the case of sections S10 and S11, the lower simulated speed 

can be attributed to the softer asphalt concrete layer compared to S9 and the contrary can be 

applied in the case of S12 with higher AC layer moduli.      

 
TABLE 7.3 Determination of moving load speed at equivalent loading pulse 
Section Pulse 

duration 
range, ms 

Temperature, 
°F 

Backcalculated AC 
Modulus at 
Measured 

Temperature, ksi 

Equivalent 
Speed, 
mph 

Pulse at 
Equivalent 
Speed, ms 

S9 32 - 38 115 181.5 130 34 
S10 35 - 39 120 180.4 120 36 
S11 34 - 37 115 173.1 120 35 
S12 28 - 32 118 241.1 145 30 
N5 50 - 55 75 748.8 150 53 
N6 42 - 48 80 555.7 140 45 
N7 37 - 43 83 771.6 130 38 

N10 37 - 43 86 514.9 145 41 
N11 28 - 31 91 487.3 145 30 

  

7.4 Simulated Temperature and Speed Effects 

A typical single axle dual-tire configuration with a total axle load of 10.4 kips (5.2 kips per tire) 

was modeled in 3D-Move. This load was the average single axle load from the Test Track truck 
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fleet. A uniform circular tire-pavement interaction stress distribution of 100 psi was also used. 

Figure 7.7 shows the influence of vehicle speed on longitudinal tensile microstrain located at the 

bottom of the AC layer for section S9. Speeds ranging from 15 to 130 mph were used to generate 

this plot. A significant reduction in the strain magnitude as the speed increases was obtained for 

speeds ranging between 15 and 60 mph. The results also showed that the reduction in the 

simulated strain response with vehicle speed was much more significant for pavements at higher 

temperature. Similar trends in pavement strain for a variety of speeds and temperatures were 

observed for measured strains at the Test Track from two different studies (56, 57). Figure 7.8 

shows the influence of vehicle speed on compressive stress calculated at the top of the granular 

base and at the top of the subgrade for section S9. A significant reduction in the stress level and 

loading pulse as the speed increases was obtained for lower speeds and higher temperatures. 

 

FIGURE 7.7 Influence of vehicle speed on simulated longitudinal microstrain – Control 
Section S9. 
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a. Granular base b. Subgrade 

 
FIGURE 7.8 Influence of vehicle speed on simulated compressive stress – Control Section 
S9. 
 

Figure 7.9 shows a comparison in longitudinal microstrain for all sections versus S9.  

Pavement responses were compared at 5 different temperatures (40, 70, 100, 115 and 130 °F) and 

at 5 different operating speeds (15, 25, 35, 45 and 60 mph). Compared to section S9, sections 

S10, S11 and N7 exhibited higher strains along the entire range of temperatures and speeds. 

Higher strain levels were expected for sections S10 and S11 due to the lower AC layer moduli. In 

the case of N7, the higher strain levels were explained by the significantly thinner AC layer 

(about 2 inches thinner) with respect to S9. Section S12 showed slightly lower strains at lower 

temperatures/higher speeds and similar strains at higher temperatures/lower speeds than S9. 

Lower strain levels were expected for section S12 due to the higher AC modulus; however, the 

observed behavior could be explained by the thinner structure (AC + base) placed on top of the 

subgrade (about 1 inch thinner). Sections N6 and N10 exhibited lower strains at lower 

temperatures/higher speeds but similar strains at higher temperatures/lower speeds.  As expected, 

sections N5 and N10 exhibited lower strains along the entire range of temperatures and speeds. 

Lower strain levels were expected for sections N5, N6, N10 and N11 due to the higher AC 

moduli and thicker AC layer for N5.  
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FIGURE 7.9 Simulated longitudinal microstrain – All sections versus S9. 
 

Figure 7.10 shows a comparison in terms of compressive stress for all sections versus S9.  

Compared to section S9, section N7 exhibited higher stresses along the entire range of 

temperatures and speeds. Higher stress levels were expected for N7 due to the thinner AC layer 

(about 2 inches thinner) with respect to S9. Sections S10, S11 and S12 exhibited similar stresses 

at lower temperatures/higher speeds and higher stresses at higher temperatures/lower speeds. 

Section N5 showed lowest stress levels along the entire range of temperature and speed due to the 

thicker AC layer. Lower stress levels were also expected for sections N6, N10 and N11 due to the 

higher AC moduli compared to S9.  
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• Granular Base  

  
• Subgrade  

 
FIGURE 7.10 Simulated compressive stress – All sections versus S9. 
 

7.5 Determination of Correction Factors 

Correction factors were determined for three pavement responses: horizontal longitudinal strain 

computed at the bottom of the AC layer, vertical compressive stress computed at the top of the 

granular base and compressive stress computed at the top of the subgrade. Correction factors 

were defined as the difference between the calculated pavement response at the desired 

operational speed (in this study 45 mph) and the calculated pavement response at the equivalent 

FWD speed. The mean difference in strain levels or the mean of the strain correction factors 

considering all the sections was found to be 59.96 microstrain and it was significant at a 

confidence level of 95% (α = 0.05, paired t-test). Figure 7.11 illustrates the strong relationship 

between longitudinal strain correction factors and temperature of the AC layer. Sections N7 and 
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N10 had the highest and lowest correction factor curves respectively. This trend was also 

obtained for the respective strain levels (Figure 7.9). These strong relationships allowed the 

application of correction factors for any temperature within the evaluated temperature range (40 – 

130 °F). An exponential function (Equation 7.2) was found to be the best fit for all the cases and 

the corresponding coefficients are shown in Table 7.4. The coefficient k1 is an indication of the 

level of absolute difference between strains computed at FWD speed and 45 mph.  As expected 

higher correction factor levels were obtained for S10 and S11 due to the higher relative difference 

in effective dynamic modulus. Sections N5, N6, N7 and S12 exhibited intermediate levels while 

N10 and N11 showed significantly lower levels compared to the control section. 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑘1𝑒𝑘2𝑇      Eq. 7.2 

Where; 

T = Mid-depth AC temperature, °F 

k1 and k2 are regression coefficients 

 

FIGURE 7.11 Relationship between strain correction factors and temperature. 
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TABLE 7.4 Equation coefficients for strain correction factors  
Section k1 k2 R2 

S9 1.0753 0.0387 0.995 
S10 1.2078 0.0372 0.998 
S11 1.5129 0.0365 0.999 
S12 0.6798 0.0422 0.991 
N5 0.3239 0.0489 0.986 
N6 0.3643 0.0473 0.982 
N7 0.7784 0.0457 0.992 

N10 0.3065 0.0462 0.979 
N11 0.2801 0.0503 0.975 

 

The mean difference in base stress levels or the mean of the stress correction factors 

considering all the sections was found to be 1.087 psi and it was significant at a confidence level 

of 95% (α = 0.05, pair t-test). Figure 7.12 illustrates the strong relationship between the 

compressive stress correction factors of the granular base and temperature. Sections N7 and N5 

had the highest and lowest correction factor curves respectively. This trend was also obtained for 

the respective strain levels (Figure 7.10). An exponential function was found to be the best fit for 

all the cases and the corresponding coefficients are shown in Table 7.5. In this case, slightly 

higher correction factor levels were obtained for S10, S11 and S12 while N10 and N11 showed 

significantly lower levels compared to the control section as expected. 
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FIGURE 7.12 Relationship between stress (base) correction factors and temperature. 
 

TABLE 7.5 Equation coefficients for stress (base) correction factors 
Section k1 k2 R2 

S9 0.1031 0.0236 0.996 
S10 0.1317 0.0216 0.999 
S11 0.1066 0.0243 0.998 
S12 0.1141 0.0239 0.997 
N5 0.0635 0.0268 0.996 
N6 0.0632 0.0275 0.992 
N7 0.1072 0.0257 0.995 

N10 0.0552 0.0285 0.989 
N11 0.0646 0.0281 0.992 

 

The mean difference in subgrade stress levels or the mean of the stress correction factors 

considering all the sections was found to be 0.622 psi and it was significant at a confidence level 

of 95% (α = 0.05, pair t-test). Figure 7.13 illustrates the relationship between the compressive 

stress correction factors of the subgrade and temperature. At this point, stress correction factors 

were found to be less sensitive to changes in temperature for all section but N10 and N11. An 

exponential function was found to be the best fit for all the cases and the corresponding 

coefficients are shown in Table 7.6. In this case, slightly higher correction factor levels were 
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obtained for S11, S12 and N5; however, the curve of N5 matched the S9 curve. On the other hand 

N10 and N11 showed significantly lower levels compared to the control section as expected; 

however, higher slopes provided higher correction factors at higher temperatures. Sections N10 

and N11 had thinner structures placed on top of the subgrade and therefore stress levels were 

expected to be higher. 

 

FIGURE 7.13 Relationship between stress (subgrade) correction factors and temperature. 
 

TABLE 7.6 Equation coefficients for stress (subgrade) correction factors 
Section k1 k2 R2 

S9 0.1081 0.0172 0.999 
S10 0.0805 0.0176 0.999 
S11 0.1135 0.0169 0.999 
S12 0.1243 0.0182 0.999 
N5 0.1223 0.0159 0.999 
N6 0.0703 0.022 0.997 
N7 0.1012 0.0175 0.999 

N10 0.0534 0.0268 0.991 
N11 0.053 0.0267 0.993 
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7.6 Measured Pavement Responses 

Previous studies at the Test Track (58, 59) developed strain-temperature relationships 

based on the mid-depth temperature. To remain consistent with the previous research, the mid-

depth temperature was once again used to develop new strain-temperature relationships. For each 

test section, the strain was expressed as a function of mid-depth temperature using Equation 6.2. 

A positive relationship between temperature and AC strain was expected because as the 

temperature in a pavement structure increases the measured strain also increases (58, 59). 

𝑆𝑡𝑟𝑎𝑖𝑛 = 𝑘1𝑒𝑘2𝑇     Eq. 7.3 

Where: 

T = Mid-depth AC temperature, °F 

k1, k2 = Regression coefficients.  

Figure 7.14 illustrates the strong relationship between mid-depth asphalt concrete (AC) 

temperature and measured strain responses for section S9. An exponential function was found to 

be the best fit for all sections and Table 7.7 exhibits the respective equation coefficients and R2 

values.   

 

FIGURE 7.14 Measured longitudinal microstrain section S9. 
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To determine if the response-temperature relationships were statistically similar among 

the sections, 95% confidence intervals were obtained on the intercepts (k1) and slopes (k2).  At a 

95% confidence level there was no evidence that the regression coefficients of all sections were 

statistically different from the control with the exception of N5. It was expected that thicker 

sections should have lower strain levels. Strain levels were represented by the coefficient k1. As 

expected, N5 had a lower k1 coefficient than S9. The k2 coefficients represented the rate of strain 

increase with temperature. Pavements with higher k2 coefficients were considered more 

susceptible to temperature changes. Section N11 was statistically less sensitive to temperature 

changes while N5 was more sensitive to temperature changes than S9. 

 
TABLE 7.7 Strain equation coefficients 

Section k1 
k1 Lower 

95% 
k1Upper 

95% k2 
k2 Lower 

95% 
k2 Upper 

95% R2 
S9 68.97 57.27 80.18 0.0236 0.0220 0.0251 0.920 

S10 53.49 49.85 57.41 0.0257 0.0248 0.0265 0.977 
S11 53.28 46.20 61.46 0.0255 0.0236 0.0273 0.928 
S12 71.29 57.26 88.76 0.0217 0.0191 0.0243 0.771 
N5 35.73 32.57 39.20 0.0275 0.0263 0.0286 0.970 
N6 65.96 60.40 72.03 0.0251 0.0240 0.0261 0.963 
N7 42.99 27.52 67.16 0.0289 0.0229 0.0349 0.607 

N10 64.47 52.52 79.13 0.0199 0.0173 0.0225 0.883 
N11 73.24 66.90 80.17 0.0185 0.0175 0.0196 0.961 

 

Figure 7.15 illustrates the strong relationship between mid-depth asphalt concrete (AC) 

temperature and measured compressive stress on top of the granular base for all the sections. An 

exponential function was found to be the best fit for all sections and Table 7.8 exhibits the 

respective equation coefficients and R2 values for all sections. It was determined that at a 95% 

confidence level the k1 coefficients of S10, N5 and N7 were statistically different from the 

control.  The significantly lower k1 coefficient for S10 was not expected and it was attributed to 

gauge malfunction. As expected, N5 had lower k1 coefficient due to the thicker AC layer than S9 

and N7 had a higher k1 coefficient due to the thinner AC layer.  Statistically lower k2 coefficients 
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than the control section were found for sections S12, N7, N10 and N11 while section S10 

exhibited higher susceptibility to changes in temperature than the control section. 

 

FIGURE 7.15 Measured compressive stress on top of granular base.  
 

TABLE 7.8 Base stress equation coefficients 

Section k1 
k1 Lower 

95% 
k1Upper 

95% k2 
k2 Lower 

95% 
k2 Upper 

95% R2 
S9 1.598 1.472 1.734 0.0246 0.0239 0.0259 0.965 

S10 0.711 0.647 0.781 0.0288 0.0277 0.0300 0.967 
S11 1.461 1.334 1.600 0.0254 0.0243 0.0266 0.968 
S12 1.553 1.441 1.674 0.0226 0.0217 0.0235 0.969 
N5 0.998 0.931 1.070 0.0262 0.0253 0.0270 0.981 
N6 1.618 1.517 1.725 0.0252 0.0244 0.0260 0.980 
N7 3.482 3.000 4.042 0.0197 0.0178 0.0215 0.863 

N10 1.265 1.157 1.382 0.0219 0.0208 0.0229 0.951 
N11 1.611 1.450 1.790 0.0218 0.0205 0.0230 0.961 

 

Figure 7.16 illustrates the strong relationship between mid-depth asphalt concrete (AC) 

temperature and measured compressive stress on top of the subgrade for all the sections.  An 

exponential function was found to be the best fit for all sections. Table 7.9 exhibits the respective 

equation coefficients and R2 values for all sections. At a 95% confidence level there was no 

evidence that the regression coefficients of all sections were statistically different from the 
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control with the exception of N5 and N7. As expected, N5 had a lower k1 coefficient (lower 

compressive stresses) due to the thicker AC layer than S9 and on the contrary N7 had a higher k1 

coefficient due to the thinner AC layer than S9. The k2 coefficients represented the rate of strain 

increase with temperature. Pavements with higher k2 coefficients were considered more 

susceptible to temperature changes. Only sections N7 and N10 were statistically less sensitive to 

temperature changes than the control section. 

 

FIGURE 7.16 Measured compressive stress on top of subgrade.  
 
 
TABLE 7.9 Subgrade stress equation coefficients 

Section k1 
k1 Lower 

95% 
k1Upper 

95% k2 
k2 Lower 

95% 
k2 Upper 

95% R2 
S9 1.946 1.825 2.075 0.0196 0.0188 0.0204 0.966 

S10 1.816 1.725 1.912 0.0204 0.0198 0.0210 0.980 
S11 1.722 1.620 1.830 0.0200 0.0193 0.0208 0.976 
S12 1.803 1.719 1.890 0.0188 0.0183 0.0194 0.982 
N5 1.382 1.306 1.462 0.0203 0.0196 0.0209 0.979 
N6 2.113 1.994 2.238 0.0197 0.0190 0.0204 0.974 
N7 4.504 3.993 4.538 0.0119 0.0120 0.0136 0.855 

N10 2.085 1.858 2.338 0.0136 0.0122 0.0150 0.818 
N11 1.877 1.630 2.161 0.0191 0.0175 0.0207 0.927 
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7.7 Predicted Versus Measured Critical Responses 

Backcalculated layer moduli were used to compute pavement responses under a single axle load 

assuming a full bond interaction between layers. ANN-predicted moduli were used to compute 

pavement responses assuming a full slip interaction between layers. In the second case, the AC 

layer was divided into the three original (as built) layers (Figure 7.17). Layered-elastic analysis 

was utilized to calculate all pavement responses from backcalculated and ANN-predicted layer 

moduli. The measured strain-temperature equations shown previously were developed using the 

strain amplitude measured from inflection to peak. A similar approach was followed using 

layered-elastic theory to calculate the strain amplitude for a single axle load. A predicted strain 

had to be matched to the mid-depth temperature recorded during FWD testing at a given date and 

section. Best fit curves between predicted strain and mid-depth temperature were obtained for 

each section.   

 

 

 

 

 

 

 

FIGURE 7.17 Modeled layer interface conditions. 
 

Figure 7.18 shows the strong relationship between temperature and calculated 

longitudinal microstrain for section S9 in full bond and full slip conditions. Higher strain levels 

were expected when considering full slip interaction between consecutive layers (for all five 

layers). When full bond is specified during the analysis process, the pavement acts as one 
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cohesive structure (stronger), but when full slip is specified, the pavement behaves as 

independent structures stacked on each other (weaker structure). 

An exponential function was found to be the best fit for all sections and Table 7.10 

exhibits the respective equation coefficients and R2 values.  To determine if the response-

temperature relationships were statistically similar among the sections, hypothesis tests were 

performed on the intercepts (k1) and slopes (k2). At a 95% confidence level there was no evidence 

that the regression coefficients of all sections were statistically different from the control with the 

exception of N5 and N7. It was expected that thicker sections should have lower strain levels. 

Strain levels were represented by the coefficient k1. As expected, N5 had lower k1 coefficients 

and N7 had higher k1 coefficients for all cases (FB and FS). The k2 coefficients represented the 

rate of strain increase with temperature. Pavements with higher k2 coefficients were considered 

more susceptible to temperature changes. Only section N7 was statistically less sensitive to 

temperature changes. 

 

FIGURE 7.18 Calculated microstrain versus temperature - S9. 
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TABLE 7.10 Equation coefficients for calculated microstrain 

Section 
Full Slip Condition Full Bond Condition 

k1 k2 R2 k1 k2 R2 
S9 64.529 0.025 0.976 27.33 0.0279 0.979 

S10 78.823 0.0234 0.974 37.715 0.0245 0.974 
S11 60.15 0.0276 0.968 28.432 0.0287 0.969 
S12 66.003 0.0245 0.973 28.83 0.0256 0.974 
N5 28.982 0.0283 0.981 11.243 0.0337 0.984 
N6 66.938 0.0237 0.987 20.349 0.0305 0.989 
N7 238.61 0.0142 0.957 60.855 0.0196 0.983 

N10 36.691 0.0291 0.973 17.312 0.0301 0.974 
N11 45.718 0.025 0.986 24.158 0.0257 0.989 

 

A direct comparison of measured and computed pavement responses was not possible 

due to the differences in test/measurement conditions such as: different date, temperature and 

traffic (load). However, indirect comparisons were performed.  Figure 7.19 shows the cumulative 

distribution curves of the measured and computed longitudinal microstrain (full bond and full slip 

condition) for all sections. Underestimation of the strains was obtained when full bond was 

specified during the analysis process and when full slip is specified, the opposite (overestimation) 

was obtained. The lower strain levels obtained when considering full bond condition can be 

partially explained by the higher speed/frequency of the backcalculated properties as discussed 

earlier in this chapter.  Figure 7.18 also suggests that assuming either a full bond or a full slip 

conditions are extreme cases and that the true layer interface condition has to be somewhere in 

between. 
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FIGURE 7.19 Comparison between measured and calculated microstrain. 
 

Figure 7.20 shows a comparison between measured strains and computed strains from the 

equations shown in Table 7.10. The slope of the curves showed in Figure 7.19 was used as a 

measure of equivalency between predicted and measured strain levels. The deviation from a slope 

of 1.0 (perfect equivalency between groups) provides a percentage of predicted values above or 

below the expected ones.  On average, the tendency was to overestimate strain responses by 7% 

for the full slip (FS) scenario and underestimate strain responses by 43% for the full bond (FB) 

scenario. In addition, it was found that 69% of the FS points were above the equality line while 

84% of the FB points were below the equality line. This indicated that the use of FS condition 

could predict strains closer to the measured ones. However, predicted strains from both scenarios 

were influenced by the higher speed/frequency of the FWD tests.  The current backcalculation 

process utilizes layered elastic models that do not take into account viscoelastic effects; therefore, 

this can also help explain the poor match between predicted and measured strains. 
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FIGURE 7.20 Measured versus predicted longitudinal microstrain. 
 

Figure 7.21 shows the strong relationship between temperature and calculated 

compressive stress (granular base) for section S9 in full bond and full slip conditions. Higher 

stress levels were expected when considering full slip interaction (weaker structure) between 

consecutive layers.  In this case, either a straight line or an exponential function was found to be 

the best fit for all sections; however, an exponential function was used since most relationships 

appeared to follow that trend. Table 7.11 exhibits the respective equation coefficients and R2 

values for all sections. It was determined that at a 95% confidence level there was no evidence 

that the equation coefficients of all sections were statistically different from the control except for 

N5 in full bond condition.  As expected, N5 had a lower k1 coefficient due to the thicker AC 

layer; however, a higher k2 coefficient indicated higher susceptibility to temperature changes.  
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FIGURE 7.21 Calculated compressive stress section S9 (Base). 
 

TABLE 7.11 Equation coefficients for calculated stress (Base) 

Section 
Full Slip Condition Full Bond Condition 

k1 k2 R2 k1 k2 R2 
S9 6.589 0.0102 0.933 2.0472 0.0132 0.944 

S10 6.995 0.0086 0.958 2.037 0.012 0.965 
S11 6.357 0.0093 0.932 1.8828 0.0124 0.935 
S12 6.253 0.0094 0.955 1.795 0.0128 0.959 
N5 2.215 0.0191 0.907 1.1579 0.0173 0.929 
N6 5.742 0.0133 0.938 1.906 0.0162 0.950 
N7 7.771 0.011 0.926 3.5387 0.0107 0.938 

N10 6.887 0.009 0.925 2.0453 0.0126 0.933 
N11 8.294 0.0089 0.951 2.4607 0.0129 0.959 

 

Figure 7.22 shows the cumulative distribution curves of the measured and computed 

compressive stress located at the top of the granular base (full bond and full slip condition) for all 

sections. Underestimation of the stresses was obtained when full bond was specified during the 

analysis process and when full slip is specified overestimation was obtained for about 90% of the 

data points. The remaining 10% of stress underestimation took place at high end of the measured 

stresses (over 24 psi).  The lower stress levels obtained when considering full bond condition can 
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be partially explained by the higher speed/frequency of the backcalculated properties and the 

lower susceptibility of predicted stresses to changes in temperature. 

 

FIGURE 7.22 Comparison between measured and calculated stress (Base). 
 

Figure 7.23 shows a comparison between measured and computed base stresses from the 

equations shown in Table 7.11. In this case, the intercept of the both linear equations were 

statistically significant and this was explained by the lower sensitivity of predicted stresses to 

react to small changes in temperature. On average, the tendency was to overestimate stress 

responses by 78% (percent of points above equality line) for the full slip (FS) scenario and 

underestimate stress responses by 82%  (percent of points below equality line) for the full bond 

(FB) scenario.  
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FIGURE 7.23 Measured versus predicted compressive stress (Base). 
 

Figure 7.24 shows the strong relationship between temperature and calculated 

compressive stress (subgrade) for section S9 in full bond and full slip conditions. Once again, 

higher stress levels were expected when considering full slip interaction (weaker structure) 

between consecutive layers.  An exponential function was found to be the best fit for all sections. 

Table 7.12 exhibits the respective equation coefficients and R2 values for all sections. It was 

determined that at a 95% confidence level there was no evidence that the equation coefficients of 

all sections were statistically different from the control except for N5 in full bond condition. Also 

for this case, N5 had a lower k1 coefficient due to the thicker AC layer and a higher k2 coefficient 

indicated higher susceptibility to temperature changes.  
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FIGURE 7.24 Calculated compressive stress section S9 (Subgrade). 
 

TABLE 7.12 Equation coefficients for calculated stress (Subgrade) 

Section 
Full Slip Condition Full Bond Condition 

k1 k2 R2 k1 k2 R2 
S9 5.6705 0.0097 0.934 1.9972 0.0124 0.946 

S10 6.0849 0.0078 0.956 1.9855 0.0112 0.965 
S11 5.5974 0.0087 0.934 1.8378 0.0118 0.936 
S12 5.5634 0.009 0.956 1.7695 0.0123 0.959 
N5 1.9266 0.0188 0.907 1.1524 0.0164 0.931 
N6 4.9408 0.0129 0.941 1.8738 0.0154 0.954 
N7 6.401 0.011 0.930 3.421 0.0102 0.942 

N10 6.1607 0.0088 0.928 2.018 0.0124 0.935 
N11 7.2468 0.0086 0.957 2.3838 0.0125 0.964 

 

Figure 7.25 shows the cumulative distribution curves of the measured and computed 

subgrade compressive stress (full bond and full slip condition) for all sections. Underestimation 

of the stresses was obtained when full bond was specified during the analysis process and when 

full slip is specified overestimation was obtained. The lower stress levels obtained when 

considering full bond condition can be partially explained by the higher speed/frequency of the 
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backcalculated properties and the lower susceptibility of predicted stresses to changes in 

temperature. 

 

FIGURE 7.25 Comparison between measured and calculated stress (Base). 
 

Figure 7.26 shows a comparison between measured and computed subgrade stresses from 

the equations shown in Table 7.12. The intercept of the both linear equations were also 

statistically significant and this was explained by the lower sensitivity of predicted stresses to 

react to small changes in temperature. The results showed that the tendency was to overestimate 

stress responses by 94% (percent of points above equality line) for the full slip (FS) scenario and 

underestimate stress responses by 86%  (percent of points below equality line) for the full bond 

(FB) scenario.  
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FIGURE 7.26 Measured versus predicted compressive stress (Subgrade). 
 

7.8 Application of Correction Factors 

Correction factors were obtained from the assumption that all the layers had a full bond interface. 

Therefore, these factors can only be applied to the predicted responses that also considered a full 

bond condition. The results obtained up to this point indicated that predicted pavement responses 

assuming full bond condition tended to underestimate measured responses. It was also expected 

that the application of the correction factors increased the level of pavement responses in order to 

predict more accurate results. On the other hand, if the software utilized in this study (3D-Move) 

had the capability to simulate full slip conditions between layers, this should provide correction 

factors that in theory should also increase the level of pavement responses.  

Figure 7.27 shows an example of the application of correction factors on longitudinal 

strains. The curve of measured longitudinal microstrain versus temperature was significantly 

above the curve of predicted microstrain using backcalculated AC moduli. This second curve was 

adjusted by correction factors providing a new curve closer to the measured one.  The difference 

between measured and predicted strains was significantly higher (average of 42%) even for the 

corrected curve which had an average difference of 35.5%.  These results were obtained from the 
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slope of the predicted versus measured strain levels curves. The closer the slope of these curves to 

1.0 the closer the predicted values are to the measured ones. Table 7.13 shows the analyses 

performed to evaluate the effect of the correction factors. The slopes of predicted versus 

measured strains curves were approached to 1.0 by an average of 12%. The average absolute 

error (AAE) was also computed to evaluate the effect of the correction factors. On average, an 

AAE of 42.7% was obtained for all sections. Once the correction factors were applied, the error 

was reduced by 10.8%. The most affected section by the application of the correction factors was 

N11 which had the highest change in slope (14.8%) and the highest change in AAE (16.9%).  

  

FIGURE 7.27 Example of the application of strain correction factors. 
 
 

TABLE 7.13 Application of strain correction factors 

Section Slope Slope corr. 
% Change 

in Slope AAE  
AAE FB 

corr. 
% Change in 

AAE 
S9 0.578 0.645 11.7% 43.7% 38.9% 11.0% 

S10 0.618 0.692 12.0% 35.5% 29.7% 16.4% 
S11 0.692 0.769 11.1% 33.3% 27.9% 16.1% 
S12 0.558 0.634 13.6% 43.1% 38.9% 9.6% 
N5 0.583 0.664 13.9% 47.6% 42.0% 11.7% 
N6 0.522 0.575 10.2% 52.0% 48.5% 6.7% 
N7 0.492 0.560 13.9% 43.7% 42.0% 4.0% 

N10 0.671 0.730 8.8% 40.0% 36.4% 9.0% 
N11 0.661 0.759 14.8% 39.4% 32.8% 16.9% 
ALL 0.577 0.647 12.2% 42.7% 38.1% 10.8% 
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Figure 7.28 shows an example of the application of correction factors on compressive 

stress. The curve of measured stress versus temperature was significantly above the curve of 

predicted microstrain using backcalculated AC moduli. This second curve was adjusted by 

correction factors providing a new curve closer to the measured one.  The error between 

measured and predicted stresses was significantly higher (AAE = 18.2%) even for the corrected 

curve with an average difference of (15.8%).  In this case, the errors were found to be greater at 

higher stresses due to the poor ability of the layer elastic analysis to predict the sensitivity of 

stresses as function of temperature (Tables 7.11 and 7.12). Table 7.14 shows the analyses 

performed to evaluate the effect of the base stress correction factors. On average, an AAE of 

39.7% was obtained for all sections. Once the application factors were applied the error was 

reduced in 13.1%. The most affected section by the application of the correction factors was N11 

which had the highest change in AAE (22.8%). However, N10 had the lowest error (AAE = 

15.8%) after applying the respective correction. 

  

FIGURE 7.28 Example of the application of stress correction factors. 
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TABLE 7.14 Application of base stress correction factors 

Section AAE AAE Corr. 
% Change in 

AAE 
S9 46.0% 40.2% 12.7% 

S10 32.5% 31.4% 3.3% 
S11 49.3% 42.6% 13.6% 
S12 45.5% 37.3% 18.0% 
N5 41.4% 34.7% 16.2% 
N6 40.7% 35.9% 11.6% 
N7 45.6% 40.9% 10.2% 

N10 18.5% 15.8% 14.8% 
N11 25.2% 19.5% 22.8% 
ALL 39.7% 34.5% 13.1% 

 

Table 7.15 shows the results of the analyses performed on the subgrade stress correction 

factors. On average, an AAE of 37.1% was obtained for all sections. Once the correction factors 

were applied the error was reduced by 12.4%. The most affected section by the application of the 

correction factors was N10 which had the highest change in AAE (29.4%) and the lowest error 

(AAE = 9.4%) after applying the respective correction. 

 
TABLE 7.15 Application of subgrade stress correction factors 

Section AAE AAE Corr. % Change in AAE 
S9 40.2% 37.0% 7.9% 

S10 45.9% 42.3% 7.8% 
S11 41.1% 35.8% 12.8% 
S12 40.8% 34.3% 16.1% 
N5 38.3% 32.0% 16.4% 
N6 36.5% 32.5% 11.0% 
N7 33.3% 30.0% 9.9% 

N10 13.3% 9.4% 29.4% 
N11 26.2% 20.8% 20.8% 
ALL 37.1% 32.5% 12.4% 

 

Overall, the use of correction factors helped reduce the gap between predicted and 

measured pavement responses. However, these factors were applied on structures that were 



 

 
148 

 
 

modeled with full bond layer interface. The development of correction factors and the prediction 

of pavement responses from non-destructive testing should considered an intermediate condition 

between full bond and full slip. In addition, a viscoelastic analysis of asphalt concrete mixtures 

combined with nonlinearity properties of unbound material could show better agreement with 

measured tensile strains and compressive stresses. For instance, the ratio of the inflection point 

over the strain amplitude ranged from 10% to 60%. In the case of simulated strains at 45 mph 

(3D-Move) the same ratio was found between 11% and 22%, significantly lower than the 

measured results. This could be explained by the use of linear elastic properties (only option in 

3D-Move) for the base and subgrade materials.  

Additional analysis of the effect of pavement instrumentation on pavement responses 

could also help explain these observed differences. Asphalt strain gauge installation procedures 

have typically used hot mix sieved through a 4.75mm screen, hand placed over the gauges and 

hand compacted prior to roller compaction which has led to a high gauge survival rate. However, 

this process introduces finer mix in the immediate vicinity of the gauge which could theoretically 

yield lower moduli and higher strains. It should also be noted that all of the pressure cells were 

installed in each respective layer within a bed of fine, uniformly graded material which protected 

the cells from puncture or other damage from the sharp, coarse fractured particles that compose 

the base layer. Because of the low density/low modulus bedding material, there is the possibility 

of higher pressures to be measured.   

7.9 Summary 

Significant differences in dynamic modulus can be expected between 10 and 33 Hz at any 

temperature. Moreover, these differences tend to increase with an increase in temperature. As 

suggested in the literature, dynamic moduli calculated at 33 Hz cannot match the backcalculated 

AC moduli. Hence, a significant error was expected from calculated pavement responses with 

respect to measured ones. This pattern was also confirmed by the comparison of load pulse 
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durations between FWD loading and a single axle load. For example, a truck driven at a speed of 

41 mph had a load pulse duration about three times longer than the FWD loading. It was 

determined that the speed of a moving load that produces a loading pulse equivalent to the 

loading pulse produced by the FWD has to be over 120 mph for the studied conditions. 

Correction factors were then obtained as the difference between the calculated pavement response 

at the desired operational speed (in this study 45 mph) and the calculated pavement response at 

the equivalent FWD speed. An analysis of measured versus predicted pavement responses 

indicated and confirmed that significant errors can be obtained from using high speed/high 

frequency backcalculated moduli to predict highway speed pavement responses. Finally, the use 

of correction factors helped reduce the gap between predicted and measured pavement responses. 

However, these factors were applied on structures which in theory had full bond layer interface. 

The development of correction factors and the prediction of pavement responses from non-

destructive testing should consider an intermediate condition between full bond and full slip. 
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CHAPTER EIGHT: CONCLUSIONS AND RECOMMENDATIONS 

8.1 Summary of Findings 

This dissertation investigated the use of advanced techniques to obtain pavement material 

properties from non-destructive testing. In the mechanistic-empirical (M-E) flexible pavement 

design framework, characterization of material properties is a key element to predict pavement 

responses and consequently remaining life of a pavement structure. To meet the objectives of this 

study, a literature review was first completed. This review was focused on current 

backcalculation techniques used for characterization of material properties and the use of 

Artificial Neural Networks (ANNs) for similar purposes. The effects of time and temperature 

dependency properties of asphalt concrete mixtures on pavement responses within a non-

destructive testing prospective were also reviewed. The body of this investigation included two 

main studies related to advance material characterization techniques. The first one was focused on 

the application of ANNs as an alternative procedure to conventional backcalculation. The second 

one, also related to non-destructive testing, was focused on the correction of predicted responses 

from high frequency/speed load to represent typical operational vehicle speeds. 

8.1.1 Application of ANNs 

Artificial Neural Networks were created to perform forward calculations of pavement 

layer moduli and critical responses from non-destructive testing information. Synthetic databases 

were created using a modified version of the software PerRoad (LEA-based software) for a three 

layer flexible pavement. These databases included layer moduli, deflection basins, critical 

pavement responses and layer thicknesses. 

An analysis of the conventional backcalculation process was performed to investigate the 

non-uniqueness of backcalculated results when setting different initial conditions. The software 

EVERCALC 5.0 was used to analyze the effect of the level of tolerance, calculated by means of 

the root mean square error (RMSE), on estimated pavement layer moduli. Three different levels 
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of tolerance: 0.1%, 1.0% and 3.0% were analyzed. The results indicated that the conventional 

backcalculation process used to estimate layer moduli can be considered sensitive to seed values 

such as setting the level of tolerance. The results also indicated that the backcalculation process 

tended to overestimate the modulus of the top layer (asphalt concrete layer) and underestimate the 

modulus of the granular base. On the other hand, even at a set tolerance level as high as 3.0% the 

results in terms of subgrade modulus were little or not affected. 

The back-propagation algorithm was used as a learning algorithm to be applied on 

multilayer feed-forward networks. A synthetic database was generated using LEA for a three 

layered flexible pavement structure. Inputs for the ANN’s were deflection basins, layer 

thicknesses and load. The targets were layer moduli and critical pavement responses. An 

additional dataset was used to test the accuracy of the ANN and the results were compared to the 

outcomes obtained using EVERCALC. The results indicated that ANN-predicted layer moduli 

can be equivalent to backcalculated parameters calculated at a level of tolerance as low as 0.1%. 

The results also suggest that the thickness of the asphalt concrete pavement could be estimated 

with an acceptable level of accuracy. In addition, obtaining the backcalculated moduli can be time 

consuming. The process can last from minutes to hours depending on the size of the dataset and 

the required level of tolerance. When using ANNs, obtaining the layer moduli would take only a 

few seconds, which can be very useful for agencies and researchers that may be dealing with 

relatively large data sets spanning years of testing. 

Validation of the ANN models was performed using the Test Track FWD database and a 

selected section of the Lee Road 159 dataset. The capability for ANNs to predict pavement layer 

moduli was first validated on a very specific situation: pavement structures with similar 

thicknesses with multiple loads. In order to incorporate a typical range of thicknesses the ANN 

models had to be limited to one load of 9,000 lb due to the confounding interaction between 

thickness and load. In this case, the capability for ANNs to predict pavement layer moduli was 

also verified. Further implementation of ANN models was performed on a low volume roadway 
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section (Lee Road 159). Validation of ANN models was also achieved for this scenario. Overall, 

the use of ANNs showed a clear advantage over conventional backcalculation by providing layer 

moduli with significantly lower errors. In addition, the use of ANNs considering full slip 

condition between layers has proven to be another innovative attempt to create models capable of 

predicting more realistic layer moduli. Finally, exclusion of the thickness to predict pavement 

responses from ANN models did not seem viable up to this point. Further investigation was 

recommended to help explain the differences between results from synthetic and actual thickness. 

8.1.2 Correction Factors for the High Frequency/High Speed FWD Pavement Responses to 

Typical Operating Speed Responses 

The falling weight deflectometer (FWD) loading pulse duration was obtained from measured 

pavement response signals. FWD tests were performed on nine structural sections containing 

embedded instrumentation that were built in 2009 at the Test Track. These sections had well-

characterized material properties (E* from lab tests and backcalculated moduli for granular base 

and subgrade). The signal measured from a pressure plate was used to calculate the loading pulse. 

FWD stress and strain pulses followed a haversine waveform with distinguishable termination 

points. Stress pulses due to moving loads produced a waveform very similar to the pulse from 

FWD testing and therefore it was used in the analysis. The measured pulse ranged from 0.030 to 

0.050 seconds and the measured mid-depth temperature during the FWD tests ranged from 75 to 

120°F. Measured stress pulse durations from trucks moving at 45 mph were found to be two to 

three times greater than the measured FWD pulse durations at the same temperature.   

The mechanistic analysis software 3D-Move was used to model a single uniform moving 

load of 9000 lb with radius of 5.91 inches. The speed of that moving load that produces a loading 

pulse equivalent to the loading pulse produced by the FWD was determined to be over 120 mph. 

To find correction factors, a dual tire load of 10,000 lb (5,000 lb/tire) was also simulated using 

3D-Move to compute critical strain responses that were calculated at 6 different speeds (15, 25, 
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35, 45, 60 mph and at the equivalent FWD speed) and at 5 different temperatures (40, 70, 100, 

115 and 130°F). Correction factors were calculated as the relative difference between the 

simulated responses from the Test Track operating speed of 45 mph and at simulated responses 

from the equivalent FWD speed. Finally, these factors were applied on simulated strain responses 

obtained from actual backcalculated moduli and compared to measured strain responses from the 

embedded instrumentation. The application of these correction factors helped close the observed 

gap between simulated and measured strain responses. 

8.2 Conclusions 

Based upon the research conducted in this dissertation, the following conclusions can be made 

concerning the application of ANNs used to characterize material properties. 

1. The conventional backcalculation process used to estimate layer moduli can be considered 

sensitive to the level of tolerance. In the case of the asphalt concrete modulus and granular 

base modulus, a significant increase in variability can be expected when changing the level of 

tolerance from 0.1% to 1.0% and from 1.0% to 3.0%. 

2. Contrary to backcalculation, ANNs do not depend on seed values and the ANN-predicted 

layer moduli can be equivalent to backcalculated parameters calculated at an RMSE level of 

tolerance as low as 0.1%.  

3. Based on the use of synthetic databases, the layer moduli and pavement responses can still be 

estimated with the application of ANN when only deflections are used as inputs (no layer 

thicknesses are input). However, more scattered results with higher relative errors can be 

expected for this type of analysis. 

4. Significant differences can be obtained between actual and predicted layer moduli when the 

actual condition of the asphalt layer interface(s) is full slip and the simulated conditions are 

full bond between layers. 
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5. The capability for ANNs to predict pavement layer moduli was validated using multiple load 

levels and full slip condition as a layer interaction. This presented a clear advantage over 

previous studies that have been focused on one load level and full bond conditions. 

6. The use of ANNs considering full slip condition has proven to be another innovative attempt 

to create models capable of predicting more realistic layer moduli, especially for the granular 

base. 

7. Overall, the use of ANNs presented a clear advantage over conventional backcalculation. 

While backcalculated properties can be obtained from a couple of minutes to an hour, with 

ANN the same results are always obtained in a couple of seconds. In addition, a significant 

reduction in the root mean square error can be expected when using ANNs compared to 

backcalculation. 

Based upon the research conducted in this dissertation, the following conclusions can be 

made concerning the use of correction factors for the high frequency/high speed FWD pavement 

responses to typical operating speed responses 

1. Significant differences between moduli at 33Hz and 10Hz mean significant differences in 

pavement responses between FWD and highway speeds. Moreover, these differences tend to 

increase with an increase in temperature. 

2. Significant differences between load pulse duration from FWD and a single axle load of truck 

traveling at 45 mph were obtained. Single axle load pulse durations were three times longer 

than the FWD durations.  

3. It was determined that the speed of a moving load that produces a loading pulse equivalent to 

the loading pulse produced by the FWD has to be over a 120 mph for the studied conditions. 

4. An analysis of measured versus predicted pavement responses indicated and confirmed that 

significant errors can be obtained from using  high speed/high frequency backcalculated 

moduli to predict highway speed pavement responses. Therefore, correction factors should be 
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applied on pavement responses from backcalculated moduli to represent highway speed 

loads. 

5. For the conditions and scenarios evaluated in this study, correction factors helped close the 

gap between measured and predicted pavement responses.  

 
8.3 Recommendations 

Layered-elastic properties of the different layers of flexible pavements are obtained using 

conventional backcalculation. Layered-elastic properties were also utilized in this study to 

generate and train ANNs. In reality, material properties are more complex and may require the 

application of more complex algorithms such as finite element analysis that can be time 

consuming.  Future investigation should be able to incorporate more complex properties (non-

linear properties of unbound materials and viscoelastic properties of asphaltic materials) to create 

new and even more advanced ANNs.  

It is recommended that more research be conducted in developing correction factors to 

account for the significant difference between FWD loading and traffic loading. The correction 

factors developed were based upon limited data (nine sections with similar thicknesses); 

therefore, they should be provisionally implemented until further research validates their 

accuracy. 

The exclusion of the thickness to predict pavement responses from ANN models did not 

seem viable up to this point. Further investigation is recommended to help explain the differences 

between results from synthetic (theory) and actual (field) data.     

Further research should be conducted to help explain the differences between measured 

and predicted pavement responses of the studied sections. A viscoelastic analysis of asphalt 

concrete mixtures combined with nonlinearity properties of unbound material could show better 

agreement with measured tensile strains and compressive stresses. 
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