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Abstract

This dissertation presents the research performed to develop innovative multivariate

process monitoring and soft sensor approaches for industrial processes.

In the operation of modern industrial processes, it is attempted to improve product qual-

ity and yield in shorter periods of time while observing tighter environmental regulations

and safety guidelines. Furthermore, these goals are tried to be accomplished facing a severe

global competition and shorter product life cycles. The most reliable approach to achieve

these goals is the development of first principle models (e.g. based on dynamic mass and

energy balances) to describe the physics, chemistry, and the different phenomena occurring

in the process. However, because industrial processes are generally quite complex to model

and are characterized by significant inherent nonlinearities, a rigorous theoretical modeling

approach is often impractical, requiring a great amount of effort. An alternative approach

to address these aspects is using process data. In most modern industries, a large amount of

variables are measured and stored automatically by the governing control system (e.g. DCS).

The stored data corresponds to different measurement instruments that are used for closed-

loop control or merely as indicators of different conditions in process units. The process data

can be utilized to address several aspects. These include monitoring the process over time

in order to detect special events (e.g. faults) and assign causes for them. Furthermore, the

data can be used to predict key process variables that are difficult to measure online (e.g.

quality) based on easy-to-measure process variables.

In the first part of this work (PART I), a new multivariate method to monitor continuous

and batch processes is developed based on the statistics pattern analysis (SPA) framework.

The SPA framework is developed to address challenges present in industrial data such as

nonlinearities and multi-modal distributions, which are characteristics of process data that

ii



normally affect traditional multivariate monitoring methods. In addition, different unique

characteristics of the SPA framework are discussed in detail. Also presented are compar-

isons of the monitoring performance based on SPA with the monitoring performance of

different linear and nonlinear multivariate monitoring methods. The comparison results

clearly demonstrate the superiority of the SPA-based monitoring in key aspects such as de-

tecting and diagnosing different faults. The research findings indicate that the SPA-based

monitoring is a promising alternative for monitoring industrial processes, especially where

nonlinearities and multi-modal distributions are present.

In the second part of this work (PART II), the idea of obtaining quality estimates of key

process variables using multivariate projection methods is explored. In many industrial pro-

cesses, the primary product variable(s) are not measured online or not measured frequently,

but are required for feedback control. To address these challenges, there has been increased

interest toward developing data-driven software sensors (or soft sensors) using secondary

measurements (e.g. variables easy-to-measure) based on multivariate regression techniques.

The prediction of these key process variables not only provides a way to have real time

measurements, but also aids in improving quality and preventing undesirable operating con-

ditions.

In this work, the properties and characteristics of dynamic partial least squares (DPLS)

based soft sensors are studied in detail. In addition, a reduced-order DPLS (RO-DPLS) soft

sensor approach is proposed to address the limitation of the traditional DPLS soft sensor

when applied to model processes with large transport delay. The RO-DPLS soft sensor is

also extended to its adaptive version to cope with processes where frequent process changes

occur. Also presented are alternatives to address practical issues such as data scaling and

the presence of outliers off-line and online. The application of the proposed soft sensor is il-

lustrated with various simulated and industrial case studies of a continuous Kamyr digester.

In both simulation and industrial case studies, the proposed RO-DPLS soft sensor shows
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that it can provide quality estimates of key process variables in the presence of different

disturbances, data outliers, and time-varying conditions.
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Chapter 1

Introduction and Dissertation Outline

Modern chemical plants normally have a large variety of sensors dedicated solely to the

task of monitoring equipments and process conditions. As a result, a large number of vari-

ables are automatically measured and stored by the governing control system. This has led

to the collection of vast amounts of data at different rates (e.g. seconds, minutes or hours).

In the last few decades, researchers have dedicated considerable efforts to develop and im-

prove ways to analyze the data. One of the most active research areas in recent decades have

been the development of Statistical Process Monitoring (SPM) methods [1–11]. Traditional

data-based monitoring methods include, the Shewhart [1], cumulative sum (CUSUM) [3],

and exponentially weighted moving average (EWMA) control charts [4]. These methods are

categorized as “univariate” since they only look at the behavior of a single variable at a time.

Univariate approaches are utilized to monitor key process variables in order to distinguish

between common causes of variation and special (or assignable) causes [1, 12]. The first type

of variation refers to variations that affect the process all the time and are unavoidable within

the current process [6]. Special causes, on the other hand, are those producing deviations

that can potentially upset the process and deviate it from the desired operating point. It is

well known that univariate monitoring approaches can fail [2], as these methods ignore the

correlation among different variables that produce an effect in a certain key process variable

(e.g quality). To overcome the difficulty of analyzing simultaneously hundreds of process

variables collected at different rates, Multivariate Statistical Process Monitoring (MSPM)

techniques, which make use of the multivariate space, have been extensively studied by the

research community [13–15], and provide superior performance compared to the univariate
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SPM control charts. MSPM techniques are designed to extract the main underlying phe-

nomena that are driving the process at a certain time from the process data. Most of the

MSPM techniques rely on the properties of chemometrics techniques. Wise et al. [16], define

chemometrics as the science of relating measurements made on a chemical system to the state

of the system via application of mathematical or statistical methods. In essence, chemomet-

rics techniques make use of the available data to develop an empirical model that allows

estimation of properties of interest such as quality or yield. The success of MSPM based on

chemometrics techniques relies on the fact that multivariate statistical models extract the

correlations among variables due to physical and chemical phenomena in an empirical way.

Chemometrics techniques such as principal component analysis (PCA) [2, 13, 17, 18] and

partial least squares (PLS) [19–25] are commonly applied. These methods are particularly

suited to analyzing large sets of correlated data. This is achieved by finding linear com-

binations of the original variables and projecting them in a lower-dimensional space. This

reduced space contains most of the variance observed originally and accounts for correlations

among different variables. Some pioneering work using PCA-based monitoring is presented

in the work of Jackson [14], Jackson and Mudholkar [15], Jackson [2], Kresta et al. [26], and

more recently Wise et al. [27]. The application of MSPM monitoring methods have been

reported successful in chemical and petrochemical industries [10, 11, 28–30] for batch and

continuous processes. In industry, one of the major benefits of MSPM monitoring methods

is associated with the detection and diagnosis of faults. By detecting failing sensors and

process upsets, MSPC techniques complement the role of automatic process control (APC)

to improve safety and process efficiency. It is important to point out that the goal of MSPM

approaches is different from automatic process control. APC is applied to reduce the vari-

ability of key process and product variables. This is achieved by compensating from the

observable behavior of disturbances in the process and product variables via manipulation

of less important variables ( e.g. manipulated variables) [6, 31]. MSPM methods are an

additional layer that is applied on top of the process and its automatic control system. It
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is the goal of any monitoring approach to confirm that the process remains in the desired

operating region, otherwise detect and diagnose the process behavior that indicates the oc-

currence of a special event.

Although MSPM methods such as PCA-based monitoring methods have been extremely

successful in many applications, their monitoring performance can deteriorate depending on

the characteristics of the process. There are two main reasons for the deterioration in perfor-

mance. First, PCA is a second-order method, i.e., the mean and the variance-covariance of

the process variables are only considered to characterize the process. As a result, PCA lacks

the capability of providing higher order representations for non-Gaussian data [32], which

is common in industrial data due to nonlinear characteristics of processes and the effect of

feedback control. In addition, the theoretical development to determine the thresholds for

the traditional monitoring indices in PCA (e.g. Hotelling’s T 2 and SPE) is based on a

multivariate distribution assumption. Therefore, when the scores (or latent variables) are

non-Gaussian distributed due to process nonlinearity or other reasons, the utilization of the

traditional monitoring indices may lead to a less satisfactory performance [32, 33].

In the first part of this work, a novel process monitoring framework termed statistics pat-

tern analysis (SPA) is developed. The advantages for monitoring industrial processes are

discussed, and its performance is comprehensively compared with traditional linear and

nonlinear monitoring methods. In addition, the SPA framework is extended to fault diagno-

sis based on contribution plots [5, 6, 9, 10, 34–36] to cope with the difficulties of traditional

methods for isolating the root cause of faults.

It is well known that regular PCA is only concerned with finding linear combinations of the

original variables contained in a matrix X that explain most of the variability contained orig-

inally. In several cases, including a group of primary measurements of greater importance

(e.g. quality or yield) could help indicating how the process is behaving. Unfortunately,

in the majority of cases, these variables are not measured as frequently due to several rea-

sons (e.g. no hardware sensors, online analyzers etc.). To address the challenge, soft sensors
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(or inferential estimators) have been developed. Soft sensors make use of the information

contained in the matrix of process variables X to estimate the primary measurements Y. Soft

sensors can be developed in the form of a Luenberger observer [37] or a Kalman filter [38]

using a first principles dynamic model of the process. However, because chemical processes

are generally quite complex to model and are characterized by significant inherent nonlinear-

ities, a rigorous theoretical modeling approach is often impractical, requiring a great amount

of effort [39]. As a consequence, data-driven soft sensors have been developed and studied

extensively. Multiple linear regression (MLR) is the most basic form of model to design a

soft sensor. However, due to correlations in process variables, size of data set, and mea-

surement noise, MLR methods lead to imprecise estimations and poor prediction [26, 40].

Data-driven soft sensors based on multivariate regression techniques have been developed to

overcome the dimensionality, measurement noise and collinearity problems [8, 9, 28, 39, 41–

49]. Because data-driven soft sensors are easy to develop and to implement online, they

are potentially more attractive than stochastic filters or deterministic observers [39]. Artifi-

cial neural networks (ANN), principal component regression (PCR) or principal component

analysis (PCA), and partial least squares (PLS) are widely used regression techniques, and

their successful application to the development of soft sensors has been reported for different

processes [9, 47, 50–54]. Dynamic PCA (DPCA) and Dynamic PLS (DPLS), the extensions

of the conventional PCA and PLS algorithms for dynamic modeling, have been developed

to cope with the dynamic nature of processes. In these methods, lagged measurements are

augmented to the original input data matrices to cope with dynamic processes [29, 55].

Among the different soft sensor approaches, DPLS based soft sensors have been reported

successful in different type of processes [44, 48, 56–58]. However, despite many successful

applications, one limitation associated with DPLS is that it is usually viewed as an ad hoc

method. Additionally, there is a lack of theoretical understanding on whether it can cap-

ture process dynamics adequately and whether it can provide unbiased estimate for both

open and closed-loop data. Another problem encountered when performing DPLS is that
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the addition of a relatively large number of lagged values in the input data matrix causes

a substantial increase in the dimension of the matrix. This implies that the computational

load required to the development of multivariate regression becomes considerably expensive,

and the regression procedure gets much lengthier. This is particularly true for spline PLS

and ANN PLS, which are based on computationally more intensive algorithms. As a result,

the model becomes more cumbersome to manipulate due to the presence of a higher number

of parameters [46]. Furthermore, as it can be seen later in this work, when process residence

time is long, large number of lagged measurements and more training data are needed for

DPLS to capture the process dynamics, and to provide satisfactory soft sensor performance.

To address these issues, in the second part of this work, a theoretical proof is derived to show

that DPLS-based soft sensors are dynamic estimators that can adequately capture process

dynamics, and are able to provide unbiased estimates of primary variables for both open

loop and closed-loop data. In addition, a reduced order DPLS (RO-DPLS) approach with

optimally selected lagged measurements of secondary variables is proposed (e.g. variables

that are easy-to-measure). The RO-DPLS soft sensor not only reduces model size and im-

proves prediction, but also significantly increases prediction horizon. The RO-DPLS soft

sensor is also extended to its adaptive version to cope with processes with frequent process

changes, addressing practical issues such as data scaling and the presence of outliers off-line

and online.

To summarize, this dissertation focuses on developing advance data-driven monitoring and

soft sensor strategies that can cope different industrial processes and their characteristics.

PART I : ADVANCED PROCESS MONITORING

Chapter 2 presents a review of the different data-driven techniques for process monitoring

compared in this work. These methods include principal component analysis (PCA), dy-

namic PCA, kernel PCA (KPCA), independent component analysis (ICA). In this chapter,
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the main characteristics of the different algorithms and methods for fault detection and di-

agnosis are discussed.

In Chapter 3, a novel process monitoring framework termed statistics pattern analysis (SPA)

is introduced [32, 59–62]. The major difference of SPA and the other multivariate statis-

tics process monitoring methods is that in SPA, instead of monitoring the process variables

directly, the statistics of the process variables are monitored instead. In this chapter, the

SPA framework characteristics for fault detection are discussed. In addition, the framework

is extended to fault diagnosis based on contribution plots. This chapter contains some illus-

trative examples that show in detail how and why the SPA framework works. Finally, the

main characteristics and advantages of the SPA framework are discussed.

In Chapter 4, the potential of the SPA framework for fault detection and diagnosis is eval-

uated by using two case studies. In the first case study, a nonlinear system is simulated to

examine the performance and properties of the statistics pattern analysis framework (SPA).

In addition, the SPA framework performance is compared with traditionally applied linear

methods for process monitoring. In this chapter, it is demonstrated that SPA is able to han-

dle nonlinear processes, and is able to detect and diagnose subtle changes in the dynamics

of the system. In this case study, compared to the traditional PCA and DPCA methods,

SPA provides a more accurate, efficient, and reliable detection and diagnosis of faults. Two

different cases with different size of training samples are also studied. The study indicates

that SPA can also perform well with a limited amount of data. However, for the case where

data are limited, a window overlapping is necessary. If the window overlapping is large, it

causes the samples to be no longer independent from each other, which causes an increment

in the false alarm rates for normal operating data. For the case where enough data are

available (i.e., slight window-overlapping to no window overlapping), SPA not only is able

to provide high detection rates and a more clear identification of a fault, but it also reduces

the false alarms for normal operating data considerably and shows limited fault detection

delay. In the second case study, the SPA-based monitoring is tested at a plant-wide level.
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The Tennessee Eastman process is used to evaluate the performance of the developed SPA-

based fault detection and diagnosis methods. In this case study, the performance of SPA is

compared with the two commonly applied linear monitoring methods (e.g. PCA and DPCA)

and two nonlinear monitoring methods (e.g. ICA and KPCA). This case study shows that

in general, all five methods work well in detecting and diagnosing most of faults. However,

for some faults that are difficult to detect and/or diagnose by PCA, DPCA, KPCA and ICA

based methods, SPA based method provides superior performance. In addition, because the

SPA-based method breaks down the contribution of a fault to different variable statistics, it

provides extra information in addition to identifying the major fault-contributing variable(s).

For example, the SPA-based contribution plots tell us whether the fault is due to a change in

variable mean or variance, which is a tremendous advantage for online process monitoring.

The excellent performance observed for fault detection and diagnosis, together with the less

intensive computational load required implementing SPA makes the framework a promising

alternative for monitoring industrial processes, especially when nonlinearities are prevalent.

PART II : SOFT SENSOR DEVELOPMENT

In industrial processes, several process variables that indicate the quality of the product or

yield are not measured frequently. This issue not only prevents the establishment of feedback

control strategies, but also forces the exclusion of these variables from the process monitor-

ing strategy. As a consequence, the performance of industrial processes is deteriorated. To

address the challenge, soft sensors (or inferential estimators) have been developed. Among

the different methods to develop soft sensors, the focus is given to dynamic partial least

square (DPLS) based soft sensors. DPLS based soft sensors have been successfully applied

to provide quality estimates of primary variables (e.g. quality or yield) in several processes.

As mentioned before, despite many successful applications, one limitation associated with

DPLS is that it is usually viewed as an ad hoc method, as there is a lack of theoretical

understanding on whether it can capture process dynamics adequately, and whether it can
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provide unbiased estimates for both open and closed-loop data. Another problem encoun-

tered when performing DPLS is that the addition of a relatively large number of lagged

values in the input data matrix causes a substantial increase in the dimension of the matrix.

This implies that the computational load required to develop the multivariate regression be-

comes considerably heavier, and the regression procedure gets much lengthier. As a result,

the model becomes more cumbersome to manipulate due to the presence of a higher number

of parameters. In addition, when process residence time is long, large number of lagged

measurements and more training data are needed for DPLS to capture the process dynamics

and to provide satisfactory soft sensor performance.

Given the importance of PLS in the development of this work, in Chapter 5, a brief review

of the PLS method, its adaptive versions, and the data scaling schemes that accompany the

different versions of a PLS model is presented.

In Chapter 7, a rigorous proof is derived to show that a DPLS-based soft sensor is a dynamic

estimator that can adequately capture process dynamics, and provides unbiased estimates

of the primary variable for both open loop and closed-loop data [63–66]. Furthermore, a

reduced order DPLS (RO-DPLS) approach with optimally selected lagged measurements of

the secondary variables is proposed. The RO-DPLS soft sensor not only reduces model size

and improves prediction, but also significantly increases prediction horizon (i.e., provides

future predictions). The performance of the proposed RO-DPLS is demonstrated using both

a simulated single-vessel continuous digester and an industrial Kamyr digester. The simula-

tion results confirm that the DPLS and RO-DPLS soft sensors can capture process dynamics

adequately for both open loop and closed-loop operations. In addition, it is shown that the

RO-DPLS soft sensor performs better than the traditional DPLS approach, especially when

training data are limited. The industrial case study also confirms that RO-DPLS provides

an effective and practical solution to estimate the Kappa number (i.e, the key indicator of

the extent or reaction) in a continuous digester.
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Real industrial processes are usually time-varying. For example, in the operation of a con-

tinuous digester, cooking temperature, the wood type utilized and other conditions vary

with time. Therefore the soft sensor model developed off-line should be updated to cope

with these changes. To address this difficulty, different adaptive schemes to update the soft

sensor online are investigated in Chapter 7. In this chapter, the developed RO-DPLS soft

sensor is extended to its online adaptive version [67–70]. The properties of four different

model update schemes are examined. These adaptation techniques include, recursive PLS

(RPLS), block-wise RPLS (BRPLS), moving window BRPLS (MW-BRPLS), and forget-

ting factor BRPLS (FF-BRPLS). In addition, the data scaling methods that accompany

the different updating schemes are studied. Extensive experiments were performed with one

simulated case study and two industrial case studies to investigate the properties of differ-

ent model update schemes. Results of the study presented indicate that for processes that

experience constant changes and various disturbances such as the digester process, recur-

sive RO-DPLS with RPLS model update scheme generally performs the best with frequent

update. The effectiveness of the recursive RO-DPLS soft sensor is demonstrated through

a digester closed-loop control case study, where a PID controller is used to reject a major

process disturbance i.e., a wood type change, and other common process disturbances. By

comparing the closed-loop performance between measurement feedback and soft sensor pre-

diction feedback, it is shown that the closed-loop control performance can be significantly

improved if the soft sensor prediction is fed back to the PID controller. The improvement is

mainly due to the reduced overall process delay as well as more frequent feedback enabled

by the reduced order model and the high frequency Kappa number predictions.

In the development of PLS-based soft sensors, outlier detection plays a critical role, especially

for recursive soft sensors that are updated online. In Chapter 8, multivariate approaches for

both off-line outlier detection (for initial soft sensor model building) and online outlier detec-

tion (for soft sensor model recursive update) are proposed [71, 72]. Specifically, for off-line

outlier detection leverage and y-studentized residuals are combined; while for online outlier
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detection, the squared prediction error indices for X and Y are used to monitor the inde-

pendent variable and dependent variable space, respectively. For online outlier detection, to

differentiate the outliers caused by erroneous reading from those caused by process changes,

a Bayesian supervisory approach is proposed to further analyze and classify the identified

outliers [71, 72]. Both simulated and industrial case studies demonstrate the superior per-

formance of the soft sensor with Bayesian supervisory approach for outlier detection and

classification.

In the final Chapter 9, the major contributions of this work are summarized and suggestions

on future research directions are provided.

10



Chapter 2

Multivariate Process Monitoring

As discussed in the previous chapter, process monitoring techniques are not only key

in determining equipment malfunctions and instrument failures, but also are fundamental

in ensuring process safety, product quality, and process efficiency. As large amounts of

variables are measured and stored automatically by governing control systems, multivari-

ate statistical monitoring methods have become increasingly common in process industry.

Multivariate process monitoring techniques are based in different mathematical algorithms.

In addition, the way to detect and diagnose faults vary from one approach to the other.

In this chapter, the main characteristics of some relevant multivariate process monitoring

techniques are reviewed. This chapter reviews process monitoring techniques such as PCA

and dynamic PCA, together with a brief review of nonlinear monitoring techniques such as

Kernel PCA (KPCA) and Independent Component Analysis (ICA). The complete treatment

of these process monitoring methods is out of the scope of this dissertation. However, enough

background information is included so that the reader can follow the development of these

process monitoring techniques, and to understand the development of Part I of this work.

2.1 Principal Component Analysis

Given the conceptual importance of PCA in the development of process monitoring

schemes, in this chapter, the PCA method and related strategies for fault detection and

diagnosis based on PCA are reviewed.
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2.1.1 Motivation

Highly automated control systems in industrial sites are able to collect thousands of

process measurements every day. The data captures the governing phenomena occurring in

the process. However, the m variables that are selected to represent any given process are

normally highly correlated and noisy. In addition, the number of variables that adequately

represent a process can be very large. These factors can make the analysis of process data

very difficult. The central idea of PCA is reducing the dimensionality of the original corre-

lated process data while retaining as much as possible the variation present originally. This

is achieved by projecting the process data into a lower-dimensional space, where a new set

of uncorrelated variables, the principal components, contain most of the variation of the

original variables in the first few principal components [73].

2.1.2 The PCA Method

Let X ∈ ℜm×n denote the original process data matrix scaled to zero mean and unit

variance with n samples (rows) and m process variables (columns). PCA decomposes the

process data matrix X, by either nonlinear iterative partial least squares (NIPALS) [74] or

singular value decomposition (SVD) [75] X, as follows:

X = TPT + X̃ = TPT + T̃P̃
T

=
[
TT̃
] [

PP̃
]T

(2.1)

where T ∈ ℜn×a and P ∈ ℜm×a are known as the score and loading matrices, respectively.

The PCA projection reduces the original set of m variables to a principal components. The

residual matrix X̃ can be further decomposed into the product of residual scores T̃ and resid-

ual loading P̃ matrices. The column space of P is the principal component subspace (PCS)

with dimension a. The column space of P̃ is the residual subspace (RS) with dimensions m-a.

The PCA projection reduces the original set of m variables to a principal components. The

decomposition is made such that [TT̃] s orthogonal and [PP̃] is orthonormal. The columns
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of P are the eigenvectors of the correlation matrix of the X variables associated with the

a largest eigenvalues and forms a new orthogonal basis for the space spanned by X. The

remaining columns of P (e.g P̃) correspond to the residual eigenvectors [7]. The pi loading

vectors (the columns of P), often referred as principal components, are linear combinations

of the original variables that explain the dominant directions of variability of the information

contained in the original process data matrix X [73, 76]. The score vectors ti are projections

of the process variables contained in X onto the new basis vector pi.

2.1.3 Fault Detection

Once the PCA model has been determined based on historical data, new multivariate

observations in a sample vector x can be referenced against this model. This is achieved by

projecting these observations onto the plane defined by the PCA loading vectors to obtain

their scores and residuals [6]. Traditionally, the projections or scores are plotted to reveal the

relationships of the variables forming a new multivariate observation x. In addition, to reveal

data patterns, to identify clusters, and to determine the influence of different multivariate

observations, two-dimensional plots of the most significant scores related to the dominant

directions of variability (e.g. dominant eigenvectors) are used. In addition, an evaluation

of the magnitudes of the loadings can serve as an indication of the relationships between

the process variables contained in X. For fault detection, Hotelling’s T 2 [77] and SPE

charts [15] are commonly used. The SPE index measures variability that breaks the normal

process correlation [8], in other words, measures the variation in the residual subspace (RS),

and is defined as follows:

SPE = ‖xi − x̂i‖
2 = ‖x̃‖2 =

∥∥(I − PPT
)
x
∥∥2

(2.2)

where x̂i is the prediction of the multivariate observation x. Assuming that x follows a

multivariate normal distribution, Jackson and Mudholkar [15] developed a confidence limit
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for SPE. The process is considered normal if SPE ≤ δ2
α, where δ2

α denotes the upper control

limit for SPE with a significance level α. An alternative way of determining the confidence

limits for the SPE statistic is presented in [78]. The SPE statistic provides a way to test

if the process data are outside the normal operating region. The SPE statistic is normally

complemented by the use of the Hotelling’s T 2 [77] statistic. The T 2 index measures the

distance to the origin in the principal component subspace (PCS), i.e., provides an indication

of abnormal variability in the space defined by the PCS.

T 2 = xTPΛ−1PTx (2.3)

where Λ is the diagonal matrix of the a largest eigenvalues of XXT . The process is considered

normal if T 2 ≤ T 2
α, where the upper control limit can be determined using the F-distribution

[17]. It is important to point out that SPE and T 2 limits can also be determined empirically

using validation data [32], which is often the case for industrial applications. Although T 2

and SPE indices are used in conjunction for process monitoring, as noted in [8], their role

in process monitoring is asymmetric, i.e., both measure different situations in the process.

The normal region defined by the T 2 statistic is usually much larger (e.g. capture normal

process variations) than the one defined by the SPE (e.g. noise and unexplained variability).

In general, a sample that only violates the upper control limit defined by the T 2 statistic,

could indicate a fault but also a process change (e.g. away from the origin of the PCS),

which is not a fault. On the other hand, the SPE statistic defines a tighter region of normal

operation, and a sample that breaks the correlation structure defined in the model can easily

exceed the SPE control limit. Thus giving a more reliable indication of the presence of a

fault. This causes the SPE indexes to have lower chances of false alarms (i.e., type I errors)

and missed detection rates (e.g. type II errors) compared to the T 2 [8]. Evidently, if a given

set of process variables (e.g. quality variables) have a stationary nature (e.g. vary around

an operating point), the use of the T 2 statistic is preferred [8, 17].
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2.1.4 Fault Diagnosis

One of the most important aspects in process monitoring is fault diagnosis. As described

before, traditionally plots of the scores and residuals together with the monitoring of the

time series of T 2 indices and SPE indices are utilized for fault detection. However, with

these tools, it is difficult to determine the source of the problem after it has been detected.

In fault diagnosis, one is interested in pinpointing the variable or group of variables that are

most related to the particular fault. After diagnosis, the actual problem can be eliminated

and improvements in quality and yield can be observed. One of the most utilized solution

for fault diagnosis based on multivariate data analysis techniques is contribution plots [5,

6, 9, 10, 34–36]. Contribution plots provide a way to connect the information provided

by the monitoring index in the principal (e.g. T 2) or the residual (e.g. SPE) subspace to

the actual process variables. In these plots, the contribution of the different variables to

the given monitoring index is visualized. In this way, variable(s) that contribute the most

to the fault are highlighted and related problems can be solved in a more oriented way.

The contributions of each process variable to the SPE statistic at instant i are the m (e.g.

the number of variables in the input space) elements of the residual xi − x̂i squared [34].

These m elements are plotted as bars to find the contributions of the variables to the SPE

index at instant i. For T 2, the contributions of the different variables can be calculated in

different ways [34, 79, 80]. Following [34], the contribution of the T 2 statistic is determined

by rewriting the scores t as a sum of weighted data, with the loadings of each principal

component direction used as weights.

tid =
m∑

j=1

(xijpjd) (2.4)

where pjd is the p loading for variable j in dimension d (e.g. d goes from 1 to a, the number

of retained principal components) for the m process variables included in the input space.

The m elements represent the contribution of each variable to the score tid. As with the
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contributions to SPE, a chart with bars of the m contributions to the tid is utilized for fault

diagnosis.

2.2 Dynamic Principal Component Analysis

In PCA, variables are assumed to be uncorrelated in time [29]. In other words, the

observations at sampling instant k are assumed to be independent from observations in the

past, i.e., at sampling instant k − la, where la denotes the time lag between measurements.

As noted in [81], this assumption holds for processes where the sampling times are long.

However, for dynamic processes with fast sampling, a method needs to take into account

the serial correlations present in the data. In these type of processes, the process variables

will vary around the operating point region based on their dynamics. This in turn will

make the values of the variables at the current time, to depend on information of the past

measurements of the same variable and other related variables (e.g., auto-correlation and

cross-correlation). These characteristics of industrial processes often times make static PCA

to fail. To cope with these aspects, dynamic extensions of PCA to monitor different types of

processes have been proposed [29, 82–85]. In dynamic PCA (DPCA), static PCA is extended

to apply for monitoring multivariate dynamic systems. This is achieved by developing a

multivariate time series model of the data before the application of PCA. In a dynamic

system, the current values of the process variables X(k) will depend on the past values (e.g.

X(k − 1), where k is the current sample index). Typical cases of dynamic models include,

multivariate autoregressive (AR), multivariate autoregressive with exogenous inputs (ARX),

AR or ARX time series models for processes with moving average (ARMA) [86]. The common

factor of these methods is the augmentation of lagged data to the process variables to capture

the dynamic characteristics of the process. In DPCA, both the dimensionality reduction and

model extraction are done in a single step [29]. Two parameters are needed to be defined

in DPCA, the number of components to retain, and the number of time lags la needed to

characterize the dynamic of the process. Once these two parameters are defined, PCA is
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applied to the dynamic version of matrix X (e.g. X = [X(k) X(k−1) X(k− la)]. Typically,

la is set to 1 or 2 representing a first and second order dynamic system, respectively [29, 81].

The order can be increased to have better approximations of nonlinear relationships. Similar

to PCA, after the principal components are determined based on the dynamic version of the

matrix X, the Hotelling’s T 2 statistics and SPE indexes are used for fault detection. For

fault diagnosis, contribution plots of the T 2 and SPE statistics are typically utilized. This

is achieved by summing up the contributions to T 2 and SPE of the variables at the different

time lags [81]. In general, for processes where serial correlations are present, DPCA observes

better performance than regular PCA [29, 81].

2.3 Kernel Principal Component Analysis

2.3.1 Motivation

PCA-based monitoring methods have been extremely successful in many applications.

However, as PCA only considers the mean and the variance-covariance of variables to char-

acterize the process, and it assumes a linear relationship among the process variables, it

lacks the capability to provide higher order representations for non-Gaussian data. Complex

chemical and biological processes are nonlinear in nature. As a consequence, the process

data inherits a nonlinear behavior. The nonlinearity present in the process variables causes

PCA to perform poorly [87]. Kernel PCA (KPCA) has emerged as a solution to address this

problem [11, 88–93].

2.3.2 The KPCA Method

In KPCA the input data (e.g. x1, x2, ..., xN ∈ R
m) is first mapped into a higher-

dimensional space via a nonlinear function, i.e., φ : R
m → F . After the higher-dimensional

nonlinear mapping, the variables in the feature space are more likely to vary linearly [94].

The higher-dimensional linear space is also known as feature space (F ) [11, 88, 89]. In

KPCA, PCA is done to find eigenvectors v and eigenvalues λ of the covariance matrix C in
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the feature space F

C =
1

N

N∑

j=1

φ(xj)φ(xj)
T (2.5)

where the input process data xk ∈ R
m, k = 1, ..., N is zero mean and unit variance and φ(·)

is a nonlinear mapping function that projects the input data to F . To find the principal

components, the eigenvalue problem has to be solved in F

λv = Cv (2.6)

In Eq. (2.6), all solutions v with λ 6= 0 must lie in the span of φ(x1), ..., φ(xN) with

coefficients αi (i = 1 = 1, ..., N) such that [11, 88, 89]

v =
N∑

i=1

αiφ(xi) (2.7)

Let 〈a,b〉 denote the dot product between vectors a and b, by defining a K ∈ R
N×N matrix

with elements [K]ij = 〈φ(xi) , φ(xj)〉, the eigenvalue decomposition in the feature space is

simplified as follows, see [11, 88–90] for a detailed derivation.

λα =
1

N
Kα (2.8)

where α = [α1α2 · · · αN ]T are the eigenvectors with eigenvalues λ1 ≥ λ2 ≥ · · · λN . As

in regular PCA, the dimensionality of the problem in the feature space can be reduced by

selecting only the first few a eigenvectors. The KPCA procedure requires the matrix K to

be mean centered (e.g. K). The mean centered matrix K is obtained as follows [11, 88, 89]

K = K − KE − EK + EKE (2.9)
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where

E =
1

N





1 · · · 1

...
. . .

...

1 · · · 1




∈ R

N×N (2.10)

To satisfy the eigenvalue normality constraint (e.g. ‖v‖2 = 1), the coefficients α should be

normalized during the KPCA decomposition (e.g. ‖α‖2 = 1
Nλ

). The score t of a test vector

x is obtained by projecting φ(x) into the space defined by the principal components vk in

F [11, 88]

tk = 〈vk,φ(x)〉 =
N∑

i=1

αk
i 〈φ(xi),φ(x)〉 (2.11)

where k = 1, ..., a retained eigenvectors. In KPCA, kernel functions are introduced to

compute the dot products in the feature space to solve the eigenvalue problem of Eq. (2.8)

in the form of k 〈a,b〉 = 〈φ(a),φ(b)〉 [11, 89]. Some commonly applied kernel functions are

listed below

• Linear kernel

k(a,b) = aTb (2.12)

• Polynomial kernel

k(a,b) = (aTb + d1)
d2 (2.13)

• Gaussian kernel

k(a,b) = exp

(
−0.5

‖a − b‖2

d2
3

)
(2.14)

• Sigmoid kernel

k(a,b) = tanh(d4(a
Tb) + d5) (2.15)

where the di parameters (i = 1, ..., 5) are empirically defined to achieve a given mapping φ

and feature space F [11].
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2.3.3 Fault Detection

Similar to PCA, for fault detection, the T 2 and SPE statistics are utilized as defined

below [11, 88, 90, 91]

T 2 = [t1, ..., tl]Λ
−1[t1, ..., tl]

T (2.16)

SPE =
N∑

j=1

t2
j −

l∑

j=1

t2
j (2.17)

where tk is calculated by Eq. (2.11) and Λ is a diagonal matrix containing the eigenvalues of

the retained dimensions a after applying PCA in the feature space. As in PCA, the confidence

limits of the monitoring indexes can be determined theoretically via F-distribution [95] and

χ2 distribution [6], respectively, or empirically using validation data. Once a KPCA model

is obtained, the kernel kte ∈ R
1×N of a test vector xte ∈ R

m can be determined using

the training data xj by [ki]j = [kte(xte,xj)] [11]. Before projecting the test vector into

the space spanned by the retained eigenvectors, the kte kernel needs to be mean centered

kte = kte − E1K − kteE + E1KE, where E1 = 1
N

[1, ..., 1] ∈ R
1×N [11, 88]. The projection of

the test vector is calculated by

tk =
N∑

i=1

αk
i kte(xi,xte) (2.18)

2.3.4 Fault Diagnosis

In regular PCA, the identification of the process variables that are most related to a

particular fault is traditionally done by utilizing contribution plots of the monitoring indices

T 2 and SPE. However, for KPCA this task is not straightforward. This is a consequence of

the nonlinear mapping of the input space performed prior applying PCA in the feature space.

In this work, the approach proposed by Choi et al. [11] based on the sensor reconstruction

approach described in [96] is used for fault detection. In this approach, a fault index is
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defined as a function of two type of squared errors (SPE) [90, 96]:

ζi =

∥∥∥x̃i − ˆ̃x
i
∥∥∥

2

‖xi − x̂i‖2 (2.19)

where x is a multivariate observation from the input space, x̂ is the estimate of x, x̃i is

identical to x except for the ith entry which is replaced by its reconstructed value, and ˆ̃x
i

is its estimate. In other words, the denominator in Eq. (2.19) represents the SPE of the

input variable space, while the numerator represents the SPE of the reconstructed x̃ in the

input space. In this approach, the trend of the fault index ζi for the different variables is

monitored to diagnose variables that contribute the most to the fault. In this approach,

when a faulty variable is reconstructed, the corresponding SPE will reduce or not increase

considerably. Thus a significant reduction in the fault index ζi of the ith variable is observed,

which indicates a variable with an abnormal pattern. In other words, if a fault is detected, the

denominator in Eq. (2.19) increases, while the numerator for a reconstructed faulty variable

decreases or not increases considerably compared to the numerator of Eq. (2.19) when the

faulty variable is not reconstructed. In this work, robust reconstruction is achieved by using

the algorithm proposed by Mika et al., [92, 93]. To achieve an optimal reconstructed value

z, the kernel function is restricted to the Gaussian form of Eq. (2.14), and the following

iterative approach is implemented to compute z [90]

z(t) =

∑N
i=1 βiK(xi), z(t − 1))xi∑N
i=1 βiK(xi, z(t − 1)))

(2.20)

where z(0) = x and βi =
∑l

k=1 tkα
k
i . In this way an estimate z of the testing vector x is

obtained by reconstructing its projection into the principal component subspace.

For online implementation of KPCA, there are several factors to be considered. First, the

dimension of the feature space need to be determined. When the training data are large,

the computation time for computing the matrix K increases significantly (e.g. K ∈ R
N×N).
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Second, the number of retained eigenvectors after performing PCA in the hyperplane needs

to be determined. Typically, a cross-validation approach is used [90]. In addition, the

parameters di involved in the computation of the kernel matrix K need to be determined.

These parameters, for instance d3 for the Gaussian kernel, not only play an important role

in the nonlinear mapping, but also in the monitoring and diagnosis performance. For a

Gaussian kernel, typically d3 in Eq. (2.14) is set to be a product of an ad-hoc constant times

the number of variables used in the monitoring approach (e.g. 5m or 10m, where m is the

number or variables in the input space) [11, 90].

2.4 Independent Component Analysis

2.4.1 Motivation

The presence of unmeasured disturbances, correlations and noise hides the valuable fac-

tors that govern industrial processes. Revealing these hidden factors can be used to better

characterize a process. In PCA, this is achieved by projecting the input data onto a lower-

dimensional space that captures most of the variance and accounts for correlations among

variables. Since the objective of PCA is to decorrelate the scores (e.g. projections) and only

consider up to second-order statistics to characterize a process, it lacks the capability of rep-

resent processes where nonlinearities are prevalent (e.g. non-Gaussian distribution of input

variables). Independent component analysis (ICA) is a recently developed technique [97–102]

that by satisfying formal statistical independence and implicitly using higher-order statistics,

it decomposes the process data into linear combinations of statistically independent com-

ponents (ICs) that contain the main governing characteristics of the process. Applications

of ICA have been reported in several fields of engineering, some examples are signal pro-

cessing, machine vibration analysis, radio communication, infrared optical source separation

etc. [98, 103].
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2.4.2 The ICA Method

In ICA, xi zero-mean measured variables (i = 1, ...,m) are expressed as a linear com-

bination of sj statistically independent components (j = 1, ..., d ≤ m). Several algo-

rithms have been proposed to estimate independent components [104, 105]. In this work,

the algorithm developed in [102] is briefly reviewed. Let x = [x1, ..., xm]T denote a column

vector of observations of process variables, and s = [s1, ..., sd]
T a column vector of inde-

pendent components, to be related by a mixing matrix A ∈ R
m×d of coefficients aij (e.g.

xi = ai1s1 + ai2s2 + ... + aidsd) ∀ i, as follows

x = As (2.21)

The model of Eq. (2.21) is referred as ICA model [102]. In Eq. (2.21), both the mixing

matrix A and and independent components s must be estimated based on the vector of

observations x. The starting point of the estimation process is based on the assumption of

statistically independence of the the components si [102], i.e, the joint probability function

can be factorized in individual probability functions. For ICA to be possible, the independent

components are restricted to be non-Gaussian [102], since a joint probability function of

Gaussian, uncorrelated variables would not provide enough information to identify dominant

directions of the mixing matrix A. Assuming that d = m the mixing matrix A is square.

After the estimation of A, its inverse (W = A−1, the demixing matrix) can be computed,

and the independent components can be obtained by [102, 105]:

s = Wx (2.22)

Before ICA is applied, sphering (or whitening) is performed to remove correlation and cross-

correlation between the random input variables. Whitening can be achieved by performing

regular PCA on the correlation matrix R, where R = E
{
xxT

}
, with vector x zero mean and
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unit variance, and E {•} denotes the expected value. The decomposition of R by singular

value decomposition (SVD) is as follows

R = UΛUT (2.23)

where U is an orthogonal matrix of the eigenvectors corresponding to the diagonal matrix

Λ of eigenvalues of R. A whitening transformation is achieved by

z = Λ−1/2UTx (2.24)

where Λ−1/2 = diag(λ
−1/2
1 , ..., λ

−1/2
d ). After whitening, the mixing matrix A is transformed

to a new one B with better properties

z = Λ−1/2UTx = Λ−1/2UTAs = Bs (2.25)

where B is an orthogonal matrix (e.g. E
{
zzT
}

= BE
{
ssT
}
BT = BBT = I, E

{
ssT
}

=

I) [33, 102, 106]. Thus, the estimation problem is reduced from determining d2 parameters

of matrix A to d(d−1)
2

parameters of the orthogonal matrix B [102]. The estimates of s (e.g.

ŝ) are determined from Eq. (2.25) by

ŝ = BTz = BT Λ−1/2UTx (2.26)

The relationship of the demixing matrix W and B is obtained from Eq. (2.22) and Eq. (2.26)

W = BT Λ−1/2UT (2.27)

A robust and reliable way of determining the ICs is achieved through the use of the FastICA

algorithm [100–102, 105]. The key of the algorithm is to find a vector bi (e.g. a column of

B that maximizes non-Gaussianity of ŝi = (biz)). In [102], it is shown that a measure of
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non-Gaussianity is a direct indicator of statistical independence. A typical way of measuring

departures from Gaussianity is the use of the absolute value of the fourth-order cumulant or

kurtosis. As kurtosis is affected by outliers, other measures of non-Gaussianity have been

developed. Non-Gaussianity indicators based on the differential entropy such as negentropy

are normally utilized. The entropy of a random variable gives an indication of unpredictabil-

ity and lack of structure [102]. Thus Gaussian variables have the largest entropy among all

random variables of equal variance [102]. Negentropy J is defined as follows

J(y) = H(ygauss) − H(y) (2.28)

where H indicates the differential entropy, ygauss is a Gaussian random variable of the same

variance as y. The estimation of J is difficult to determine in practice. As a consequence,

approximations of J have been developed.

J(y) ≈ [E {G(y)} − E {G(v)}]2 (2.29)

where G is a non-quadratic function, y is assumed to be zero mean and unit variance, and v

is a Gaussian variable of zero mean and unit variance. To obtain robust approximations of

negentropy, the following contrast functions are suggested [102, 105]

G1(u) =
1

a1

log cosh(a1u) (2.30)

G2(u) = exp

(
−

a2u
2

2

)
(2.31)

where 1 ≤ a1 ≤ 2 and a2 ≈ 1. In this work, G1 is the contrast function selected as

indicator of non-Gaussianity for the FastICA algorithm. Based on this approximation,

the FastICA algorithm calculates the columns of matrix B, which allows the identifica-

tion of the corresponding ICs (e.g. Eq. (2.26)). The details of the algorithm can be found

25



in [100–102, 105]. A MatlabTM implementation of the FastICA algorithm is available at

http://www.cis.hut.fi/projects/ica/fastica/.

2.4.3 Fault Detection

The application of process monitoring based on ICA have been studied by several inves-

tigators [33, 103, 106–113]. In this work, the approach found in [106] is followed. For fault

detection, under the assumption that the number of variables (m) is equal to the number of

independent components (d), the demixing matrix W and estimates of independent compo-

nents Ŝ for normal operation are found by the FastICA algorithm. In addition, the matrices

B, Λ−1/2UT , and A are obtained from the whitening step. In ICA, the ordering of indepen-

dent components is not determined by the variance of the variables as in PCA [107]. Several

criteria exist to order the independent components. These include, extent of non-Gaussianity,

L∞ norm, Euclidean norm, and mean squared error of reconstruction [114–117]. In [106],

the Euclidean norm approach is selected to order the columns of the demixing matrix W

and to sort the ICs. In addition, a SCREE plot of the norm of the Euclidean norm of the

columns of W versus the number of IC is used to reduce the dimensionality of the problem,

i.e., select only the columns of W with the most dominant Euclidean norm. The selected

columns of W are assumed to have the greatest effect in the variation of the estimates of

the independent components (Ŝ). Thus the matrix W is partitioned into two, the dominant

part Wd (i.e. selected rows of W) and reduced part We (i.e., remaining columns of W).

Using the selected indices, the equivalent is done for matrix B to generate matrices Bd and

Be. For a new multivariate observation xnew, the new dominant and reduced independent

data vectors can be computed after the whitening transformation, i.e., ŝnew,d = Wdxnew and

ŝnew,e = Wexnew, respectively.

In [106], three different statistics for fault detection are defined

I2 = ŝT
new,dŝnew,d (2.32)
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I2
e = ŝT

new,eŝnew,e (2.33)

SPE = (xnew − x̂new)T (xnew − x̂new) (2.34)

where x̂ = (Λ−1/2UT )−1BdWdxnew. In Eq. (2.32), I2 gives an indication of the variability

observed in the dominant independent component subspace. I2
e in Eq. (2.33), accounts for

errors in the selection of the dominant part of the independent component subspace [106].

SPE in Eq. (2.34) accounts for the monitoring of the unmodeled part of the common cause

of variation in the input data. In [107], the thresholds for the different monitoring statistics

are determined based on a kernel density estimation to cope with the non-Gaussianity of the

ICs. For the performance comparisons in subsequent chapters and to provide a fair com-

parison of different methods, the thresholds are determined empirically using validation data.

2.4.4 Fault Diagnosis

For fault diagnosis (e.g. to reveal the variables that are most related to the fault),

Lee et al. [107] develop contribution plots for the different monitoring statistics, i.e., Equa-

tions (2.32) - (2.34). The variable contributions of xnew for I2, I2
e , and SPE are determined

as follows

xcd =
Q−1Bdŝnew,d

‖Q−1Bdŝnew,d‖
‖ŝnew,d‖ (2.35)

xce =
Q−1Beŝnew,e

‖Q−1Beŝnew,e‖
‖ŝnew,e‖ (2.36)

xc,spe = e = xnew − x̂new (2.37)

where Q = (Λ−1/2UT ). The contribution plots resulting from the application of Equa-

tions (2.35) - (2.37) can have negative and positive contributions. As with the contribution

plots of regular PCA, the magnitude of the contribution indicates what variable or group of

variables are most related to the fault.
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Chapter 3

Statistics Pattern Analysis: A Novel Process Monitoring Framework

In this section, the development of a novel process monitoring method is presented.

Statistics pattern analysis (SPA) is a new multivariate process monitoring method recently

developed [32, 59–61]. In this dissertation, the SPA framework properties for fault detection

and diagnosis are developed, and its application is illustrated.

3.1 Motivation

The SPA framework was originated to cope with the challenges in semiconductor man-

ufacturing [59], i.e., a batch process. Traditional methods for monitoring batch processes,

including multiway PCA (MPCA) and multiway PLS [6, 10, 28, 80, 118, 119], are faced with

the difficulty of handling the characteristics of batch data, such as unequal batch and/or step

length, unsynchronized or misaligned batch trajectory, and multi-modal batch trajectory dis-

tribution. These characteristics make traditional process monitoring methods to fail or need

additional preprocessing steps. These steps are usually done off-line and are difficult to au-

tomate [59]. Similar to continuous processes, batch process monitoring methods make use

of multivariate data analysis techniques to extract the correlation among different variables

and to reduce the dimensionality of the problem (e.g. MPCA). However, the characteristics

of certain processes, including the ones present in semiconductor manufacturing, make the

data to show significant deviations from a multivariate normal distribution. As discussed

previously, these characteristics make PCA or PLS monitoring performance to deteriorate.

In addition, including several preprocessing steps increases the difficulty for establishing and

maintaining these models. For example, in a high-mix semiconductor fabrication site, the
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number of models is in the range of several thousands to tens of thousands [59, 120]. This oc-

curs due to the diversity of products manufactured in semiconductor fabrication site, where

a single machine can produce different type of products. As a consequence, model building

and maintenance are much more labor intensive than in a typical chemical plant. In [59],

the negative effect of adding pre-processing steps is illustrated by comparing the monitoring

performance of traditional monitoring methods (e.g. MPCA and MPLS), as a function of

the pre-processing steps. The study confirms that traditional methods tend to deteriorate

their effectiveness as the number of pre-processing steps increase.

3.2 The SPA Method

Unlike traditional process monitoring methods that monitor the different process vari-

ables to perform fault detection and diagnosis, the SPA-based monitoring makes use of the

“statistics” of the process variables in the batch to perform fault detection and diagnosis. In

this way, the method not only eliminates the need of all data preprocessing steps in monitor-

ing batch processes, but also provides superior performance [59]. Figure 3.1 and 3.2 illustrate

the steps involved for batch process monitoring for MPCA (e.g. traditional method) and

SPA, respectively. In SPA, a set of statistics patterns (SPs), which capture the characteris-

tics of the process variables in a batch, such as mean, and variance-covariance are used as an

input to perform fault detection. In SPA, a statistic pattern (SP) is defined as a collection of

different statistics calculated from a batch. Since batches are processed in the same equip-

ment, the governing physical/chemical mechanisms, such as mass transport, kinetics and

thermodynamics are the same. The SPs of “in-control” batches will follow a certain pattern,

whereas abnormal SPs would exhibit some deviation from the normal behavior. As illus-

trated in Figure 3.2, after assembling a matrix of SPs, the second step, called dissimilarity

quantification step, is performed. In this step, dissimilarities among SPs are measured and

confidence limits are determined to distinguish between abnormal and normal batches. For

a new batch, if its dissimilarity index is below the confidence limit, it is considered normal;
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Figure 3.1: Illustration of steps involved in multivay PCA (MPCA). (a) Original batch
records with unequal length; (b) 3-dimensional array after trajectory alignment and mean
shifting; (c) Batch information for MPCA after unfolding (e.g. a matrix).

otherwise, it is categorized as faulty. Continuous rather than batch processes are common in

chemical and petrochemical industries. As a consequence, the SPA framework was extended

to monitor continuous processes [32, 32, 60, 61]. For a continuous process, the definition of

statistic pattern (SP) varies. A SP for a continuous process is a collection of various statis-

tics calculated from a window (or segment) of the process variables [32]. These statistics

capture the characteristics of each individual variable (such as mean, variance, kurtosis and

skewness), the interactions among different variables (such as correlation), as well as process

dynamics (such as auto-correlation and cross-correlation). After the SPs are computed from

the training data, the dissimilarities among the training SPs are quantified to determine an

upper control limit of the detection index [32]. Figure 3.3 illustrates the two steps in SPA

for monitoring continuous processes.

The following sections provide a brief summary of the characteristics and elements consti-

tuting the steps involved in SPA-based monitoring.

3.3 Fault Detection

In this section, the main characteristics of the two steps for fault detection in SPA are

described.
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Figure 3.2: Schematic of the SPA framework for fault detection in batch processes. (a)
Original batch records with unequal length; (b) SP generation (e.g. various batch statistics);
(c) fault detection by dissimilarity quantification.

Figure 3.3: Schematic of the window-based SPA method for monitoring continuous processes:
(a) original process data; (b) computed statistics patterns; (c) fault detection by dissimilarity
quantification. A block or a window of process variables shaded in (a) is used to generate
an SP shaded in (b). SPs are used to generate a point of dissimilarity measure (e.g. shaded
in (c)) to perform fault detection.

3.3.1 Statistic patterns generation

Let the matrix X represent the collection of information of process variables (e.g. from

a window for continuous processes or from a batch for batch processes), as shown below:

X = [x1 x2 x3 · · · xm]
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X =





x1(k − w + 1) x2(k − w + 1) x3(k − w + 1) · · · xm(k − w + 1)

x1(k − w + 2) x2(k − w + 2) x3(k − w + 2) · · · xm(k − w + 2)

...
...

...
. . .

...

x1(k) x2(k) x3(k) · · · xm(k)





(3.1)

where w represents the window width for continuous processes or available samples in a

batch, k is the sample index of the last measurement (most recent or last sample in a batch)

in the window (or the batch). As previously discussed, a SP consists of different statistics

calculated from the group of data. Generally, statistics can be lumped in three different

categories:

S = [ µ | Σ | Ξ ] (3.2)

µ in Equation (3.2) denotes the first order statistics, i.e., variable means, whose elements

are calculated from the data contained in the window (or batch). Σ in Equation (3.2) de-

notes the second-order statistics, which include variance, correlation, auto-correlation, and

cross-correlation of different variables. Ξ in Equation (3.2) denotes the higher-order statis-

tics, including skewness, kurtosis, and other higher-order moments. Higher-order statistics

(HOS) measure the extent of nonlinearity and quantify the non-Gaussianity of the prob-

ability distribution of the process variables [32, 121]. Specifically, skewness measures the

asymmetry and kurtosis measures the “peakedness” of the process variable distribution.

HOS’ for variables that follow a normal distribution have a value of zero. After matrix S

has been formed, the final SP is generated by vectorizing S into a row vector. Note that

by the symmetry of groups of statistics such as covariance (e.g. symmetric matrix), the

dimension of the SP can be reduced. Once the training SPs have been lumped into a matrix,

the dissimilarity quantification step can be performed.
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3.3.2 Dissimilarity Quantification

After the SP matrix is obtained for the training data, a modeling stage is followed.

This model is used to perform a quantification of dissimilarities of training and testing

SPs. Dissimilarities can be quantified by measuring distances or angles between objects.

In the case of PCA, distance-based metrics such as T 2 and SPE are used. In SPA, PCA

is chosen to craft a model relating the different SPs in the training data (e.g. normal

operating data). Note that the framework is not limited to the use of PCA as this method

is just one way to determine dissimilarities among different SPs. [122]. The major difference

between the traditional PCA-based and the proposed SPA-based fault detection methods

is that PCA monitors the process variables, while SPA monitors various statistics of the

process variables. In other words, in PCA singular value decomposition (SVD) is applied

to the original process variables to build the model for normal operation, and the new

measurements of the process variables are projected onto the PCA model to perform fault

detection; while in SPA, SVD is applied to various statistics of the process variables to

build the model, and the statistics calculated using the new measurements are projected

onto the model to perform fault detection. In this way, different statistics that capture

the different characteristics of the process can be selected to build the model for normal

process operation, and various higher-order statistics can be utilized explicitly. As PCA is

used to craft a model for normal operation, fault detection indices such as T 2 and SPE are

also applicable. To distinguish the PCA-based indices from the SPA-based indices, in this

work, Dp and Dr indices are defined to represent the T 2 and SPE indices monitoring the

principal component subspace and residual subspace, respectively. As in PCA, the process is

considered within the normal operating region if both dissimilarities indices are below their

thresholds calculated at the α significance level. Before modeling, the SPs from training and

testing data have to be normalized (zero mean and unit variance), to avoid the influence in

the model of differences in scaling (i.e. units of measurement) and operating point differences

(i.e. different mean values) among variables. In addition, the thresholds for Dp and Dr can
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be obtained using analytical expressions based on normality assumptions [8, 15], or based

on an empirical method using the training data [123, 124].

3.3.3 Why SPA works?

In SPA, PCA is applied to quantify the dissimilarities among statistic patterns (SPs). As

a result, the fundamental assumptions of PCA have to be satisfied, i.e., multivariate Gaussian

distribution and independent samples. The major claim in SPA is that although the process

variables may show deviations from a multivariate Gaussian distribution, the statistics of

these process variables satisfy a multivariate Gaussian distribution much better than the

process variables, and their projections in the principal component subspace, i.e., the scores.

In other words, the SPs follow a multivariate Gaussian distribution asymptotically. This

enables SPA to provide superior performance compared to applying PCA directly to the

input data [59]. This fact can be proved by the classical central limit theorem (CLT), which

states that “whatever the distribution of the independent variables ξv - subject to certain

very general conditions - the sum ξ = ξ1 + · · ·+ ξn is asymptotically Gaussian (m, σ) [125],

where

m = m1 + m2 + · · · + mn (3.3)

σ2 = σ2
1 + σ2

2 + · · · + σ2
n (3.4)

where mv and σv are the mean and standard deviation of σv”. Among the many extensions

of the classical CLT, extensions relevant to this work are provided in [126, 127], where

the requirements of the independency among different random variables is relaxed. In the

following section, the SPA framework and its properties are illustrated to elucidate the

previous discussions.
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3.4 Illustrative Example

In this section an illustrative example of the application of SPA is presented. As dis-

cussed previously, the major difference and advantage of SPA is the use of the statistics of

the process variables rather than the process variables themselves for process monitoring.

The success of SPA is based from the fact that although the process variables may have

a non-Gaussian distribution, due to the central limit theorem (CLT), the statistics of the

process variables follow a Gaussian distribution asymptotically. This feature enables the

dissimilarity quantification based on PCA to truly capture the main characteristics of the

process variables, thus providing a better monitoring performance. In this section the appli-

cation and success of SPA is elucidated by using a simple illustrative example.

In this example, the process consist of two variables behaving according to the following

nonlinear relationship

x2 = x2
1 + e (3.5)

where x1 is a random variable taken from a uniform distribution with values between

[−0.5 0.5] and e ∈ N(0, 0.022). A normal data set consisting of 15, 000 samples is simulated,

10, 000 samples are used for training, and the rest of the samples are used for validation.

Two data sets of 5, 000 samples each, corresponding to two groups of faults (A and B) are

simulated as follows:

Fault A

x1 = e1 (3.6)

x2 = 0.15 + e2 (3.7)

Fault B

x1 = −0.6 + e1a
(3.8)

x2 = 0.1 + e2a
(3.9)
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Figure 3.4: Scatter plot of the process variables for the nonlinear illustrative example

where e1 and e1a
are two different white noise realizations taken from a normal distribution

with variance σ2 = 0.022. Similarly, e2 and e2a
are two different white noise realizations

with variance σ2 = 0.012. For each fault data set, the first 100 samples are normal samples,

and the remaining samples (4, 900) are affected by the fault. Figure 3.4 shows the scatter

plot of some samples taken from the different data sets. It is clear from Figure 3.4 that the

two faults do not correspond to the behavior of the normal operating data. For comparison,

the PCA and SPA methods are used to detect the faults A and B. For PCA, two principal

components are selected to capture the variability of the process. This causes only the

T 2 index to be applicable for fault detection (e.g. to monitor the principal component

subspace). For the SPA method, a nonoverlapping window width of 50 samples is used

for training and validating. For testing, (i.e., the faulty data) after the first window is

assembled, the window is shifted by one sample to reduce the detection delay. Since this

process is static and there is not a strong correlation between x1 and x2, no correlation
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Figure 3.5: Scores of normal and faulty samples for PCA with the T 2 threshold calculated
at the 99% confidence level (dashed-line).

coefficients, auto- or cross- correlation coefficients are used. The statistics that are selected

to characterize the process are mean, standard deviation, skewness, and kurtosis (i.e. 8

statistics). Based on cross-validation, four principal components are selected to capture the

main characteristics of the process. For PCA, Figure 3.5 shows that the scores corresponding

to the faults A and B are located well within the normal operation region defined by the T 2

index. Therefore it is expected that this fault cannot be detected by the T 2 index. This is

illustrated in Figure 3.6, where the T 2 indices fail to detect both faults. The PCA method

failure to detect these faults occurs as a result of the non-Gaussian multivariate distribution

of the process data, which is caused by their nonlinear relationship. This is illustrated in

Figure 3.7, where the multivariate distribution of x1 and x2 is evidently non-Gaussian. The

nonlinearity is then inherited by the process variables projected onto the model defined

by the principal directions. As previously discussed, due to the central limit theorem, the

statistics of the process variables follow a normal distribution asymptotically. Figure 3.8

shows the multivariate distribution of pairs of different statistics (e.g. mean x1 - mean

x2). Both, the density histogram and the intensity map of the different pairs of statistics
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Figure 3.6: T 2 of testing data. (a) Fault A; (b) Fault B. The dashed line indicates the
threshold on the T 2 at the 99% confidence level. The dashed-dotted line indicates the fault
onset.

corroborate the central limit theorem, with all of the pairs showing a multivariate distribution

very close to a pure multivariate Gaussian distribution. It is important to point out that

as the number of SPs increases (i.e., the number of samples), the multivariate distribution

of statistics approach a multivariate Gaussian distribution asymptotically, i.e., they would

eventually completely resemble a multivariate Gaussian distribution. By using the SP matrix

for monitoring instead of the matrix of process variables for this nonlinear example, the

main requirements of PCA, i.e., multivariate Gaussian distribution and independent scores

are satisfied. As a consequence, the scores obtained by applying PCA to the SP matrix for

normal and faulty data (Figure 3.9) observe a defined separation among each other, with the

scores corresponding to faulty data located outside of the normal operating region defined

by the Dp threshold. Consequently, both faults are expected to be detected by SPA. This

illustrated in Figure 3.10, where both faults are detected by the Dp and Dr indexes in SPA.

3.5 Fault Diagnosis

After a fault is detected by one or more fault detection indices exceeding their control

limits, it is desirable to perform fault diagnosis to identify the root cause of the fault. For
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Figure 3.7: Density histogram and intensity map for the multivariate distribution of x1 and
x2.

PCA-based fault detection methods, contribution plot is the most commonly applied fault

diagnosis method, which is based on the assumption that the variables with the largest

contributions to the fault detection index are most likely the faulty variables. Because in

the SPA-based fault detection method, PCA is applied to quantify the dissimilarity among

different statistics patterns, here contribution plots for Dp and Dr are constructed to perform

fault diagnosis.

3.5.1 Contributions to Dp and Dr

Let X denote the SP matrix with n samples (rows) and m statistics (columns). Af-

ter auto-scaling to zero mean and unit variance, the matrix X is decomposed as in Equa-

tion (2.1). For fault detection on a new multivariate observation x, two indices are used: Dp

and Dr as defined below

Dp = (xTPΛPTx) (3.10)

Dr = (‖x̃‖2 = (xT P̃P̃Tx) (3.11)
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(a) (b)

(c) (d)

Figure 3.8: Density histogram intensity map for different pairs of statistics for normal oper-
ating data. (a) Mean of x1 and mean of x2; (b) Std. deviation of x1 and Std. deviation of
x2; (c) Skewness of x1 and Skewness of x2; (c) Kurtosis of x1 and Kurtosis of x2.

where Λ is the diagonal matrix of the l largest eigenvalues of XXT , P̃ is the residual loading

matrix. The Dp statistic is a measure of the process variation in the principal component

subspace, while the Dr statistic indicates how well each SP conforms with the model. The

contribution of the ith statistics to Dp and Dr are the following:

Cp
i = (ξT

i (PΛPT )1/2x)2 (3.12)

Cr
i = (ξT

i P̃P̃Tx)2 (3.13)

where ξT
i is the ith column of the m-dimensional identity matrix.

40



−10 −5 0 5 10
−15

−10

−5

0

5

10

15

PC 1

P
C

 2

 

 

Training
Fault A
Fault B

T2 threshold

Figure 3.9: Scores of normal and faulty samples for SPA with the Dp threshold calculated
at the 99% confidence level (dashed-line).

3.5.2 Hierarchical Contribution Approach

The contributions can be determined based on a single point, or based on a group of

points. A visual inspection of the contributions highlights the variables that are more related

to the particular fault. In SPA, a hierarchical contribution approach is utilized. First,

the major group of statistics contributing to the fault are identified (e.g. mean, variance

etc.). Second, the contribution is breakdown into single elements, i.e., governing statistic of

different variables. In this way, not only SPA can isolate the variable or variables that are

most related to the fault, but it yields an indication of the nature of the fault (e.g. a fault

due to mean or standard deviation change). This unique feature makes contribution plots

based on SPA to be a more effective and informative way to tackle problems related to the

roots of faults online, e.g., instrument drift, noise, bias etc.
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Figure 3.10: Dp and Dr indices of testing data. (a) Fault A; (b) Fault B. The dashed line
indicates the threshold on the Dp and Dr indices calculated at the 99% confidence level. The
dashed-dotted line indicates the fault onset.

3.6 Conclusion and Discussion

The idea of generating higher order statistics (HOS) for fault detection is not new,

and other existent methods such as artificial neural networks, kernel principal component

analysis, and independent component analysis all make use of HOS’ implicitly. However,

Statistics Pattern Analysis (SPA) is the first method available that not only utilizes regular

statistics and HOS to better characterize the process, but it is the first method to monitor

these statistics “explicitly”. As discussed in this chapter, SPA not only can be applied to

overcome the problems of manufacturing sites where mainly batch processes are utilized,

but it also can be applied to continuous processes, which are common in petrochemical and

chemical industries. As a result of the central limit theorem (CLT), the statistic patterns

(SPs) are guaranteed to approach a Gaussian distribution asymptotically, or at least comply

with a Gaussian distribution much better than the original variables due to the averaging

effect. The better properties offered by the SPs enhances the capabilities of the already

powerful PCA method at the dissimilarity quantification step. In addition, as the statistics

of the process variables are more likely to capture the main characteristics of faults, the

hierarchical contribution plot approach for fault detection is able not only to isolate the
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possible root of the fault, but to indicate the nature of the fault (e.g. mean or variance

change), which is a huge advantage for online implementation. The material presented in

this chapter highlights the premise of the SPA framework for process monitoring, especially

for industrial processes where nonlinearities are prevalent. In the following chapter, more

of the properties of SPA applied for fault detection and diagnosis will be studied, and its

performance evaluated by the application to different case studies.
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Chapter 4

Comprehensive Comparison of Linear and Nonlinear Monitoring Methods

4.1 Introduction

In this chapter, the performance of the SPA-based fault detection and diagnosis method

is compared with some representative linear and nonlinear multivariate process monitoring

methods using two case studies.

As discussed previously, the increasing demand for safer and more reliable systems in mod-

ern process operations leads to the rapid development of process monitoring techniques. By

promptly detecting process upsets, equipment malfunctions, and other special events, online

process monitoring not only plays an important role in ensuring process safety, but also

improves process efficiency and product quality. Generally speaking, there are two main

categories in process monitoring methods: univariate methods and multivariate methods. In

univariate methods such as Shewhart, cumulative sum and exponentially weighted moving

average charts [1, 3, 4], each variable (usually product quality) is monitored separately to

identify the special causes of variation (i.e., faults) from natural or common causes of varia-

tion. In multivariate methods such as the principal component analysis (PCA) and partial

least squares (PLS) methods [5, 6, 8, 9, 16, 26, 28], multiple variables are monitored together

to detect faults that violate normal process variable correlations.

With a large amount of variables measured and stored automatically by distributed control

systems (DCS), multivariate statistical monitoring methods have become increasingly com-

mon in process industry. Specifically, PCA-based process monitoring methods have gained

wide application in chemical and petrochemical industries. PCA-based monitoring meth-

ods can easily handle high dimensional, noisy and highly correlated data generated from

industrial processes, and provide superior performance compared to univariate methods.
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In addition, the PCA-based process monitoring methods are attractive because they only

require a good historical data set of normal operation, which are easily available for the

computer-controlled industrial processes.

Although PCA-based monitoring methods have been very successful in many applications,

there are cases where they do not perform well. Two of the possible reasons are the following.

First, PCA only considers the mean and variance-covariance of the process data, and lacks

the capability of providing higher-order representation for non-Gaussian data. Second, the

control limits of Hotelling’s T 2 and the squared prediction error (SPE) charts are developed

based on the assumption that the latent variables follow a multivariate Gaussian distribu-

tion. When the latent variables are non-Gaussian distributed due to the process nonlinearity

or other reasons, using Hotelling’s T 2 and SPE may be misleading [33, 128].

To obtain better monitoring performance for the processes where PCA does not work well,

several alternative approaches have been developed. Luo et al. [84] apply discrete wavelet

analysis (DWA) to decompose the process measurements and then apply PCA to the wavelet

coefficients at different detail levels to monitor the process; Kano et al. [129] define a dis-

similarity index to monitor the distribution of the process time series data and to detect

changes for the correlations among process variables that cannot be detected by Hotelling’s

T 2 and SPE charts; more recently, several multivariate monitoring methods based on inde-

pendent component analysis (ICA) have been proposed, where ICA decomposes the process

data in to linear combinations of statistically independent components [11, 33, 103]. Among

these approaches, Kano’s approach is a second-order method similar to PCA, while DW-

and ICA-based fault detection methods involve higher-order statistics implicitly.

In Chapter 2, a new multivariate statistical process monitoring framework, named Statistics

Pattern Analysis (SPA) [32, 59] is introduced. The major difference between the PCA-

based and SPA-based fault detection methods is that PCA monitors process variables, while

SPA monitors the statistics of the process variables. In other words, SPA examines the

variance-covariance of the process variables statistics (e.g. mean, variance, autocorrelation,
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cross-correlation etc.) to perform fault detection. In SPA, different statistics that capture

the different characteristics of the process can be selected to build the model for normal

process operation, and various higher-order statistics can be utilized explicitly. Fault detec-

tion methods based on the SPA framework have been shown to provide superior monitoring

performance for several batch and continuous processes compared to the PCA and dynamic

PCA based methods [32, 59].

In this chapter, the potential of the SPA framework for fault diagnosis of continuous processes

is explored. Specifically, the variable contributions from the fault detection indices gener-

ated by SPA are derived; then contribution plots are constructed to perform fault diagnosis.

Because the SPA based fault detection method for continuous processes is a window-based

approach, the SPA based contribution plot is an averaged contribution plot for all samples in

the window. In the first case of study, the SPA framework performance is compared to linear

monitoring methods such as PCA and DPCA using a nonlinear quadruple-tank system. In

addition, as the SPA-based monitoring for continuous processes is a window-based approach,

and there might be cases where samples from process variables are limited, in this chapter,

the effect of window overlapping for calculating the SPs is presented.

In the second case study, the challenging Tennessee Eastman Process (TEP) [130] is used to

demonstrate the performance of the SPA-based fault detection and diagnosis method, which

is compared with linear process monitoring methods such as PCA, dynamic PCA (DPCA),

together with nonlinear process monitoring methods such as kernel PCA (KPCA), and inde-

pendent component analysis (ICA). In this case study, the main characteristics of SPA are

discussed. In addition, a comprehensive analysis of the important aspects for fault detection

and diagnosis are elucidated and discussed.
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4.2 Quadruple Tank

In this section, a simulated quadruple-tank process is used to demonstrate the perfor-

mance of the proposed SPA method and investigate its properties. In addition, the moni-

toring performance of SPA is compared with the traditional PCA and DPCA methods.

The quadruple-tank process was originally developed by Johansson [131] as a novel multi-

variate laboratory process. This process consists of four interconnected water tanks, two

pumps, and associated valves. A schematic diagram of the process is shown in Figure 4.1.

The inputs are the voltages supplied to the pumps, v1 and v2, and the outputs are the water

levels h1 − h4. The flow to each tank is adjusted using the associated valves γ1 and γ2. A

nonlinear model is derived based on mass balances and Bernoulli’s law.

dh1

dt
= −

a1

A1

√
2gh1 +

a3

A1

√
2gh3 +

γ1κ1

A1

v1 (4.1)

dh2

dt
= −

a2

A2

√
2gh2 +

a4

A2

√
2gh4 +

γ2κ2

A2

v2 (4.2)

dh3

dt
= −

a3

A3

√
2gh3 +

(1 − γ2) κ2

A3

v2 (4.3)

dh4

dt
= −

a4

A4

√
2gh4 +

(1 − γ1) κ1

A4

v1 (4.4)

(4.5)

For tank i, Ai is the cross-section of the tank, ai is the cross section of the outlet hole, and

hi is the water level. The voltage applied to pump i is vi and the corresponding flow is

κivi. The parameters γ1 and γ2 ∈ (0, 1) are determined from how the valves are set before

an experiment. The water flow rate to tank 1 (i.e., f1) is γ1κ1v1 and to tank 4 (i.e., f4)

is (1 − γ1)κ1v1. The flow rates for tanks 2 − 3 are obtained similarly. The acceleration of

gravity is denoted by g. The parameter values of this process are given in Table 4.1.
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Figure 4.1: Schematic diagram of the quadruple-tank process

Table 4.1: Simulation parameters for the quadruple tank case study*

Parameter Units Value
A1; A3 cm2 28
A2; A4 cm2 32
a1; a3 cm2 0.0071
a2; a4 cm2 0.0057
κ1; κ2 cm3V −1s−1 3.33

g cm/s2 9.81
*After Johansson [131]

4.2.1 Simulation Settings

The data are generated by Eqs. (4.1) - (4.4) where γi and vi are corrupted by inde-

pendently Gaussian white noise with zero mean and standard deviation of 0.01 and 0.05,

respectively, which are about 1− 2% of their upper limit or steady-state value. Measured hi

is corrupted by Gaussian distributed white noise with zero mean and standard deviation of

0.1 and measured γi and vi contain the same level of noise as the input γi and vi, respectively.

Three normal data sets are generated with different random seeds with a sampling frequency
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of 10 seconds. They are denoted as training set, validation set and testing set, respectively.

The training set contains 240 hours of normal data and is used to build the process model;

the validation set contains 15 hours of normal data and is used to determine the thresholds of

the monitoring indexes, i.e., Dp and Dr for SPA, T 2 and SPE for PCA and DPCA. Finally,

the testing set contains 15 hours of normal data, and is used to test the false alarm rate of

different monitoring methods. Two faults, a sensor fault and a tank leakage fault are exam-

ined in this work. For the sensor fault, a bias of ∆h4 = 0.3 is added to sensor measurement

h4. Figure 4.2 shows the time series data of the process variables, water levels hi and flow

rates fi (i = 1, ..., 4) corresponding to the sensor fault in h4. It is clear from Figure 4.2 that

this fault is very difficult to detect by the naked eye due to its small magnitude. For the
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Figure 4.2: Time series of process variables for the sensor fault in h4

leakage fault, a leakage in tank 1 is introduced by assuming that there is a small hole at
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the bottom of the tank with cross-section aleak = 0.005 cm2. The mass balance for tank 1

changes from Eqn. (4.1) to the following.

dh1

dt
= −

a1

A1

√
2gh1 +

a3

A1

√
2gh3 +

γ1κ1

A1

v1 −
aleak

A1

√
2gh1 (4.6)

where the last term corresponds to the leakage of tank 1. Mass balance equations for the

other tanks do not change. Figure 4.3 shows the time series data of the process variables,

water levels hi and flow rates fi (i = 1, ..., 4) corresponding to the the leakage in tank 1.

For both faults we start the simulation with normal operation, and then introduce the fault
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Figure 4.3: Time series of process variables for the leakage fault in h1

after 0.5 hours. Totally, 15 hours of data are generated.
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4.3 The Effect of Window Overlapping

One of the major requirements of the application of SPA is the availability of enough

data in order to have enough training SPs compared to the number of statistics included to

characterized the process. For continuous processes, if the data are limited, the number of

windows available to calculate the different statistics is reduced, and the determination of

the different coefficients of the SPA model might be affected. To circumvent this problem,

a window overlapping approach is utilized, i.e., the window to calculate the statistics is

shifted by a certain percentage of the total size of the window. Depending of the amount of

overlapping, the number of SPs increases, thus the ratio of number of statistics to number

of samples available decreases, and the determination of the different coefficients relating

the different statistics is more reliable. Although valid, following this approach rises one

question, what is the effect of using a large window overlapping, considering that one of the

major assumptions of PCA is the availability of independent samples, and a large window

overlapping could violate this assumption?

In this work, to test the effect of window overlapping, two scenarios are compared: in case I,

3 hours of training data are used to build the model, and in case II, all 240 hours of training

data are used to build the model. For all three methods, the number of PC’s is determined

through cross-validation. The thresholds are determined through empirical method using

validation data. Specifically, a 99% confidence upper control limit is determined as the

index value below which 99% of the calibration samples are located. Standard contribution

plots [34] are used for fault diagnosis. To reduce the effect of process measurement noise

on the contribution plot, the average contribution plot from 100 samples is examined to

evaluate the fault diagnosis performance of different methods.

4.3.1 Fault 1: The Sensor Bias

PCA, DPCA and SPA are applied to perform fault detection. The model settings for all

three methods are presented in Table 4.2. For SPA method, the window width to calculate
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Table 4.2: Model settings for the quadruple tank case study

Method Variables PC’s Lags Window Width Window Overlap

Case I
PCA 8 4 – – –

DPCA 24 6 2 – –
SPA 18 11 2 125 60%

Case II
PCA 8 4 – – –

DPCA 24 6 2 – –
SPA 18 9 2 125 0%

the SPs is chosen to be 125 samples. Due to the limited training samples in case I, 60% of

overlap is allowed between two adjacent windows. In case II, with enough training samples,

the window overlap is removed to eliminate any correlation among different training SPs,

which is expected to improve process monitoring performance. Figure 4.4 presents the fault

detection results from different methods. Because detection results from PCA and DPCA

are similar for case I and case II, only results from case II are presented. For SPA, detection

results for both cases are presented because there are some noticeable differences between

them. The summary of fault detection rates, detection delays and false alarms rates for both

cases is presented in Table 4.3.

Table 4.3: Fault detection for bias in h4

PCA PCA SPA
T 2 SPE T 2 SPE Dp Dr

Case I
Detection rate (%) 1.6 2.6 1.1 3.5 98.5 99.8

False alarm rate (%) 1.4 1.0 1.1 0.9 10.0 6.7
Detection delay (min.) 16.5 0.17 16.3 0.17 13.8 6.16

Case II
Detection rate (%) 1.5 2.6 1.3 4.7 98.1 98.6

False alarm rate (%) 0.7 0.7 1.3 1.1 0.5 2.4
Detection delay (min.) 16.7 0.5 16.3 0.17 15.8 12.3

Table 4.3 indicates that the sensor bias is very difficult to detect by PCA and DPCA

methods, with detection rates lower than 5% for both cases. This is mainly due to the

relatively small bias in the level sensor h4. On the other hand, this fault can be easily

52



(a) (b)

(c) (d)

Figure 4.4: Fault detection performance. (a) PCA case II, (b) DPCA case II, (c) SPA case
I, (d) SPA case II.

detected by SPA for both cases. However, for case I, SPA has a higher false alarm rate

(10% for Dp and 6.7% for Dr). This is because window overlapping in training data is

implemented due to the limited training samples. The overlapping causes the training SPs

no longer be independent from each other; therefore the model may not adequately capture

the process characteristics, which results in higher false alarms rate. In case II, when more

SPs are included to craft the model and no window overlapping is present, not only the

detection rate is high, but the number of false alarms reduces significantly. The effect of

highly correlated SPs and their influence in the increment of false alarms rate is illustrated

in Figure 4.5. In Figure 4.5, the scores of the first two principal components of highly

correlated and uncorrelated SPs for normal training and testing are shown. As observed

in Figure 4.5(a), the scores of the normal training data cannot fully describe the normal
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operating region. This causes the scores of normal testing data to form a cluster that

occupies a different region in the plane defined by the first two principal components. This

occurs as a consequence of the high overlapping of windows for calculating the SPs (e.g.

95%), which causes an increase in the false alarm rate. In contrast, Figure 4.5(b) show that

the scores of normal operating data, where no overlapping is used to calculate the statistics

of the process variables form an ellipse that describes better the normal operating region.

This causes the scores for normal testing data to be well within that region. As a result, the

percentage of false alarm rates is reduced to the established significance level, as verified in

in the results presented in Table 4.3. Figure 4.6 compares the monitoring results of SPA on

−20 −15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

 

 

PC1

P
C

2

Training
Testing

T2 threshold

(a)

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

 

 

PC1

P
C

2

Training
Testing

T2 threshold

(b)

Figure 4.5: Score plot of the first two principal components for the SPA method. (a)
Highly correlated SPs (95% window overlapping); (b) Uncorrelated SPs (i.e., without window
overlapping). The dashed-line indicates the control limit of the Hotelling’s T 2 calculated at
the 99% confidencel level.

the testing set. Clearly, in case II with independent training samples, the SPA model is able

to capture the process characteristics adequately, and the false alarms rate is compatible

with the confidence limits (99%) that is used to determine the threshold. Note that, in order

to show the details, only segments of the process data are plotted for each method.

Contribution plots are generated to diagnose the fault for the three different methods

for case II. The average contribution plots for the three methods are presented in Figure 4.7.
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Figures 4.7(a) and 4.7(b) show the contribution based on PCA-SPE and PCA-T 2, respec-

tively. PCA is able to identify h4 as the root cause of the fault. However, the other level

measurements also show significant contribution to the fault, which makes pinpointing the

root cause of the fault difficult. On the other hand, DPCA in Figure 4.7(c) shows that is

able to clearly identify the fault by SPE. However it fails to correctly identify the fault by

T 2, as shown in Figure 4.7(d). For SPA, Figures 4.7(e) and 4.7(f) show that both indexes

(i.e. Dr and Dp) are able to clearly identify the root cause of the fault (e.g. a mean shift of

level h4).

4.3.2 Fault 2: Leakage in Tank 1

The model settings for fault detection are the same as for the previous fault. Table 4.4

summarizes the fault detection rates and detection delays for each case. Figure 4.8 shows

the detection details for different methods. For this fault, both PCA and DPCA are able

to detect the fault, with PCA showing detection rates ranging from 60% − 73% and DPCA

being able to detect the fault almost entirely by SPE index. The SPA method was able to

detect the fault successfully with detection rates close to 100% for both cases. The average

SPE contribution plots for the three methods are presented in Figure 4.9. Figures 4.9(a)

and 4.9(b) display the contribution based on PCA-SPE and PCA-T 2, respectively. PCA is

able to identify h1 as the root cause of the fault in both indices. However, h3 is also identified

(a) (b)

Figure 4.6: Dp and Dr indexes for normal testing data. (a) SPA case II, (b) SPA case II.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Contribution plots based on (a) PCA SPE; (b) PCA T 2; (c) DPCA SPE;
(d) DPCA T 2; (e) SPA Dr; (f) SPA Dp for case II with bias in h4. Where hi and hi − Li
denote the mean of hi and a lagged measurement of hi, respectively.

as one major contributor to the fault in the contribution to SPE which could lead to more

difficult diagnosis. On the other hand, DPCA and SPA in Figures 4.9(c); 4.9(d), 4.9(e), 4.9(f),

indicate that both methods are able to clearly diagnose the fault by identifying a mean shift

of level h1 for SPA (e.g. h1) and a fault in level h1 for DPCA. However, the diagnosis of
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Table 4.4: Fault detection for leakage in tank 1

PCA PCA SPA
T 2 SPE T 2 SPE Dp Dr

Case I
Detection rate (%) 60.6 72.9 48.4 99.7 99.8 99.8

Detection delay (min.) 0.17 1.3 0.17 0.33 2.3 2.0

Case II
Detection rate (%) 49.2 75.3 16.0 99.0 99.7 99.8

Detection delay (min.) 1.3 1.3 4.5 0.17 2.5 1.7

(a) (b)

(c) (d)

Figure 4.8: Fault detection performance. (a) PCA case II, (b) DPCA case II, (c) SPA case
I, (d) SPA case II.

the nature of the fault is straightforward for SPA since the contribution plot of the fault

indicates that an operating point shift in h1 has occurred.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Contribution plots based on (a) PCA SPE; (b) PCA T 2; (c) DPCA SPE;
(d) DPCA T 2; (e) SPA Dr; (f) SPA Dp for case II with bias in h4. Where hi and hi − Li
denote the mean of hi and a lagged measurement of hi, respectively.
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4.4 Tennessee Eastman Process

The TEP process simulator has been widely used by the process monitoring community

as a realistic example to compare various monitoring and control approaches [29, 124, 129].

The process consists of five major unit operations: a reactor, a product condenser, a vapor-

liquid separator, a recycle compressor, and a product stripper. Four reactants A,C,D and E

plus the inert B are fed to the reactor to generate products G and H, as well as byproduct

F through two exothermic reactions. Figure 4.10 shows a process flow diagram of the TEP.

The simulator was originally developed by Downs and Vogel [130] and different control

strategies were implemented in different modified versions [132–135]. In this work, Ricker’s

simulator is used to generate normal and faulty data. The simulator is able to simulate

normal process operation together with 20 faulty conditions. Table 4.5 shows a list of the

20 process disturbances and their type.

Figure 4.10: Flow diagram of the Tennessee Eastman processes
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Table 4.5: Disturbances in the TEP

no. Description Type
1 A/C feed ratio, B composition constant (stream 4) Step
2 B composition, A/C ratio constant (stream 4) Step
3 D feed temperature (stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss (stream 1) Step
7 C header pressure loss-reduced availability (stream 4) Step
8 A,B,C feed composition (stream 4) Random variation
9 D feed temperature (stream 2) Random variation
10 C feed temperature (stream 4) Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking

16-20 Unknown Unknown

4.4.1 Simulation Settings

Following [133], the data are collected at a sampling interval of 3 min. The process data

include 11 manipulated variables, 22 continuous process measurements, and 19 composition

measurements which are sampled less frequently. Similar to [33], 22 continuous process

measurements and 9 manipulated variables listed in Table 4.6 are used to monitor the process.

The other two manipulated variables were fixed to constants in Ricker’s decentralized control

scheme, and therefore are not included in the monitoring. Details about the process variables

can be found in [130, 135]. A normal training set of 800 hr of normal data is used for training

the model, 50 hr of normal data for false alarm rate calculation, and each fault consists of

50 hr with the first 10 hr being normal.

4.4.2 Monitoring Settings

The monitoring settings of the different methods are listed in Table 4.7. The settings for

PCA, DPCA and SPA are similar to the settings in [32]. For SPA, the statistics included in
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Table 4.6: Monitored variables in TEP

no. Variable description no. Variable description
Process Measurements

1 A feed (stream 1) 12 Product separator level
2 D feed (stream 2) 13 Product separator pressure
3 E feed (stream 3) 14 Product separator underflow (stream 10)
4 A and C feed (stream 4) 15 Stripper level
5 Recycle flow(stream 8) 16 Stripper pressure
6 Recycle feed rate (stream 6) 17 Stripper underflow (stream 11)
7 Reactor pressure 18 Stripper temperature
8 Reactor level 19 Stripper steam flow
9 Reactor temperature 20 Compressor work
10 Purge rate (stream 9) 21 Reactor cooling water outlet temperature
11 Product separator temperature 22 Separator cooling water temperature

Manipulated Variables
23 D feed flow (stream 2) 28 Separator pot liquid flow (stream 10)
24 E feed flow (stream 3) 29 Stripper liquid product flow (stream 11)
25 A feed flow (stream 1) 30 Reactor cooling water flow
26 A and C feed flow (stream 4) 31 Condenser cooling water flow
27 Purge valve (stream 9)

the statistic pattern (SP) include the mean, the standard deviation, correlation coefficients,

cross-correlation and auto-correlation coefficients. A correlation coefficient (rij) is retained

if |ri,j| > 0.3 for more than 50% of the training SPs. For auto-correlation (rd
i ) and cross-

correlation (rd
i,j) coefficients, it is required that their values are

∣∣rd
i

∣∣ > 0.3
∣∣rd

i,j

∣∣ > 0.3 for

more than 50% of the training SPs, where d denotes the time lag (d = 2) between variables.

For KPCA and ICA, the settings were found after a thorough search. For KPCA, a gaussian

kernel function, i.e., k(x,y) = exp
(
−‖x−y‖

c

)
is used to compute the kernel matrix (K),

where c = βmσ2. The parameters β = 8, σ = 0.9 were found by optimizing the detection

performance, and m = 31 is the number of process variables. In addition, the number of

components retained after applying PCA in the feature space, and number of components for

testing are determined by optimizing the detection performance. For ICA, the FastICA [102]

algorithm described in Chapter 2 is used to find the independent components. A contrast

function to approximate negentropy equal to G1(u) = 1
a1

log cosh(a1u), where a1 = 1 is used.
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The number of independent components for testing is determined used the Euclidean norm

approach [106]. For all methods, an empirical approach is used to determine the upper

control limits so that different methods can be compared based on the same confidence

level [32].

Table 4.7: Settings of different fault detection methods

Methods Variables PCs (ICs) lags Window width Window shifting step
PCA 31 9 - - -
DPCA 90 20 2 - -
ICA 31 6 - - -
KPCA 60 26 - - -
SPA 257 6 2 100 50

4.5 Fault detection

In this section, the most important aspects in fault detection are discussed based on the

results obtained in monitoring the 20 faults in the TEP benchmark problem.

4.5.1 Detection Rate

The detection rates of the five methods for all faults are listed in Table 4.8. It is worth

noting that the results in Table 4.8 for PCA, DPCA and SPA are different from the results

reported in [32]. This is due to the fact that different data sets were used. In [32], the data

set was generated by the control strategy developed in [133], where the plant-wide control

structure recommended in [134] was implemented to generate the closed-loop normal and

faulty process data. While in the current work, the TEP simulator with decentralized control

system developed by Ricker [135] was implemented to generate the closed-loop normal and

faulty process data. By visually comparing the two control strategies under normal operation

condition, it was noticed that the process variation under the decentralized control is much

smaller than that under the plant-wide control. Therefore, the normal process model with
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the decentralized control defines a tighter region of normal operation than that with the

plant-wide control, which makes the model more sensitive and therefore more effective to

fault detection. This is true no matter what fault detection is used. As a result, although

similar settings were used, the fault detection rates of all the three methods are higher for

almost all faults in this work than those in reported in [32], with PCA and DPCA improved

the most. From Table 4.8, it is evident that all five methods are effective in detecting most

of the faults. It is worth noting that faults 3, 9 and 15 have been suggested to be difficult to

detect when the plant-wide control strategy is implemented. In this work, these results were

confirmed since these faults are also difficult to detect by any of the five methods when the

decentralized control strategy is implemented. Therefore, these three faults are not listed

in Table 4.8. In addition, fault 16 cannot be detected by any of the five methods when the

decentralized control strategy is implemented. After visually inspecting the four difficult

cases, the reason for these faults not being detected is that the disturbances were completely

rejected without introducing noticeable changes to any process variables. For the rest of the

16 faults, PCA, DPCA, KPCA and ICA have difficulty in detecting faults 5 and 12 with

detection rates lower than 55% in most of the cases, which are depicted in Figures 4.11 - 4.13.

On the other hand, SPA based method is able to detect all 16 faults with all detection rates

higher than 90%. Additionally, for the faults that cannot be completely detected by PCA,

DPCA, KPCA and ICA methods, such as fault 18, SPA is more effective, this is illustrated

in Figure 4.13.

4.5.2 False Alarm Rate

In any process monitoring approach, it is attempted to reduce the false alarm rates to

the desired significance level (e.g. consistent samples labeled as faulty samples). In this

work, to ensure a fair comparison, the thresholds for monitoring are determined empirically

based on the values of the monitoring indexes in normal validation data. The false alarm

rates of all the methods for training and testing normal data are listed in Table 4.9. A
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Table 4.8: Fault detection rates (percentage) of PCA, DPCA, KPCA, DPCA, and SPA for
the TEP

PCA DPCA KPCA ICA SPA
fault T 2 SPE T 2 SPE T 2 SPE I2

d I2
e SPE Dp Dr

1 99.9 100 100 100 100 99.7 100 100 99.9 99.3 99.5
2 99.5 99.2 99.6 99.4 99.6 98.6 99.4 99.4 99.1 99.0 98.8
4 100 100 100 100 100 100 100 100 100 99.8 99.9
5 3.6 0.6 3.6 1.5 3.0 0.4 0.6 2.1 3.7 0.0 93.4
6 100 100 100 100 99.3 100 100 100 100 99.8 99.4
7 100 100 100 100 100 100 100 100 100 99.9 99.9
8 98.9 98.1 99.0 98.0 98.9 95.6 98.8 98.8 98.4 96.9 98.4
10 83.7 93.1 93.0 96.2 97.3 69.6 95.6 96.4 92.7 98.1 98.5
11 94.9 98.2 98.9 99.7 99.1 81.4 94.1 98.9 98.3 99.0 99.5
12 44.2 14.6 59.1 39.1 54.9 4.5 22.9 44.9 42.1 93.8 94.6
13 98.7 98.7 99.0 99.1 99.1 98.7 98.6 99.1 98.9 97.9 98.3
14 99.1 100 100 100 100 92.7 100 100 100 99.5 99.8
16 4.4 0.5 4.1 0.4 2.6 0.4 0.6 1.8 3.7 0.0 0.0
17 97.2 99.2 99.2 99.6 99.5 88.0 99.2 99.4 99.12 98.4 99.0
18 71.3 76.5 73.0 85.7 86.6 64.5 78.1 81.6 75.1 93.6 96.0
19 98.0 98.5 99.5 99.0 99.4 94.9 98.1 99.3 98.9 96.5 98.9
20 98.9 98.6 99.0 99.0 98.9 99.6 98.1 99.3 98.9 97.9 98.5

detailed analysis of the results shown in Table 4.9 indicates that the thresholds determined

empirically with 99% confidence level are reasonable and consistent, because the false alarm

rates are not far from 1% for all the methods.

Table 4.9: False alarms rate (percentage) of PCA, DPCA, KPCA, ICA, and SPA for the
TEP

PCA DPCA KPCA ICA SPA
Data T 2 SPE T 2 SPE T 2 SPE I2

d I2
e SPE Dp Dr

Training 2.1 0.4 2.4 0.7 0.6 1.7 0.6 1.2 1.6 1.0 1.0
Testing 1.5 0.3 1.4 0.7 1.1 1.0 0.6 0.3 0.8 0.0 2.6
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4.5.3 Detection Delay

It is worth noting that although detection delay is usually associated with window-based

approaches, there is only minor detection delay associated with SPA method. This is because

the detection limit is much tighter in SPA [59], since the variance of the variable statistics

is only 1
n

of the process variable (n is the window width). This is illustrated in Table 4.10,

where the detection delay associated with SPA is not significant compared to the detection

delay observed for the rest of the methods. Table 4.10 shows that there is a slight increment

of detection delay for faults 5 and 12, which is related to the nature of the fault and the

type of control strategy implemented. From Table 4.8, it is observed that SPA is the only

method to detect fault 5. Fault 5 corresponds to a step change of an unmeasured disturbance

(i.e., the condenser cooling water inlet temperature). A detailed analysis of the process data

indicates that this fault is rejected by the control strategy fairly well. However, as it will

be discussed in the fault diagnosis section, it eventually affects the mean of variable 31 (i.e.,

the condenser cooling water flow), which is only detected by SPA. As shown in Figure 4.11,

after this fault propagates enough through the system, the detection of SPA gives a clear

indication of the fault. For fault 12, a random variation of the condenser cooling water inlet

temperature affects the system. Again, the control strategy rejects the disturbance fairly

well, and although there is a slight delay of SPA detecting this fault, SPA is the only method

that after this fault propagates enough, it gives a clear indication that the fault occurred.

This is illustrated in Figure 4.12, where the detection performance of Dp and Dr in SPA

does not observe a chattering effect (i.e., drastic up’s and downs) around the monitoring

threshold, as the monitoring indexes of the other methods. For fault 16, as this fault is

not detected by any of the methods, the associated delay time is obviously large. For the

rest of the faults, the delay associated with SPA varies from 1 to 5 samples (1 sample is

equivalent to 3 minutes), which is not significant if one considers the benefits of having a

clear indication that a fault has occurred, as illustrated in Figures 4.11 - 4.13. This behavior

is also observed for the rest of the detectable faults.
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Table 4.10: Fault detection delay (samples) of PCA, DPCA, KPCA, DPCA, and SPA for
the TEP

PCA DPCA KPCA ICA SPA
fault T 2 SPE T 2 SPE T 2 SPE I2

d I2
e SPE Dp Dr

1 2 1 1 1 1 3 2 1 1 7 5
2 5 7 4 4 4 11 4 3 7 9 11
4 1 1 1 1 1 1 1 1 1 3 2
5 > 70 > 70 > 70 > 70 > 70 > 70 > 70 > 70 > 70 > 70 54
6 1 1 1 1 1 1 1 1 1 3 2
7 1 1 1 1 1 1 11 1 1 2 2
8 10 13 9 9 10 28 > 70 10 13 19 14
10 12 8 10 6 7 14 3 7 9 16 13
11 3 2 1 1 2 3 21 2 2 9 5
12 19 15 10 40 15 > 70 11 14 15 49 44
13 11 11 9 8 8 11 1 9 10 18 15
14 1 1 1 1 1 2 198 1 17 5 3
16 > 70 > 70 > 70 > 70 > 70 > 70 5 > 70 > 70 > 70 > 70
17 8 7 6 4 5 8 29 6 7 14 9
18 39 31 41 22 25 33 5 30 38 52 33
19 7 8 3 6 4 11 8 4 6 29 10
20 10 11 9 8 10 3 1 7 8 18 13
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Figure 4.11: Detection performance of PCA, DPCA, KPCA, ICA and SPA for fault 5.
(a) PCA; (b) DPCA; (c) KPCA; (d) ICA; (e) SPA. The dash-dotted lines indicate the fault
onsets and dashed lines the index thresholds.
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Figure 4.12: Detection performance of PCA, DPCA, KPCA, ICA and SPA for fault 12.
(a) PCA; (b) DPCA; (c) KPCA; (d) ICA; (e) SPA. The dash-dotted lines indicate the fault
onsets and dashed lines the index thresholds.
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Figure 4.13: Detection performance of PCA, DPCA, KPCA, ICA and SPA for fault 18.
(a) PCA; (b) DPCA; (c) KPCA; (d) ICA; (e) SPA. The dash-dotted lines indicate the fault
onsets and dashed lines the index thresholds.
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4.6 Fault diagnosis

In this subsection, the proposed SPA based fault diagnosis approach is applied to TEP

to identify the root cause of each fault. As a comparison, PCA, DPCA, KPCA, ICA and

SPA are also applied to diagnose the faults. For the sake of clarity, the diagnoses of all faults

are not discussed in detail except the three illustrative examples given below. It is important

to mention that, in general, PCA, DPCA, KPCA, ICA and SPA methods are effective in

pinpointing the major fault-contributing process variables for most of the faults. For the case

of KPCA diagnosis, the method was found to be quite sensitive to the monitoring settings,

i.e. a good set of detection settings might not provide a good diagnosis and vice versa. For

the contribution plots based on SPA, two subplots are used to show the contributions from

variable mean and standard deviation. The contributions from other statistics such as auto-

and cross-correlations are small and are not shown. The example of fault 10 is shown in

Figure 4.14(a), where random variation is introduced to C feed temperature (stream 4 to

the stripper in Figure 4.10). Figure 4.14(a) shows that PCA, DPCA, KPCA, ICA and SPA

methods correctly identify that the variable 18 (stripper temperature) is the major fault-

contributing variable. In the case of KPCA, a significant drop for variable 18 is observed

in the reconstruction index (e.g. ζi), thus indicating that variable 18 is the root cause of

the fault (e.g. dashed line in Figure 4.14(c)). Compared to the other diagnosis, the SPA

based diagnosis via contribution plots provide extra information by identifying that it was

the variance, not the mean, of the variable 18 that contribute to this fault.

There are cases where SPA does a better job in fault detection than the rest of the

methods. In these cases, SPA also does a better job in fault diagnosis. One such example

is fault 5 shown in Figure 4.15, where a step change occurred in condenser cooling water

inlet temperature. Table 4.8 shows that PCA, DPCA, KPCA and ICA cannot detect this

fault. Therefore, it is expected that they cannot diagnose the fault either, which is verified

by Figures 4.15(a), 4.15(b), 4.15(d) where a range of process variables across different units

all contribute to this fault. In the case of KPCA, Figure 4.15(c) shows that variable 31
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Figure 4.14: Diagnosis of fault 10. (a) PCA (top T 2, bottom SPE); (b) DPCA (top T 2,
bottom SPE); (c) KPCA (reconstruction index ζi); (d) ICA(top I2

d , middle I2
d bottom SPE

SPE); (e) SPA (top row Dp, bottom row Dr).
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Figure 4.15: Diagnosis of fault 5. (a) PCA (top T 2, bottom SPE); (b) DPCA (top T 2,
bottom SPE); (c) KPCA (reconstruction index ζi); (d) ICA(top I2

d , middle I2
d bottom SPE

SPE); (e) SPA (top row Dp, bottom row Dr).
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Figure 4.16: Diagnosis of fault 12. (a) PCA (top T 2, bottom SPE); (b) DPCA (top T 2,
bottom SPE); (c) KPCA (reconstruction index ζi); (d) ICA(top I2

d , middle I2
d bottom SPE

SPE); (e) SPA (top row Dp, bottom row Dr).
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observes a significant drop in the reconstruction index for this variable. However, to obtain

this diagnosis performance, a different set of diagnosis settings (e.g. width of the gaussian

kernel c) was used, which is an adverse factor for online implementation since it introduces

more tunable parameters. On the other hand, SPA was able to isolate the fault root cause to

the manipulated variable 31, the condenser cooling water flow rate. Since the cooling water

inlet temperature is not measured, the manipulated variable 31 is the most related variable.

In addition, SPA was able to indicate that a mean change, not variance, in variable 31 is the

root cause, which is directly related to the step change in the condenser cooling water inlet

temperature.

In the final example of fault 12 (random variation in condenser cooling water inlet tempera-

ture) shown in Figure 4.16, the purpose is to illustrate that a successful fault detection does

not necessarily lead to a correct fault diagnosis. From Table 4.8, all the five methods were

able to detect the fault. However, from Figure 4.16, PCA, DPCA, KPCA and ICA were not

able to isolate the root cause of the fault. SPA was able to relate the fault to the separator

temperature (variable 11) right after the condenser. Again, since the cooling water temper-

ature or the condenser temperature was not measured and this random variation would not

trigger the manipulated cooling water flow rate to change, the downstream separator right

after the condenser is the closest to the actual fault location. In other words, the random

variation in condenser cooling water inlet temperature (not measured) will immediately lead

to random variation in the separator temperature (measured, variable 11). It is also worth

noting that SPA correctly identified that the standard deviation, not the mean, of variable

11 is the major fault contributor.

4.7 Conclusion and Discussion

In the first case study, a nonlinear system (quadruple-tank) is simulated to examine the

performance of the SPA method. The example demonstrates that SPA is able to handle

nonlinear processes, and to detect and diagnose subtle changes in the dynamics of a system.

74



Additionally, SPA is able to detect and diagnose both faults more efficiently that the PCA

and DPCA methods. The two different cases with different size of training samples indicate

that SPA can also perform well with a limited amount of data. However, for the case where

data are limited, a window overlapping is necessary. The window overlapping causes the

samples to be no longer independent from each other which causes an increment in the false

alarm rates for normal operating data. For the case where enough data are available, SPA

not only is able to provide high detection rates and a more clear identification of a fault, but

it also reduces the false alarms for normal operating data considerably. It is worth noting

that the cost associated with using more SPs is that a large amount of data are needed for

model building, as the number of SPs is only 1/w of the number of original training samples,

where w is the size of the window. However, for most industrial processes this limitation can

be overcome since large amounts of historic data are available. Additionally, because of the

window-based approach, there is limited detection delay associated with the SPA method.

In fact, the detection delay is comparable to that the other monitoring methods, because

the window from SPA can be shifted by one sample during the online monitoring once the

model is build.

In the second case study, the potential of the SPA framework in fault detection and diagnosis

at a plant-wide level was explored. The Tennessee Eastman process is used to evaluate

the performance of the developed fault detection and diagnosis method based on the SPA

framework, and compared with the two commonly applied linear monitoring methods (e.g.

PCA and DPCA) and nonlinear monitoring methods (e.g. ICA and KPCA). The case study

shows that in general all five methods work well in detecting and diagnosing most of faults.

However, for some faults that are difficult to detect and/or diagnose by PCA, DPCA, KPCA

and ICA based methods, SPA based method provides superior performance. As the SPA-

based process monitoring for continuous processes is a window-based approach, detection

delay is associated with its application. In this case study, it was shown that the detection

delay associated with SPA is not significant, as the window can be shifted by one online.

75



In addition, the detection of faults is much more clear than other methods and does not

observe drastic changes in the monitoring index around the threshold. For fault diagnosis,

because the SPA-based method breaks down the contribution of a fault to different variable

statistics, it provides extra information in addition to identifying the major fault-contributing

variable(s). For example, the SPA-based contribution plots tell us whether the fault is due to

a change in variable mean or variance. It also should be noted that in general SPA requires

more training data to build a reliable model due to the computation of variable statistics.

However, this is not a big issue because most modern processes are equipped with DCS

systems and therefore are data rich.
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Chapter 5

Partial Least Squares Algorithms

Given the importance of partial least squares (PLS) and recursive PLS in the devel-

opment of the second part of this work, in this chapter, the PLS algorithm and different

recursive model update approaches are briefly discussed. Specifically, the main characteris-

tics of regular recursive PLS (RPLS), block-wise RPLS (BRPLS), moving window block-wise

RPLS (MW-BRPLS), and forgetting factor block-wise RPLS (FF-BRPLS) are reviewed. In

addition, the data scaling methods that accompany the different algorithms are developed

and discussed.

5.1 PLS Regression

PLS regression have arisen as a useful alternative for analyzing systems of secondary

measurements X with strongly collinear dependency, highly correlated, noisy, and of high

dimensionality, typical characteristics of data from industrial processes [19, 22, 24, 25, 51,

136]. In PLS, the interest is using the variables in the X matrix (i.e., easy-to-measure) to

predict the behavior of one or several primary variables Y (e.g. quality or yield), which is

one of the most common type of problem in science and engineering [24]. Multiple linear

regression (MLR) is the most basic form of model to achieve this goal. However, due to

correlations in process variables, size of data set, and measurement noise, MLR methods

lead to imprecise estimations and poor prediction [26, 40]. In PLS , the properties of the

NIPALS [24] algorithm are utilized to let the score matrix T (e.g. projections of the X

matrix onto the plane defined by the characteristic directions of variability) to represent

the original data matrix X. The scores T of X are calculated in such a way that they are

good predictors of Y. In other words, the decompositions of the matrix X and matrix Y
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are done in such a way as to maximize the covariance between them [136]. In this way, the

first few retained latent variables contain enough information to characterize X, and at the

same time they contain useful predictive data, providing both, a dimensionality reduction

and numerical robustness compared to MLR [136]. The PLS algorithm, as developed by

Wold et al. [24] is briefly reviewed below. Details of the algorithm and its properties can be

found in [19, 24, 25].

Let X ∈ R
n×m and Y ∈ R

n×p denote the input and output data matrices; where n is the

number of samples, m the number of independent variables, and p the number of dependent

variables.

Assume that X and Y are linearly related by:

Y = XC + V (5.1)

where C is the coefficient matrix and V is the noise matrix with appropriate dimensions.

The PLS regression method derives the linear model by first decomposing data matrices X

and Y into bilinear terms:

X = TPT + E (5.2)

Y = UQT + F (5.3)

where T ∈ R
n×a and U ∈ R

n×a are the score matrices of X and Y respectively, and a is the

number of retained PLS components. Matrix P ∈ R
m×a and Q ∈ R

p×a are known as the

loading matrices. Matrices E and F are the corresponding residual matrices with appropriate

dimensions. Equations (5.2) and (5.3) formulate the PLS outer model. The final goal of PLS

is to describe as much variation of Y as possible and at the same time get a useful relation

between X and Y [19]. This is done by relating the scores of X and Y with a linear inner

model:

U = TB + R (5.4)

78



where B ∈ R
a×a is a diagonal matrix of inner model coefficients that are obtained by mini-

mizing the residual R.

The estimate Ŷ of Y is obtained consequently:

Ŷ = TBQT + F (5.5)

For convenience, in this work the following notation is used to represent the modeling pro-

cedure that obtains the PLS model {T,P,U,Q,B} from the pair of data matrices {X,Y}

{X,Y}
PLS
→ {T,P,U,Q,B} (5.6)

Examples of the application of PLS regression for soft sensor development are given in the

subsequent chapters.

5.2 Recursive PLS

In traditional PLS, a static model is built using a training data set, which is later used

for predicting future observations. If either new information is introduced or the conditions

reflected in the training data change, a new model needs to be trained using both the old

and the new training samples to adequately capture the characteristics of the process [137].

If this approach is followed continuously, the amount of training data for update will become

an issue very quickly. Helland et al. [137] proposed a recursive PLS (RPLS) algorithm

that efficiently overcomes the issue of data build up. In their work, it is proposed that

instead of using the old data and the new data to rebuild a new PLS model, the old PLS

model derived from the old data is augmented with the new data to obtain an updated

PLS model. However, Helland’s RPLS approach suffers from numerical instability for rank

deficient data. This issue was later addressed by Qin in [138]. In this work, Qin’s approaches

are implemented to update the RO-DPLS model when new data becomes available. In this

and the following sections, Qin’s approaches are briefly reviewed.
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If {X,Y} is used to denote the old data, and {X1,Y1} is used to denote the new data, it

was shown in [138] that performing PLS on a data pair:








X

X1



 ,




Y

Y1










results in the same regression model as performing PLS on the data pair:









PT

X1



 ,




BQT

Y1









(5.7)

provided that the residual matrix E of X in Equation (5.2) is essentially zero. If n and n1 are

used to denote the number of samples in the old data set and the new data set respectively,

the RPLS approach updates the model using a PLS run size of (a + n1), while the regular

PLS updates the model with a run size of (n+n1), where a is the number of PLS components

used to replace the input matrix X. It is clear that RPLS is much more efficient than the

regular PLS if n >> a, which is typical in PLS applications [138].

5.3 Block-wise RPLS

To further improve computation efficiency, Qin [138] also introduced the block-wise

RPLS (BRPLS), where a PLS sub-model is first built using the new data pair {X1,Y1},

i.e., {X1,Y1}
PLS
→ {T1,P1,U1,Q1,B1}; then it is combined with the existing model to

derive the updated PLS model. It was shown in [138] that performing PLS on the data pair:








X

X1



 ,




Y

Y1










results in the same regression model as performing PLS on the data pair:









PT

PT
1



 ,




BQT

B1Q1
T









(5.8)
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provided that the residual matrices of X and X1 are essentially zero, i.e., E = 0 and E1 = 0.

5.4 Block-wise RPLS with Moving Window

To adequately adapt process changes, it is desirable to exclude older data from the

model by incorporating a moving window approach. Given {Xi,Yi}
PLS
→ {Ti,Pi,Ui,Bi,Qi},

following [138], the MW-BRPLS performs PLS regression on the following pair of matrices:










PT
i

PT
i−1

...

PT
i−w+1





,





BiQ
T
i

Bi−1Q
T
i−1

...

Bi−w+1Q
T
i−w+1










(5.9)

When the new data pair {Xi+1,Yi+1} becomes available, a PLS sub-model is first derived:

{Xi+1,Yi+1}
PLS
→ {Ti+1,Pi+1,Ui+1,Bi+1,Qi+1}

then, PT
i+1 and Bi+1Q

T
i+1 are augmented into the top row of the matrices in Equation 5.9

and the bottom row is dropped out. The window size w controls how fast the old data are

excluded from the model. A narrow window makes the model adapt faster to the new data.

5.5 Block-wise RPLS with Forgetting Factor

An alternative approach for online adaptation is to use a forgetting factor. Follow-

ing [138], the PLS model at step i is obtained by performing PLS on the following data

pair: 







PT

i

λPT
ic



 ,




BiQ

T
i

λBicQ
T
ic









(5.10)

where the subscript ic denotes the combined model obtained at step i − 1, and λ is the

corresponding forgetting factor. A λ close to zero forgets the old data faster.
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5.6 Online Data Scaling

The PLS and RPLS algorithms discussed before are derived with the assumption that

the data pair {X,Y} is scaled to zero mean and unit variance, so that different variables

will equally influence the regression model. In addition, the linear relationship between X

and Y extracted from the process data can be easily distorted by measurement noise, the

presence of outliers, and/or autocorrelated measurements. Therefore, data preprocessing is

an important step in building a data-driven PLS soft sensor. The commonly applied data

preprocessing steps include data scaling, outlier detection, and data denoising [139]. For

off-line model building, the data preprocessing is usually an iterative process, i.e., the pre-

processing steps such as outlier detection are repeated several times until the data obtained

can be used for model training, testing, and validation. Currently, data preprocessing, es-

pecially outlier detection, is the step that requires significant amount of manual work and

expert knowledge about the underlying process characteristics [140]. For online applications,

data preprocessing becomes more challenging because it is generally impossible to repeat the

data preprocessing steps with plant expert inputs as in off-line model building.

The most commonly applied scaling method is normalization or autoscaling, i.e., removing

variable means and scaling variables to unit variance. For off-line PLS model building, the

mean and the variance of the n0 training samples are calculated by:

x0 =
1

n0

n0∑

i=1

xi (5.11)

σ2
0 =

1

n0 − 1

n0∑

i=1

(xi − x0)
2 (5.12)

Because many processes are time varying, the means and variances of the process variables

usually change over time, correspondingly the means and variances should be updated as

well. In this work, three different preprocessing approaches that accompany the different

model update approaches are considered.
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1. Recursive scaling and centering (RSC):

For each variable

xn =
n − 1

n
xn−1 +

1

n
xn (5.13)

σ2
n =

n − 2

n − 1
σ2

n−1 +
1

n − 1
(xn − xn)2 + (xn − xn−1)

2 (5.14)

where n is the total number of the old and new data points; xn and σn are the updated

mean and standard deviation. The detailed derivation of Equations (5.13) and (5.14)

is given in Appendix C. Note that the commonly applied formula for variance update

is the following [139]:

σ2
n =

n − 2

n − 1
σ2

n−1 +
1

n − 1
(xn − xn)2 (5.15)

which is not exactly correct. However, by comparing Equation (5.14) with Equa-

tion (5.15), the only difference is the term (xn − xn−1)
2. This term can be neglected

when n is large, because the ratio of this term to the second term in Equation (5.14)

can be calculated as

(xn − xn−1)
2

1
n−1

(xn − xn)2
=

1

n − 1
(5.16)

which approaches zero when n is large. Therefore, Equation (5.15) can be used as a

good approximation to update the variance for large n. Detailed derivation of Equa-

tion (5.16) is given in Appendix D. It is worth noting that one drawback with this

approach is that n keeps increasing as more data becomes available and the influence

of the new data point diminishes with increased n.

For block-wise algorithms, the variable mean and variance can be updated using the

following equations

xn =
n − n1

n
xn−n1

+
n1

n
xn,B (5.17)

σ2
n =

n − n1 − 1

n − 1
σ2

n−n1
+

n1 − 1

n − 1
σ2

n,B +
n1 (n − n1)

n (n − 1)
(xn−n1

− xn,B)2 (5.18)
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where n1 is the number of samples in the new data block; xn,B and σ2
n,B are the new

data block mean and variance. The detailed derivation of Equations (5.17) and (5.18)

is given in Appendix E.

2. Moving window scaling and centering (MWSC):

In this case, since the oldest measurement in the window is removed with the newest one

added, the total number of measurements stays constant. One can recalculate the mean

or variance for the measurements in the window, or use the following approximation.

xn =
w − 1

w
xn−1 +

1

w
xn (5.19)

σ2
n =

w − 2

w − 1
σ2

n−1 +
1

w − 1
(xn − xn)2 (5.20)

where w is the window width which stays constant. In MWSC, the effect of the new

sample will not diminish as more data becomes available.

For block-wise algorithms with block size n1, the approximation becomes:

xn =
w − 1

w
xn−n1

+
1

w
xn,B (5.21)

σ2
n =

(w − 1)n1 − 1

wn1 − 1
σ2

n−n1
+

n1 − 1

wn1 − 1
σ2

n,B (5.22)

where, xn,B and σ2
n,B are the new data block mean and variance.

3. Forgetting factor scaling and centering (FFSC):

For each variable:

xn = αxn−1 + (1 − α) xn (5.23)

σ2
n = ασ2

n−1 + (1 − α) (xn − xn)2 (5.24)
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For block-wise algorithms:

xn = αxn−n1
+ (1 − α) xn,B (5.25)

σ2
n = ασ2

n−n1
+ (1 − α) σ2

n,B (5.26)

In the following chapters, the properties of PLS are used to develop different software sensors,

and the properties of the different methods reviewed in this chapter are discussed in detail.
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Chapter 6

A Reduced-Order Dynamic PLS Soft Sensor Approach

6.1 Introduction

Pulping process, which converts wood chips into pulp by displacing lignin from cellu-

lose fibers, is one of the most important operations in a pulp and paper mill [141]. Yearly

US wood pulp production is around 52 million tons and the pulp and paper industry is an

important sector of the US manufacturing [142, 143]. Kraft pulping is the most commonly

used chemical pulping process, which usually utilizes a continuous Kamyr digester. A Kamyr

digester is a complex vertical plug flow reactor where the wood chips react with an aqueous

solution of sodium hydroxide and sodium sulfide, also known as white liquor, at elevated

temperatures. Fig. 6.1 shows the schematic diagram of a single-vessel Kamyr digester with

three distinct zones. Pre-steamed wood chips and white liquor enter the impregnation zone

from the top of the digester, and chemicals in white liquor diffuse into the pores of the wood

chips in this zone. Subsequently in the cook zone, the temperature is raised through the

upper and lower heated circulation and most of the delignification reactions occur. Finally

in the wash zone, the countercurrent flow of dilute wash liquor quenches the reactions and

removes the unreacted chemicals. It is well known that the performance of the pulping pro-

cess is of paramount importance to maximize the pulp quality and yield, reduce the overall

operating cost including energy usage, and minimize the adverse environmental impacts of

pulp mills [142]. The most important quality variable in pulping process is the Kappa num-

ber, which represents the residual lignin content of the pulp [142]. It is desired to minimize

the variations of the Kappa number in the pulp product. For a continuous digester, process

variables are measured at different frequencies. Primary measurement, i.e., the pulp Kappa
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Figure 6.1: Schematic of a high-yield single-vessel Kamyr digester

number, is measured at a low frequency (e.g., one sample every 2 hrs with 30 mins measure-

ment delay); while secondary measurements are measured at a higher frequency (e.g., one

per 6 to 10 minutes) which include white liquor flow rate, wood chip flow rate, the tempera-

ture and composition of upper circulation, lower circulation and extraction [144]. In order to

describe the dynamics of a continuous digester and develop effective control methods, first

principles or physical models have been developed to simulate the pulping process by ap-

proximating the digester with a series of continuous stirred tank reactors (CSTRs) [145, 146].

However, control of a continuous digester is challenging due to the following characteristics

of the pulping process: (1) long residence time or delay; (2) lack of real-time measurement

of the extent of reaction (i.e., Kappa number); (3) complex nonlinear dynamic behavior;

(4) unmeasured stochastic disturbances. Some of these challenges are also present in other

industrial processes such as distillation columns [46, 48].

To address the challenge that the primary variable (i.e., the Kappa number) is not

measured online but is required for feedback control, soft sensors (or inferential estimators)
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have been developed in digester control to estimate the Kappa numbers based on the sec-

ondary measurements [147–153]. Soft sensors can be developed in the form of a Luenberger

observer [37] or a Kalman filter [38] using a first principles dynamic model of the process.

However, because chemical processes are generally quite complex to model and are char-

acterized by significant inherent nonlinearities, a rigorous theoretical modeling approach is

often impractical, requiring a great amount of effort [39]. Consequently, there has been an

increasing interest toward the development of data-driven soft sensors using multivariate

regression techniques recently [8, 9, 28, 39, 41–49]. Because data-driven soft sensors are easy

to develop and to implement online, they are potentially more attractive than stochastic fil-

ters or deterministic observers [39]. Artificial neural networks (ANN), principal component

regression (PCR) or principal component analysis (PCA), and partial least squares (PLS)

are widely used regression techniques, and their successful application to the development of

soft sensors has been reported for different processes [9, 47, 50–54]. Dynamic PCA (DPCA)

and Dynamic PLS (DPLS), the extensions of the conventional PCA and PLS algorithms

for dynamic modeling, were studied through the augmentation of the original input data

matrices with lagged measurements [29, 55]. Recursive PCA/PLS algorithms have also been

proposed to deal with time-varying characteristics of industrial processes [138, 154, 155].

Because the DPLS soft sensor is the focus of this work, some representative work in this

area is briefly reviewed.

Lakshminarayanan et al. [44] proposed using DPLS to the identification and control

of multivariate systems. In [44], the linear and nonlinear DPLS models were integrated

into the model predictive control (MPC) framework. Kano et al. [48] compared steady-

state, static and dynamic PLS-based soft sensors and found that dynamic soft sensor DPLS

could greatly improve the estimation accuracy. Kano and others [48] also applied the DPLS

soft sensor to estimate the product compositions of a multicomponent distillation column

from online measured process variables such as tray temperatures, reflux flow rate, reboiler

heat duty and pressure. Zamprogna et al. [46] exploited DPCA and DPLS soft sensors to
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estimate the product composition profiles in a simulated batch distillation process using

temperature measurements. It was also shown in [46] that linear DPLS performed at least

as good as nonlinear DPLS algorithms (polynomial, spline or ANN DPLS) in the batch

distillation process case study. More recently, DPLS soft sensors have been applied to several

industrial processes, including a specialty chemical batch process [56], a splitter and a crude

columns [156], a dearomatization process [57] and a cement kiln system [58].

Despite many successful applications, one limitation associated with DPLS is that it

is usually viewed as an ad hoc method as there is a lack of theoretical understanding on

whether it can capture process dynamics adequately and whether it can provide unbiased

estimate for both open and closed-loop data. Another problem encountered when performing

DPLS is that the addition of a relatively large number of lagged values in the input data

matrix causes a substantial increase in the dimension of the matrix. This implies that

the computational load required to the development of the multivariate regression becomes

considerably heavier, and the regression procedure gets much lengthier. This is particularly

true for spline PLS and ANN PLS, which are based on computationally more intensive

algorithms. As a result, the model becomes more cumbersome to manipulate due to the

presence of a higher number of parameters [46]. As can be seen later in this work, when

process residence time is long, which is true for all continuous digesters, large number of

lagged measurements and more training data are needed for DPLS to capture the process

dynamics and to provide satisfactory soft sensor performance.

To address these issues, in this work, a rigorous proof is derived to show that: (1) DPLS-

based soft sensor is a dynamic estimator that can adequately capture process dynamics; (2)

DPLS-based soft sensor can provide unbiased estimate of the primary variable for both open

loop and closed-loop data. Next, a reduced order DPLS (RO-DPLS) approach with optimally

selected lagged measurements of the secondary variables is proposed. The RO-DPLS soft

sensor not only reduces model size and improves prediction but also significantly increases

prediction horizon [63–66].
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6.2 The Relationship of DPLS Soft Sensor and Subspace Identification

It has been widely assumed and accepted that DPLS-based soft sensors can capture

the processes dynamics, and DPLS-based soft sensor approaches have been used rather

commonly in industrial applications. The basic idea behind the DPLS soft sensor, i.e.,

using augmented measurements (or “lagged data”) to capture process dynamics, is not new

and has been widely used in system identification, such as subspace identification where

extended state-space model is used to derive how to extract system matrices. In addition,

this idea has been used in process monitoring where dynamic PCA is used to remove the

time dependence of the self-correlated and cross-correlated dynamic process data. However,

to the best of the authors knowledge, there has not been any rigorous proof to show how the

process dynamics is captured by the static linear regression employed in the DPLS-based

soft sensor. Therefore, compared to Luenberger observer or Kalman filter, DPLS has been

commonly viewed as an ad hoc approach which uses lead-lag elements determined by cross-

validation to handle process dynamics [152]. In addition, it has been assumed that DPLS

soft sensor works for closed-loop data and successful applications exist, but there has not

been any proof that in theory DPLS-based soft sensor can provide unbiased estimate for

closed-loop data. In this work, a rigorous theoretical analysis is provided to show that for

linear time invariant (LTI) systems the DPLS soft sensor can adequately capture process

dynamics and provide unbiased estimate of the primary variable for both open loop and

closed-loop data.

In the following, the DPLS soft sensor formulation is derived using the subspace iden-

tification (subspace ID) framework. Then, based on the derived soft sensor formulation, it

is shown that unbiased estimates of the primary variable can be obtained from DPLS soft

sensor under both open loop and closed-loop operations.

In subspace ID, a stochastic linear system can be represented in the following innova-

tion form, which is utilized in several subspace ID algorithms such as MOESP [157] and
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SIMPCA [158].

xk+1 = Axk + Buk + Kes
k

ys
k = Csxk + es

k (6.1)

yc
k = Ccxk + ec

k

where xk ∈ R
n, uk ∈ R

m are the system state and input; yc
k ∈ R

q and ys
k ∈ R

l are the primary

and secondary outputs; the innovations es
k ∈ R

l and ec
k ∈ R

q are white noise; A, B, Cs, Cc

are system matrices with appropriate dimensions; K is the steady-state Kalman filter gain.

The system represented in (6.1) is assumed to be minimal in the sense that (A, Cs) is

observable and (A, [B, K]) is controllable; in addition, the eigenvalues of A − KCs are

assumed to be strictly inside the unit circle. In other words, it is assumed that the secondary

variables provide enough information to describe the dynamics of the overall system. This

assumption is reasonable, because if the primary variables provide information that the

secondary variables do not contain, one cannot expect to estimate the primary variables

accurately using the secondary variables. Without loss of generality, the following linear

relationship between the two innovation terms is assumed: ec
k = Fes

k, which can be justified

with the assumption that (A, Cs) is observable as shown in Appendix A.

In order to derive the dynamic soft sensor formulation, the innovation form is trans-

formed into its predictor form, as used in [159].

xk+1 = AKxk + BKzk

ys
k = Csxk + ek (6.2)

yc
k = Ccxk + ec

k

where zk =

[
uT

k , (ys
k)

T

]
is the augmented process input and secondary output; AK =

A−KCs and BK = [ B, K ] are predictor matrices. The predictor form has the numerical
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advantage for identifying both stable and unstable processes because AK = A − KCs is

guaranteed to be stable even though the process matrix A may be unstable, while the

innovation form may lead to ill-conditioning for unstable processes [159].

By iterating the state equation in Eqn.(6.2), it is straightforward to derive the extended

state equation,

xk = L∗
pzp(k) + A

p
Kxk−p ≈ L∗

pzp(k) for large p (6.3)

where L∗
p =

[
BK AKBK · · · A

p−1
K BK

]
, the subscript p denotes the past horizon, and

the past data zp is defined as

zp(k) =





zk−1

zk−2

...

zk−p





(6.4)

Similarly, based on the state-space description in Eqn.(6.2), the extended output equation

can be obtained

ys
f (k) = Γ∗,s

f

(
L∗

pzp(k) + A
p
Kxk−p

)
+ G

∗,s
f zf−1(k) + ef (k) (6.5)

yc
f (k) = Γ∗,c

f

(
L∗

pzp(k) + A
p
Kxk−p

)
+ G

∗,c
f zf−1(k) + ec

f (k) (6.6)

where the subscript f denotes the future horizon; Γ∗,i
f and G

∗,i
f (i = {s, c}) are the extended

observability matrix and Toeplitz matrix corresponding to the secondary and primary out-

puts; superscript ∗ indicates that these matrices are constructed with predictor matrices

instead of the original system matrices:

Γ∗,i
f =





Ci

CiAK

...

CiA
f−1
k




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G
∗,i
f =





0 0 · · · 0

CiBK 0 · · · 0

...
...

. . .
...

CiA
f−2
K BK CiA

f−3
K BK · · · CiBK





the future data yi
f (k) (i = {s, c}) and zf−1(k) are defined as the following:

yi
f (k) =





yi
k

yi
k+1

...

yi
k+f−1





zf−1(k) =





zk

zk+1

...

zk+f−2





When p is large, Eqns.(6.5) and (6.6) can be reduced to

ys
f (k) = Γ∗,s

f L∗
pzp(k) + G

∗,s
f zf−1(k) + ef (k) (6.7)

yc
f (k) = Γ∗,c

f L∗
pzp(k) + G

∗,c
f zf−1(k) + ec

f (k) (6.8)

It is worth noting that Eqn.(6.7) or (6.8) serves as the foundation for subspace ID and

usually p > f > n is required to facilitate the estimation of the system matrices [158].

Next the main conclusion on the DPLS soft sensor is stated in the following theorem:

Theorem 1. For a linear time invariant (LTI) system as shown in Eqn.(6.1), there exists

a linear regression, with the primary output as the response and past input and secondary

output as the regressor, that can provide unbiased estimate of primary output for both open

loop and closed-loop operations.

Proof. First, note that Eqn.(6.8) not only captures the process dynamics, but also holds for

both open loop and closed-loop cases, as it is the extended state-space representation of the

LTI system defined by Eqn. (6.1).
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Eqn.(6.8) can be reformulated into

yc
f (k) =

[
Γ∗,c

f L∗
p G

∗,c
f

]



zp(k)

zf−1(k)



+ ec
f (k) (6.9)

which can serve as a soft sensor model to predict yc
f (k) from zp(k) and zf−1(k). Eqn.(6.9)

indicates that if and only if the future innovation ec
f (k) is uncorrelated to the regressor

variable




zp(k)

zf−1(k)



, i.e.,

E





ec

f (k)




zp(k)

zf−1(k)





T


= 0 (6.10)

an unbiased prediction of yc
f (k) can be obtained from the model given in Eqn. (6.9),

i.e.,

ŷc
f (k) =

[
Γ

∗,c
f L∗

p G
∗,c
f

]



zp(k)

zf−1(k)



 (6.11)

Note that condition (6.10) always holds for open loop cases. Because the future inno-

vation is white, without any feedback, the future innovation ec
f is independent from both

past data zp and future data zf−1. However, condition (6.10) does not hold for closed-loop

cases when f > 1 [160–164]. This is because under feedback control, the future input will

be correlated to past innovation, i.e. E
{

(ec
k)

T
uk+i

}
6= 0, for all positive integer i ∈ I+. As

a result, E
{
ec

f (k)zf−1(k)T
}
6= 0, although E

{
ec

f (k)zp(k)T
}

= 0 as the future innovation

is still independent from past data. The detail of the matrix E





ec

f (k)




zp(k)

zf−1(k)





T


is

given in Appendix B, which shows that the lower triangular part of the matrix is non-zero.

When f = 1, zf−1(k) is eliminated and Eqn.(6.9) reduces to

yc
k = Γ∗,c

f L∗
pzp(k) + ec

k (6.12)
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As the current innovation ec
k is uncorrelated to past data for both open loop and closed-loop,

i.e., E[ec
k(zp)

T ] = 0, the soft sensor model obtained based on Eqn.(6.12) provides unbiased

estimate of yc
k, which is the one-step-ahead prediction, no matter if the primary variable is

used for feedback control or not. It is worth noting that in Eqn.(6.12) only process inputs

(u) and secondary output (ys) are included in the regressor.

To address the ill-conditioning problem caused by the correlated regressors (both be-

tween the same variables at different time instants, and between different variables), partial

least squares (PLS) can be applied to estimate
(
Γ∗,c

f L∗
p

)
for the soft sensor model, which is

the commonly used DPLS soft sensor because of the way zp(k) is constructed (see Eqn.(6.4)).

The above analysis clearly shows that both the subspace ID and DPLS soft sensor are derived

based on the same extended state-space model (i.e., Eqn.(6.6)), while the DPLS soft sensor

is a special case with f = 1. Therefore, the DPLS soft sensor is theoretically a dynamic

estimator that gives unbiased estimate for both open loop and closed-loop data.

Remark. It is worth noting that the purpose of the soft sensor model in this work is to predict

the Kappa number, instead of estimating the system matrices A, B and Cs. Therefore, the

system does not have to be persistently excited; instead, only the observable part of the

process needs to be captured so that under a similar operation condition, the Kappa number

can be estimated from the secondary variables accurately. The purpose of the Theorem is

to show that by applying DPLS, one is able to construct a soft sensor that can adequately

capture the process dynamics under the given operation condition and provide unbiased

estimate of the primary variable, provided that enough secondary variables are used in the

regression.

Remark. Ku et al [29] extended PCA to DPCA in order to monitor a dynamic process by

using the augmented measurements of process variables as the new variables, which is also

the basic idea behind DPLS. The fundamental reason that such augmentation can enable

static PCA and PLS to capture process dynamics can be explained by the extended state-

space model, which is the foundation of subspace identification. This was also pointed out
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in [29]. However, in [29], the emphasis is on process monitoring, and on providing a heuristic

explanation on how monitoring lagged data can remove the time dependence of the self-

correlated and cross-correlated dynamic process data, rather than providing a generalized

proof/derivation on how process dynamics is captured by a static linear relationship between

lagged variables. In this work, one major contribution is to derive an exact static linear

regression between the augmented secondary variables and primary variables based on the

state-space representation of an LTI system, and to show that such model provides unbiased

prediction of the primary variables under both open loop and closed-loop operations.

Remark. During the stage of model building, the measurements of both primary and sec-

ondary variables that are collected at the same frequency are needed to estimate the model,

i.e., Γ∗,c
f L∗

p. Note that high frequency measurements of the primary variables is not required.

In this work, the secondary variable measurements are down-sampled to obtain the same

frequency of both primary and secondary variables for the industrial case study. During

model prediction/application phase, the secondary variables are not down-sampled and the

Kappa numbers are predicted at the higher frequency as that of the secondary variables. If

zero or first order hold were implemented for the Kappa number, only the Kappa numbers

that were actually measured should be used for model building.

Remark. In the traditional subspace ID methods such as MOESP [157] and N4SID [165],

the innovation form instead of the observation form is used. The extended state-space form

using Hankel data matrix is given below:

Yf = ΓfXk + HfUf + Ef (6.13)

One of the first steps in both methods is to eliminate the contribution from future input

(Uf ) to the future output (Yf ). In MOESP, it is done by projecting out the future input

through post multiplying Eqn. (6.13) with the orthogonal complement of future input,

i.e., ΠT
Uf

= I − UT
f (UfU

T
f )−1Uf ; in N4SID, it uses an oblique projection to remove the
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contribution from both the future input (Uf ) and innovation (Ef ), by projecting Eqn. (6.13)

onto the past data along the future input. In order to obtain unbiased estimate of the system

matrices, both methods require that the future innovation term (Ef ) is uncorrelated with

future input (Uf ), i.e., limn→∞
1
n

{
EfU

T
f

}
= 0, which is the fundamental reason that these

traditional methods only work for open loop cases, as this condition is true for open loop

only. For closed-loop data, due to feedback, the future input will be correlated to past

innovation. Similar to what we have shown in Eqn. (B.2), the lower triangular part of the

matrix limn→∞
1
n

{
EfU

T
f

}
is non-zero due to feedback control. Note that for subspace ID, in

order to estimate system matrices, it is usually required that the future horizon f > n ≥ 1.

Therefore, the traditional subspace ID methods cannot provide unbiased estimates using

closed-loop data [163].

Remark. In practice, most processes are time-varying instead of LTI, which is difficult to

address under the subspace ID framework. However, this can be addressed by adaptive or

recursive update of the soft sensor. In other words, a sequence of LTI systems is used to

approximate a time-varying and possibly nonlinear system. The details on how to effectively

update the soft sensor are presented in Chapter 7.

6.3 Reduced Order DPLS Soft Sensor

For some chemical processes, the process orders are high due to transport delay, strong

process dynamics, and nonlinearity. For example, for pulp digesters, n = 25 and n = 50 have

been reported in [152] and [166] respectively. In addition, in order for the contribution from

the initial state to be negligible, the past horizon is usually much larger than the process

order. Therefore, a large number of regressor variables (including their lagged values) would

be included in the soft sensor if it is constructed as the traditional DPLS soft sensor following

Eqn.(6.12). The potential issue with this is that model building and maintenance would be

more difficult and the model tends to be slow in response to process changes. In addition,

DPLS can only provide one-step-ahead predictions.
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To address these issues, in this work, a reduced order DPLS (RO-DPLS) approach is

proposed. This approach minimizes the number of regressor variables by taking the process

characteristics into account. For digester control problem, one reason for the high system

order is the long transport delay. If the delay time can be identified and eliminated by

time shifting the measurements, the system order and the past horizon can be effectively

reduced. In digester control, because the wood chips flow from the top to the bottom of

the digester, the delays associated with the measurements collected at different locations

are different, e.g., the delay associated with the upper circulation would be different from

the delay associated with the extraction. To illustrate this point, the extended Purdue

model [145, 146] is implemented, which simulates the pulping process by approximating the

digester with a series of continuous stirred tank reactors (CSTRs). As shown in Figure 6.2,

after a disturbance in wood chip composition was introduced at 0 hour, the effect of the

disturbance shows up in the Kappa numbers with different delays at different locations

indicated by the indices of the CSTRs. Fig. 6.2 indicates that among all the variables

included in the past data vector zp, only the ones corresponding to their associated delays

contribute the most to the final Kappa number. Therefore, instead of using all elements in

zp(k) to predict the pulp Kappa number, based on the principle of parsimony, only those

that contribute the most will be selected to build the dynamic sensor. To illustrate this

point, by denoting uk = [ u1(k) · · · um(k) ]T , and ys
k = [ y1(k) · · · yl(k) ]T , the past

data zp is reorganized into the following format and compare it to the regressor with selected
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variables, denoted as z∗p.

zp(k) =





u1(k − 1)

...

u1(k − p)

u2(k − 1)

...

u2(k − p)

...

um(k − 1)

...

um(k − p)

y1(k − 1)

...

y1(k − p)

...

yl(k − 1)

...

yl(k − p)





z∗p(k) =





u1(k − du1
)

...

u1(k − du1
− p′)

u2(k − du2
)

...

u2(k − du2
− p′)

...

um(k − dum
)

...

um(k − dum
− p′)

y1(k − dy1
)

...

y1(k − dy1
− p′)

...

yl(k − dym
)

...

yl(k − dy1
− p′)





where dui
denotes the delay difference between the ith input and the product Kappa number,

and dyj
denotes the delay difference between the jth secondary output and the product Kappa

number. Let dmax = max{dui
, dyj

}, dmin = min{dui
, dyj

} (i ∈ [1, · · · , m], j ∈ [1, · · · , l]).

It is clear that p ≥ dmax + p′, and in most cases p ≫ p′. Therefore, by incorporating the pro-

cess delay information, RO-DPLS effectively reduces the dimension of the regressor. Another

big advantage associated with RO-DPLS is that dmin-step-ahead prediction can be obtained

directly instead of the one-step-ahead prediction by regular DPLS as given in Eqn.(6.12). It

is worth noting that multiple-step-ahead prediction depends on process characteristics. Only
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one-step-ahead prediction is possible if dmin = 1. However, for most applications in practice

that require soft sensor approaches to estimate process quality variables, such as digester

and distillation column, dmin ≫ 1. It is worth noting that because the goal of a soft sensor is
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Figure 6.2: Different delay associated with variables at different location. Subscripts in the
legend are the indices of the CSTRs used to simulate the digester where 1 and 50 correspond
to the top and bottom of the digester respectively. Refer to Section 6.5 for the simulator
details.

to obtain an accurate estimation of the primary output instead of system matrices, the past

horizon p′ associated with each variable can be different, which provides additional flexibility

compared to subspace ID methods. In addition, it is possible to reduce the sampling points

within the past horizon so as to further reduce the dimension of the regressor.

6.4 Implementation of the RO-DPLS Soft Sensor

The implementation of the RO-DPLS soft sensor is illustrated in Figure 6.3, which

consists of five steps: variable selection, variable delay estimation, variable past horizon

estimation, regressor and regressand matrices construction and application of PLS to the

constructed matrices. As the last two steps are common to all DPLS based soft sensors,

below the details on the first three steps are discussed.
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Figure 6.3: Flow diagram of the proposed RO-DPLS approach

6.4.1 Regressor Variable Selection

Similar to DPLS, one potential issue with the RO-DPLS soft sensor approach is the

selection of the secondary variables. Inappropriate selection of secondary variables as soft

sensor inputs may lead to numerical problems, such as singularity and over-parameterization,

or may significantly reduce the estimation accuracy [39, 48]. It is well known that the

satisfactory performance of soft sensors is likely to be achieved if only those secondary

variables that are most sensitive to the primary variables are employed. This can be done

based on process knowledge [167], iterative selection method [168], sensitivity analysis [169–

171] and others [39, 152]. A brief review of these methods are given below.

Joseph and Brosilow [168] proposed an iterative method to select the optimal set of

secondary variables to be used as soft sensor inputs for a distillation column. The method

is based on the addition of secondary variables to the optimal set, one at a time. The

procedure is repeated until satisfactory estimation accuracy is obtained, or until all variables

have been included. Tolliver and McCume [169] suggested that the optimal temperature

locations (secondary measurements) in a distillation column be determined by evaluating
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the column sensitivity to the material balance. Another soft sensor input variable selection

approach is based on the application of singular value decomposition (SVD) to the sensitivity

gain matrix [170, 171]. Amirthalingam and Lee suggested that variables selection should

be based on the achievable nominal performance [152]. In their approach, a closed-loop

performance index is established and the achievable values for all candidate variables are

computed and ranked. More recently, Zamprogna et al. proposed a variable selection method

based on a PCA sensitivity analysis [39]. All these methods have their pros and cons. In

this work, Joseph and Brosilow’s approach is adopted due to its simplicity. Because process

knowledge helps to remove most of the insignificant variables, the iterative procedure is not

time consuming.

6.4.2 Variable Delay Estimation

One key step of the proposed RO-DPLS soft sensor is the estimate of the delays asso-

ciated with different variables. For the continuous digester, because wood chips flow from

top to bottom, the transport delay associated with the measurements collected at different

locations of the digester are different. By identifying the delay time associated with each

one of the streams in the digester, the system order can be effectively reduced, therefore the

past horizon required to predict the Kappa number is reduced.

To estimate the delay time associated with each stream of the digester (i.e., upper

heater, lower heater, extraction), the major source of disturbance in the continuous pulping

process is considered – wood composition variations. For the simulated case, a step change

can be introduced in the wood composition and the delays of the secondary variables for the

different streams are estimated using the methods reported in [172, 173] by approximating the

responses with systems of second order plus time delay (SOPTD). For industrial digesters,

the variable delays can be estimated based on the wood chip flow rate and the physical

dimensions of the digesters, e.g., the diameters and heights of different zones and physical
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locations of different sensors. Similar variable delay estimation strategy has been reported

in [174].

6.4.3 Variable Past Horizon Estimation

To extract the dynamic relations between the primary output and the secondary output,

one has to determine the necessary past horizon (p for DPLS or p′ for RO-DPLS) . For linear

systems, this can be determined based on the order of the dynamic system. For nonlinear

systems, past horizon could be higher in order to get a better linear approximation of the

actual nonlinear relationships [29]. Two different approaches can be adopted to select the

past horizon. One approach is based on [29], where PCA is performed on the data matrix

zp(k) or z∗p(k), so that an implicit multivariate autoregressive (AR) (ARX model if the

process inputs are included) is extracted directly from the data. The Q statistic obtained

from PCA is then the squared prediction error of the ARX model. If enough past horizon,

p or p′, is included in the data matrix, the Q statistic is statistically independent from one

time instant to the next. Another approach is based on [124] where autoregressive models

with different p or p′ values to the training data are fitted. The past horizon is selected to

be the p or p′ value that minimizes the small sample AIC criterion [175]. In this work, the

second approach is used.

6.5 Application to a Simulated Continuous Digester

In this section, the performance of the proposed RO-DPLS soft sensor approach will

be evaluated using a high-yield digester simulated with the extended Purdue model, and

compared with the traditional DPLS approach.

6.5.1 Simulator

The extended Purdue model developed in [146] was implemented as the “plant” for sim-

ulation purposes. The single-vessel high-yield digester as shown in Fig. 6.1 is approximated
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by 50 CSTRs in series, which results in 950 nonlinear ordinary differential equations (ODEs).

For this case study, the following process variables are employed:

• Output The primary output is the product Kappa number; the secondary outputs

include the effective alkali (EA), dissolved lignin (DL) and free liquor temperature

(T) of upper recirculation, lower recirculation and extraction flow. Both primary and

secondary outputs are measured every 6 minutes during the simulation. White noises

were added to both primary and secondary measurements during all plant simulation

with variances listed in Table 6.1. Note that only EA and DL were used as regressor

variables in [152], but we also include T because our experience shows that temperature

contributions cannot be neglected in the DPLS and RO-DPLS approaches. Also note

that besides the variables mentioned above, there are many other variables that are

usually measured in practice, including flow rates of different streams, concentrations

of other liquid phase compositions, etc.. However, for soft sensor construction in this

work, their contributions are negligible.

Table 6.1: Variances of the white measurement noise for the primary and secondary outputs

Output Variance
EA 0.015
DL 0.015
T 0.05
Kappa # 0.05

• Manipulated input Although upper heater temperature, lower heater temperature

and white liquor flow rate can be adjusted in the real process, the lower heater tem-

perature was chosen as the sole manipulated variable based on the results in [152].

• Unmeasured disturbance Three different types of unmeasured disturbances are

considered in this work, namely entering white liquor EA concentration, upper and
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Table 6.2: Selected regressor variables

Variable Description Location/Stream CSTR index
EA12 Free liquor effective alkali concentration Upper cooking 12
DL12 Free liquor dissolved lignin concentration Upper cooking 12
T12 Free liquor temperature Upper cooking 12
TU Upper heater exit temperature Upper heater exit -
EA18 Free liquor effective alkali concentration Lower cooking 18
DL18 Free liquor dissolved lignin concentration Lower cooking 18
T18 Free liquor temperature Lower cooking 18
TL Lower heater exit temperature Lower heater exit -
EA35 Free liquor effective alkali concentration Extraction 35
DL35 Free liquor dissolved lignin concentration Extraction 35
T35 Free liquor temperature Extraction 35

lower heater temperatures, and wood compositions. The disturbances can be intro-

duced to the simulator either separately or simultaneously, and both cases are studied

in this work.

6.5.2 Soft Sensors Setup

Following the procedures presented in Section 6.4, for both DPLS and RO-DPLS, the

same set of variables are selected to build the soft sensors, which are listed in Table 6.2.

The RO-DPLS parameters associated with the selected variables, including delay difference

from the product Kappa number (di) and past horizon (p′i), are listed in Table 6.3. For

DPLS, the past horizon p was chosen to be 34, which is the optimized number based on the

AIC criterion. For both DPLS and RO-DPLS, the number of principal components (PC’s)

are determined by 4-contiguous-block cross-validation. In this work, the same settings are

applied to both open loop and closed-loop case studies.

6.5.3 Open Loop Case Studies

Open loop simulations were conducted first. During the simulations, the liquor mea-

surements and Kappa number measurement were collected at the same frequency, i.e., every
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Table 6.3: Dynamic soft sensor setup

Variable p′i di

EA12 3 17
DL12 3 17
T12 3 17
TU 3 17
EA18 5 16
DL18 5 16
T18 5 16
TL 5 16
EA35 6 14
DL35 6 14
T35 5 14

Table 6.4: Variances of the white noise for the unmeasured disturbances

Disturbance Variance
ρs1

0.0003
ρs2

0.0007
ρs3

0.007
ρs4

0.0001
ρs5

0.002

6 minutes. To evaluate the performance of RO-DPLS, four different types of disturbances

are introduced:

Case 1: Integrated white noise with variance 0.0009 in entering white liquor EA concentra-

tion.

Case 2: Integrated white noise with variance 0.005 in upper and lower heater temperatures.

Case 3: Integrated white noises with variances listed in Table 6.4 in the five wood composi-

tions (ρsi
, i = 1, 2, ..., 5) at the inlet.

Case 4: The combination of the above three cases.

Note that the parameters listed in Tables 6.1 and 6.4 are the same as those in [166]. For

each case, 80 hours (800 samples) of simulated data were used for training; 700 hours (7000
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samples) of the simulated data were used for testing. To assess the performance of the differ-

ent soft sensors, three statistics are used, namely maximum relative estimated error (ǫmax),

mean prediction error (MPE) and mean squared prediction error (MSPE) as defined below.

ǫmax = max

∣∣∣∣

(
yi − ŷi

yi

)∣∣∣∣ (6.14)

MPE =
1

N

N∑

i=1

(yi − ŷi) (6.15)

MSPE =
1

N

N∑

i=1

(yi − ŷi)
2 (6.16)

where yi and ŷi are the measured and predicted Kappa numbers at the digester exit (i.e.,

the 50th CSTR) respectively.

The performances of the DPLS and RO-DPLS soft sensors for the four different cases are

summarized in Table 6.5. The results indicate that both methods can satisfactorily predict

the Kappa numbers, which is also confirmed by Fig. 6.4 where the predictions of the both

methods are compared to the measurements for Case 4. In other words, the case studies

demonstrate our theoretical result that DPLS can adequately capture process dynamics if

enough past horizon is included in the model. It can also be seen that the proposed RO-DPLS

soft sensor performed better than DPLS in all cases. RO-DPLS performed particularly better

than DPLS in the combined disturbance case (i.e., Case 4), which is probably more realistic

in an actual pulp digester. More importantly, RO-DPLS predicts the Kappa number 14 steps

ahead, while DPLS only provides one-step-ahead predictions. It is worth noting that if the

number of the training samples is increased by 10 times to 800 hours (8000 samples), the

performance of DPLS would be similar to that of RO-DPLS. However, the requirement of

large training data makes model building and maintenance more difficult. For example, the

industrial digester data used in this work were collected over a year. After data preprocessing

(i.e., eliminating data during digester down time, sensor failure, and zero/first order hold

values), only 1550 samples were left, which is equivalent to 155 hours of simulation. Also,
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the model built based on large training data would be slow to capture process changes when

implemented online with the corresponding recursive algorithm. In addition, it does not

change the fact that RO-DPLS prediction is 13 steps ahead of DPLS, which is beneficial for

controller design. The aspects of recursive implementations and controller design are revised

in Chapter 7.

Table 6.5: Comparison of DPLS and RO-DPLS: open loop cases

Case Case 1 Case 2 Case 3 Case 4

ǫmax

DPLS 0.9315 1.1044 1.5982 2.1831
RO-DPLS 0.9292 1.0211 1.2271 1.4879

% reduction 0.3% 7.5% 23.2% 31.8%

MPE
DPLS -0.1305 -0.0747 -0.3629 -0.6147

RO-DPLS -0.1094 0.0092 -0.1045 -.0595
% reduction 16.2% 87.7% 71.2% 90.3%

MSPE
DPLS 0.07493 0.08208 0.1991 0.6307

RO-DPLS 0.06892 0.06840 0.08640 0.1924
% reduction 8.0% 16.7% 56.6% 69.5%

6.5.4 Closed-Loop Case Study

In this subsection, it is demonstrated that both DPLS and the proposed RO-DPLS soft

sensors work not only for open loop data but also for closed-loop data as discussed in Sec-

tion 6.2. In addition, it is shown that RO-DPLS performs better than the traditional DPLS

soft sensor.

Previous studies [148, 176] have shown that with real-time feedback of the pulp Kappa num-

ber measurements, a well tuned PID controller can provide satisfactory control performance

in rejecting wood feed variances. In this closed-loop case study, the lower heater temperature

is selected as the manipulated input as in [152], and the rest of the 10 variables in Table 6.2

are secondary outputs. The plant model used to design the controller is a SOPTD model

identified from a step response in wood composition using the method reported in [172].
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Figure 6.4: Soft sensor performance comparison - open loop: (a) DPLS; (b) RO-DPLS
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Based on the SOPTD model approximation, a PID controller is designed with the trans-

fer function shown below, and the parameters based on the IMC-based controller tuning

relations [167] are summarized in Table 6.6.

G (s) =
Kce

−δ s

τ 2s2 + 2 ζτ + 1
(6.17)

Table 6.6: Controller tuning parameters

Kc τI τD

−0.0997 22.24 54.00

In this case study, 39 hours (390 samples) of simulated data were used for training; 95

hours (950 samples) of the simulated data were used for testing. White noise with variance

0.0002 was added to the Kappa measurements. Similar to the open loop cases, ǫmax, MPE,

and MSPE are used to evaluate the performance of DPLS and RO-DPLS, and the result

is summarized in Table 6.7. Figure 6.5 shows the comparison of the predictions of both

methods to the measurements. It can be seen from Figure 6.5 that DPLS and RO-DPLS

are indeed able to capture process dynamics when the process is under closed-loop control,

which is consistent with our theoretical finding in Section 6.2. In addition, both Table 6.7

and Figure 6.5 indicate that RO-DPLS outperforms DPLS. Similar to the open loop cases, if

the number of the training samples is increased by 10 fold, the performance of DPLS would

be similar to RO-DPLS. Even so, RO-DPLS provides 14-step-ahead prediction horizon that

the traditional DPLS cannot offer, which would allow us to tune the controller to be more

aggressive for better control. It is worth noting that in this case study, it is assumed that real-

time Kappa number is available for feedback control, which is not the case in practice. The

integration of the RO-DPLS soft sensor into digester control is currently under investigation.

It is worth noting that in this work the soft sensors were tuned (e.g., variable selection,

past horizon, number of PC, etc) to minimize MSPE because it is what matters in practice.
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Our experiences have shown that if the soft sensors were tuned to minimize MPE, higher

MSPE will be resulted.

Table 6.7: Comparison of DPLS and RO-DPLS: closed-loop case

ǫmax

DPLS 0.1062
RO-DPLS 0.0832

% reduction 21.7%

MPE
DPLS 0.0387

RO-DPLS 0.0225
% reduction 41.9%

MSPE
DPLS 1.90 × 10−3

RO-DPLS 0.523 × 10−3

% reduction 72.5%

6.6 Application to an Industrial Kamyr Digester

In this section we apply the RO-DPLS soft sensor to predict the Kappa number of a

single-vessel Kamyr digester using data from a paper mill located at Mahrt, Alabama run by

MeadWestvaco Corporation. The digester has a DCS and a Duralyzer-NIR digester analyzer

system [177, 178] to measure secondary measurements such as EA, DL, total dissolved solids

(TS) and active alkali (AA) for the different zones of the digester. The performance of RO-

DPLS is compared with that of DPLS. The soft sensors were trained using 1100 samples and

tested using 450 samples. Based on Joseph and Brosilow’s approach, totally 16 secondary

outputs were selected as regressor variables, which are listed in Table 6.8, together with the

associated delay and past horizon used in building the RO-DPLS model. As discussed in

Sec. 6.3, it is not required that all variables the have the same past horizon. It is just in this

case that a past horizon of 3 seems to work for all variables. Fine tuning the past horizon

for each variable would improve the performance for some cases, but the improvement is

incremental. For DPLS, the past horizon is set to be 22 based on the AIC criterion. The

same set of regressor variables are used for both DPLS and RO-DPLS soft sensors. The
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Figure 6.5: Soft sensor performance comparison - closed-loop: (a) DPLS; (b) RO-DPLS

number of PC’s to be retained was determined by 4-block cross-validation. Table 6.9 gives

the summary of the performance of the different soft sensors in terms of MPE and MSPE.

ǫmax is not included as a performance measure due to the significant measurement noise

and possibly outliers in the lab Kappa measurements as indicated by the occasional spikes

shown in Figure 6.6, where the soft sensor predictions are compared to the lab measurements.

Both Figure 6.6 and Table 6.9 show that RO-DPLS predicts the trend of Kappa number

changes better than DPLS. Another key aspect is that the RO-DPLS soft sensor offers
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Table 6.8: RO-DPLS model parameters

Variable di p′i
Top Circulation Temperature 10 3
Combined Heater Temperature 10 3
Upper Cooking [Na2S] 9 3
Upper Cooking [Na2CO3] 9 3
Upper Cooking [Lignin] 9 3
Upper Cooking [Total EA] 9 3
Lower Cooking [Lignin] 8 3
Lower Cooking [Na2CO3] 8 3
Lower Cooking [Na2S] 8 3
Lower Cooking [Total EA] 8 3
Extraction Temperature 6 3
Extraction [Na2CO3] 6 3
Extraction [Lignin] 6 3
Extraction [Na2S] 6 3
Extraction [Total EA] 6 3
Extraction [% Solids] 6 3

Table 6.9: Comparison of soft sensor performance in the industrial case

MPE
DPLS 1.0703

RO-DPLS 0.6267
% reduction 41.5%

MSPE
DPLS 14.6199

RO-DPLS 12.6850
% reduction 13.2%

a prediction horizon of 1.5 hours, that as mentioned earlier can be combined with more

aggressive controller settings to obtain better control of the Kappa number. In addition,

the DPLS soft sensor requires a much longer past horizon (22 samples, or 5.5 hr) compared

to that of RO-DPLS (3 samples, or 0.75 hr). The possible reason is that a LTI system is

used to approximate a nonlinear system with large transport delay. To capture the large

delay using an approximated linear system, the resulted linear system usually has a very

high system order (n); in addition, the past horizon p is usually required to be much larger

than the system order n in order to ignore the effect of initial state. Therefore, the resulted
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DPLS soft sensor requires a much longer past horizon. This is consistent with the findings

in [152], where the identified linear model for a continuous Kamyr digester using subspace ID

has the system order of n = 40. Even for the reduced order model in [166], the system order

is 25 for a continuous Kamyr digester. All of these advantages offered by the RO-DPLS soft

sensor makes the proposed approach a viable option for online implementation.
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Figure 6.6: Soft sensor performance comparison - industrial case: (a) DPLS; (b) RO-DPLS
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6.7 Conclusion and Discussion

In this chapter, a theoretical analysis on the DPLS soft sensor is provided. By deriving

the DPLS soft sensor formulation using the subspace ID framework, it is shown that the

DPLS soft sensor is theoretically a dynamic estimator that can adequately capture the

process dynamics provided that the past horizon is long enough. In addition, by setting the

future horizon f = 1, the DPLS soft sensor works for both open loop and closed-loop data,

which is different from some subspace ID methods.

To reduce the number of lagged variables that are required to be included in the regressor

matrix for the traditional DPLS soft sensor, a reduced-order DPLS approach is proposed.

By explicitly estimating the transport delay involved in the process, time-shifted variables

are used as regressor variables to reduce the system order, therefore reducing the required

past horizon for prediction. In this way, not only a reduced-order model that provides

superior performance can be obtained, but also multiple-step-ahead prediction instead of

one-step-ahead prediction are achieved.

The performance of the proposed RO-DPLS is demonstrated using both a simulated

single-vessel continuous digester and an industrial Kamyr digester at MeadWestVaco Corp.

The simulation results confirm that the DPLS and RO-DPLS soft sensors can capture process

dynamics adequately for both open loop and closed-loop operations. In addition, it was

shown that the RO-DPLS soft sensor performs better than the traditional DPLS approach,

especially when training data are limited. The industrial case study also confirms that RO-

DPLS provides an effective and practical solution to estimate the product Kappa number

for continuous digester.

It is worth noting that the application of the proposed RO-DPLS approach is not limited

to pulp digesters. Instead, it can be applied whenever DPLS is applicable. RO-DPLS will

be advantageous when significant delays exist between the available secondary output and

the primary output to be estimated.
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Finally, as pointed out earlier, real industrial processes are usually time-varying. For

example, when the operation point such as cooking temperature changes, or when the wood

type changes, the soft sensor model should change as well. To address this difficulty, different

adaptive schemes to update the soft sensor online are investigated in the next chapter.
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Chapter 7

Recursive Reduced-Order Dynamic PLS Soft Sensor

7.1 Introduction

In many industrial processes such as distillation columns and pulping digesters, the pri-

mary product variables that are required for feedback control are either not measured online

or not measured frequently. For example, for the Kamyr pulp digesters, the Kappa number,

a key indicator of the extent of reaction, is usually measured in a laboratory once per hour

with half an hour to one hour measurement delay. To address this challenge, many data-

driven soft sensors have been developed and implemented in process industry. Due to the

growing popularity, demonstrated usefulness and huge potential, soft sensor development has

attracted many research interests in the past two decades [39, 44, 46, 47, 179, 180]. The most

commonly applied modeling techniques in data-driven soft sensors are principal component

analysis (PCA), partial least squares (PLS), artificial neural networks (ANN) and support

vector machine (SVM) [51, 52, 54, 57, 181–183]. Kadlec et al. [139, 140] provide a compre-

hensive review on the characteristics of the data generated from the industrial processes and

different data-driven soft sensor modeling techniques. A more systematic and thorough dis-

cussion on the design procedures of soft sensors and their applications for solving industrial

problems can be found in [49].

Among different data-driven soft sensor approaches, the dynamic partial least squares (DPLS)

soft sensor approach has been applied to many industrial processes due to its simplicity and

available adaptive versions. In the previous chapter [63], a theoretical analysis on the DPLS

soft sensor modeling approach is provided, and it was proved that for a linear time invariant

(LTI) system, the DPLS soft sensor is a dynamic estimator that can adequately capture

process dynamics provided that enough lagged variables are used to build the model [63]. In
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addition, a reduced-order DPLS (RO-DPLS) soft sensor approach was developed to address

some limitations of the traditional DPLS soft sensor when applied to processes with large

transport delays. Case studies of both simulated and industrial Kamyr digesters demonstrate

the improved performance of RO-DPLS soft sensor compared to the traditional DPLS soft

sensor.

In [63], only a static RO-DPLS soft sensor was considered. However, industrial processes

often experience time-varying changes, such as variations in process input material, process

fouling and catalytic decaying. As a result, the performance of an off-line developed soft

sensor often deteriorates. Under these circumstances, it is desirable to update the soft sen-

sor model with the new process data to reflect the process changes. Various adaptation

techniques have been published to update DPLS soft sensors online. Helland et al. [137]

introduced a recursive PLS (RPLS) regression algorithm which updates the model based on

new data without increasing the size of data matrices. Qin [138] further proposed a block-

wise RPLS, as well as a moving window and forgetting factor adaptation schemes. Dayal and

MacGregor [154] proposed a computationally efficient RPLS by using a kernel algorithm [184]

for the PLS computation rather than the NIPALS method [24]. However, existing work on

recursive PLS schemes mainly focus on investigating their theoretical properties, as well as

designing schemes to reduce computational load. To the best of our knowledge, no result

has been published on the practical aspects of these schemes, such as how to choose the

updating frequency and how to select the number of PLS components in order to optimize

the model performance.

In this chapter, the previously proposed RO-DPLS soft sensor [63] is extended to its online

adaptive version in order to track process changes. Several model update schemes as well

as different data scaling methods are examined with the emphasis on gaining understand-

ing on the practical aspects of the different recursive schemes. Simulated cases studies and

two data sets collected from an industrial Kamyr digester are used to compare different ap-

proaches [67–70]. The rest of the chapter is organized as follows: Section 7.2 provides some
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background information for the RO-DPLS soft sensor. Section 7.3 compares the performance

of RO-DPLS with different model updating schemes and data scaling methods reviewed in

Chapter 5 using simulated and real industrial data. In Section 7.4, the effectiveness of the

recursive RO-DPLS soft sensor is also demonstrated using a digester closed-loop control case

study. Finally, conclusions and discussions are presented in Section 7.5.

7.2 Brief Review of the RO-DPLS Soft Sensor

For some chemical processes such as Kraft pulping, the process orders are very high

due to transport delay, strong process dynamics and/or nonlinearity. For such processes,

if a traditional DPLS approach is used, a large number of regressor variables (including

their lagged values) would be included in the soft sensor to capture the process dynamics

adequately. The regressor variables in the traditional DPLS approach denoted by zp(k) are

shown in Equation (7.1).

zp(k) = [u1(k − 1), · · · , u1(k − p), · · · , um(k − 1), · · · , um(k − p),

v1(k − 1), · · · , v1(k − p), · · · , vl(k − 1), · · · , vl(k − p)]T (7.1)

where ui (i = 1 · · ·m) are process input variables, p is the window of lagged variables

which is usually (much) larger than the process order, and vi (i = 1 · · · l) are secondary

output variables. The potential issue with this traditional DPLS approach is that model

building requires large amount of training samples due to large number of regressor variables,

which in turn slows down the model’s response to process changes. To address this, in the

previous chapter, the RO-DPLS approach is proposed which significantly reduces the number

of regressor variables by taking the process characteristics into account. For processes with

large transport delay, if the delay time can be identified and eliminated by time shifting the

measurements, the system order can be effectively reduced, and much fewer lagged variables

can be used to build the soft sensor without sacrificing the prediction performance. In the
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RO-DPLS soft sensor, instead of including all the variables that are used in the traditional

DPLS approach, based on the principle of parsimony, only the variables that contribute

the most to the primary output variables are selected to build the dynamic soft sensor. The

regressor variables in the RO-DPLS approach, denoted by z∗p(k) are shown in Equation (7.2).

z∗p(k) = [u1(k − du1
), · · · , u1(k − du1

− p′), · · · ,

um(k − dum
), · · · , um(k − dum

− p′),

v1(k − dv1
), · · · , v1(k − dv1

− p′), · · · ,

vl(k − dvm
), · · · , vl(k − dv1

− p′)]
T

(7.2)

where dui
denotes the delay difference between the ith input and the primary output, and

dvj
denotes the delay difference between the jth secondary output and the primary output.

Let dmax = max{dui
dvj

}, dmin = min{dui
, dvj

}, (i ∈ [1, · · · , m], j ∈ [1, · · · , l]). It is

clear that p ≥ dmax + p′, and in most cases p ≫ p′. Therefore, by incorporating the process

delay information, RO-DPLS effectively reduces the dimension of the regressor. Another

important advantage of RO-DPLS is that dmin-step-ahead prediction is obtained compared

to one-step-ahead prediction from the traditional DPLS.

7.3 Comparison of the RO-DPLS Soft Sensor Performance and Practical As-

pects

In this section, the previously developed RO-DPLS soft sensor is extended to its recursive

version by applying the different model updating schemes and data scaling methods discussed

in Chapter 5. In this section, the impact of two practical aspects on different recursive PLS

schemes is investigated: model update frequency and the way to determine the number of

PLS components for prediction. A simulated case study and two industrial case studies of a

single vessel high yield Kamyr digester are used to compare the performance of RO-DPLS

with different model updating schemes and the corresponding data scaling methods.
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Table 7.1: Standard deviations of the white noise for the unmeasured disturbances

Disturbance σ
ρs1

0.1732
ρs2

0.2646
ρs3

0.8367
ρs4

0.1000
ρs5

0.4472
EA 0.0300
HS 0.0089

7.3.1 Description of the Data Sets and Case Studies

Simulated data set

The extended Purdue model [146] is implemented to simulate a single vessel high yield

Kamyr digester. The digester is approximated by 50 CSTRs in series. Open loop simulation

is conducted to generate the data set. During the simulation, the liquor measurements and

Kappa number measurements are collected at the same frequency, i.e., one sample every 6

minutes. Integrated white noise disturbances (dk+1 = dk + wk) are introduced to white liquor

compositions of effective alkali (EA), active hydrosulfide (HS), and five wood compositions

(ρsi
, i = 1, 2, ..., 5) at the inlet. The standard deviations of the white noise (wk) for the

unmeasured disturbances are listed in Table 7.1. In addition, measurement noises are added

to both primary and secondary variables during all plant simulation with standard deviations

listed in Table 7.2. 300 hours of data were simulated for training and 250 hours for testing.

The RO-DPLS soft sensor is set up as in [63]. The secondary variables that are selected as

regressor variables are listed in Table 7.3, and the delay (di) and past horizon (pi) of each

regressor variable are listed in Table 7.4.

Industrial data sets

Two industrial data sets were collected from a Kamyr digester at a pulp mill located

in Mahrt, Alabama run by MeadWestvaco Corp. The digester has a DCS system and a
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Table 7.2: Standard deviations of the white measurement noise for the primary and secondary
outputs

Output σ
EA 0.1225
DL 0.1225
T 0.1225

Kappa # 0.2236

Table 7.3: Selected regressor variables for the simulated case study

Variable Description Location/Stream CSTR index
EA12 Free liquor EA concentration Upper cooking 12
DL12 Free liquor DL concentration Upper cooking 12
T12 Free liquor temperature Upper cooking 12
TU Upper heater exit temperature Upper heater exit -
EA18 Free liquor EA concentration Lower cooking 18
DL18 Free liquor DL concentration Lower cooking 18
T18 Free liquor temperature Lower cooking 18
TL Lower heater exit temperature Lower heater exit -
EA35 Free liquor EA concentration Extraction 35
DL35 Free liquor DL concentration Extraction 35
T35 Free liquor temperature Extraction 35

Duralyzer-NIR digester analyzer [177, 178] to measure secondary measurements such as

effective alkali (EA), total dissolved solids (DS), dissolved lingin (DL), and active alkali

(AA) for different streams of the digester. The first data set collected in 2006 contains

1570 samples with Kappa measurements (data set I). The second data set collected in 2010

contains 350 samples (data set II). Several commonly applied basic steps were taken to

preprocess the data sets, which include the removal of zero and first order hold readings,

as well as the removal of evident outliers (e.g. negative readings for flowrate). To avoid

distorting the information contained in the process data, no filtering technique (e.g. low

pass filter) was used because the presence of non-white noise could affect the performance

of the filtering step.

For industrial case study I, 1100 sample points from data set I are used as the training data
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Table 7.4: RO-DPLS model parameters for the simulated case study

Variable di pi

EA12 17 3
DL12 17 3
T12 17 3
TU 17 3
EA18 16 5
DL18 16 5
T18 16 5
TL 16 5
EA35 14 6
DL35 14 6
T35 14 5

to build the initial model and 420 sample points from data set I as the testing data for online

update. For industrial case study II, as in the previous case, 1100 sample points from data set

I are used as training data, but 300 samples from the data set II are used as the testing data

for online update. Clearly, case study II presents a significantly more challenging problem

as training and testing data sets are collected about 4 years apart. The soft sensor setup for

the industrial case is the same as that reported in [63]. Totally 10 secondary variables are

selected as the regressor variables, which are listed in Table 7.5 together with the associated

delay (di) and past horizon (pi).

7.3.2 RO-DPLS Model Update Performance Comparison

To eliminate the effect of outliers on different RO-DPLS model update schemes, multi-

variate off-line outlier detection is performed to remove outliers from the industrial data

sets. In this way, a fair comparison of different model update schemes can be provided.

Specifically, the leverage and studentized residual of each sample is computed in order to

analyze the independent and dependent variable spaces and detect the outliers. To assess

the performance of the RO-DPLS model update schemes, the mean squared error (MSE)
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Table 7.5: RO-DPLS model parameters for the industrial case studies

Variable di pi

Top Circulation Temperature 3 10
Combined Heater Temperature 10 3
Upper Cooking [Na2S] 9 3
Upper Cooking [Na2CO3] 9 3
Upper Cooking [Lignin] 9 3
Upper Cooking [Total EA] 9 3
Lower Cooking [Lignin] 8 3
Lower Cooking [Na2CO3] 8 3
Lower Cooking [Na2S] 8 3
Lower Cooking [Total EA] 8 3
Extraction Temperature 6 3
Extraction [Na2CO3] 6 3
Extraction [Lignin] 6 3
Extraction [Na2S] 6 3
Extraction [Total EA] 6 3
Extraction [% Solids] 6 3

and mean error (ME) are utilized. Their definitions are given below.

MSE =
1

N

N∑

i=1

(yi − ŷi)
2 (7.3)

ME =
1

N

N∑

i=1

(yi − ŷi) (7.4)

where yi and ŷi are the measured and predicted Kappa numbers at the digester exit, respec-

tively. Because each model update scheme has certain tuning parameters associated with it,

extensive experiments have been done to test the different settings of each scheme in order to

gain better understanding on their properties. In this comparison, the effect of two factors

on model performance is examined in detail: model update frequency and how to select the

number of PLS components for prediction.
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The effect of model update frequency

How often the soft sensor model should be updated in order to achieve the optimal

performance depends on the process and the model update scheme. For all model update

schemes, a search is done over a wide range of updating intervals by changing the number

of new samples used for model update. The comparison results for the three case studies

are presented in Figures 7.1 - 7.3 and will be discussed in detail in the following paragraphs.

Note that for FF-BRPLS, besides the model update interval, the choice of forgetting factor

also plays an important role in determining model prediction performance. To address this,

a two-dimensional search is conducted, and in Figures 7.1 - 7.3 only the effect of the model

updating frequency under the optimal forgetting factor is presented. Figure 7.4 shows the

effect of forgetting factor on FF-BRPLS with a fixed model update interval (80 samples) for

all three case studies.

a) Simulated case study

For the simulation case study, Figure 7.1 shows that the RO-DPLS soft sensor performs

better when the model is updated more frequently, no matter what recursive model

update algorithm is used. Specifically, updating the model more frequently not only

reduces MSE, but also reduces bias (ME) in the prediction error. This is mainly due to

the strong time-varying characteristics of the process caused by the disturbances in the

wood composition as well as the white liquor composition. It is worth noting that al-

though Figure 7.1(a) indicates RO-DPLS with FF-BRPLS updating scheme provides

the smallest MSE, it does not necessarily mean that it provides the best prediction

performance as its estimates are more biased than some other updating schemes such

as RPLS when the model is updated relatively frequently. To illustrate this point,

the best prediction performances of different updating schemes are compared in Fig-

ures 7.5(a) (RPLS and FF-BRPLS) and 7.5(b) (BRPLS and MW-BRPLS). Both fig-

ures show that the RO-DPLS soft sensors with different model update schemes provide
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Figure 7.1: Effect of different update intervals in four model update schemes applied to a
simulated case study. (a)MSE ; (b) ME.

good prediction performance and track the process changes well. In addition, Fig-

ure 7.5(a) shows that although both FF-BRPLS and RPLS updating schemes provide

good prediction, the RPLS scheme tracks the process trend better than FF-BRPLS.

Figure 7.5(b) shows that MW-BRPLS tracks the process trend better than BRPLS,

but the predictions are noisier.

b) Industrial case studies

As shown in Figures 7.2 and 7.3, the results of RO-DPLS with different model updating
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Figure 7.2: Effect of different update intervals in four model update schemes applied to
industrial case study I. (a) MSE ; (b) ME .

schemes are mixed for the industrial case studies. There is no single method that

consistently outperforms others for different model update intervals. This is possibly

due to the fact that in the industrial data sets, the Kappa number measurements

contain significant amount of noises caused by different technicians who handle the

samples during different shifts; in addition, there are limited testing samples in both

data sets. Because of the same reasons, MSE may not be an accurate indicator of the

soft sensor performance, and ME seems to be a better performance index than MSE. To
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Figure 7.3: Effect of different update intervals in four model update schemes applied to
industrial case study II. (a) MSE ; (b) ME .

illustrate this point, the prediction performance of two selected settings are compared

in detail for each method. For industrial case study I, the specific settings and

performance indices of each recursive model update scheme are listed in Table 7.6 and

their prediction performance are plotted in Figure 7.6. Both Table 7.6 and Figure 7.6

show that when the RO-DPLS soft sensor is updated more frequently, it tracks the

process variation better, although it may have a slightly higher MSE. When the soft

sensor is updated less frequently, the model prediction tends to ignore the large process
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Figure 7.4: Effect of different forgetting factor on soft sensor performance for a fixed update
interval in three case studies. (a) MSE ; (b) ME.

variations and stays closer to the mean of the primary variable. These are true for all

updating schemes and are most clearly demonstrated by the RPLS updating scheme

(i.e., Figure 7.6(a)). Therefore, ME is a better performance index than MSE in this

specific industrial case study. For industrial case study II, Figure 7.7 compares the

prediction performances of the RO-DPLS soft sensor with two selected settings for each

model updating scheme. The specific settings and corresponding performance indices

are listed in Table 7.7. Compared to the industrial case I, the prediction performances
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Figure 7.5: Prediction performance of different model update schemes applied to a simulated
case study. RPLS vs. FF-BRPLS (a); BRPLS vs. MW-BRPLS (b).

of the RO-DPLS soft sensor with different updating schemes are noticeably worse. This

is expected given that the initial model is the same initial model of the case study I,

which is built with the data collected in 2006, while the testing data of the case study

II were collected in 2010. In addition, because ME provides better indication of soft

sensor performance than MSE in this case study, Table 7.7 shows that RO-DPLS soft

sensor with RPLS updating scheme provides the best prediction performance when

updated relatively frequently (i.e., every 10 samples or about every 2.5 hours). This is
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mainly due to the fact that in the industrial case study II, the initial 2006 model does

not provide a good description of the 2010 testing data, and the soft sensor performance

relies heavily on how the model is updated. Because the information contained in the

new measurements is quite different from the initial model, it makes sense to use the

data themselves directly (i.e., the RPLS updating scheme) to update the model instead

of using the sub-PLS model extracted form the new data (i.e., the rest of the updating

schemes), as the sub-model will more or less remove some information from the data.

c) Discussion

The extensive experiments performed, show that for the digester process the RO-DPLS
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Figure 7.6: Prediction performance of selected cases for different model update schemes
applied to industrial case study I. RPLS (a); BRPLS (b); MW-BRPLS (c); FF-BRPLS with
λ = 0.1 (d).
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Table 7.6: Settings and performance indices of RO-DPLS with different model update
schemes for industrial case study I

Updating scheme Scaling method Update interval MSE ME
RPLS RSC 10 samples 16.9133 0.0968

80 samples 14.2192 0.1877
BRPLS RSC 20 samples 15.7986 0.0934

120 samples 14.5871 0.1429
MW-BRPLS MWSC 40 samples 17.8934 0.1968

140 samples 14.4135 0.2875
FF-BRPLS FFSC 80 samples 16.0281 0.1753

140 samples 15.8370 0.4732
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Figure 7.7: Prediction performance of selected cases for different model update schemes
applied to industrial case study II. RPLS (a), BRPLS (b), MW-BRPLS (c), and FF-BRPLS
with λ = 0.1 (d).

soft sensor with regular RPLS model updating scheme usually provides the best predic-

tion performance when the model is updated frequently (e.g., with 10 sample interval),
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Table 7.7: Settings and performance indices of RO-DPLS with different model update
schemes for industrial case study II

Updating scheme Scaling method Update interval MSE ME
RPLS RSC 10 samples 22.4115 0.0592

80 samples 20.7392 0.6181
BRPLS RSC 60 samples 28.9921 3.0328

80 samples 22.4171 2.2200
MW-BRPLS MWSC 40 samples 24.7838 0.7956

80 samples 23.7232 1.7756
FF-BRPLS FFSC 40 samples 22.2816 0.0787

80 samples 20.0813 0.8975

which is mainly due to the volatile nature of the process. In addition, generally speaking

for processes that experience considerable variations, BRPLS model updating scheme

may not be a good choice. The benefits associated with BRPLS, i.e., computational

and storage efficiency, become more clear when the block size is large. However, large

block size usually results in sluggish tracking of process changes and may deteriorate

soft sensor performance for the processes that show significant time-varying behavior.

A question may arise that if it has been proven that both regular RPLS and BRPLS

are equivalent to the regular PLS, why their performances differ from each other no-

ticeably in these case studies. The answer is that the condition for the equivalency to

hold, i.e., the PLS model for the historical data and the PLS sub-model for the new

data have to capture the variability in X and X1 data blocks completely, is generally

not satisfied, especially for industrial data. To elaborate this point, the data pairs used

to build the model of the three algorithms are listed below.

• Regular PLS:









X

X1



 ,




Y

Y1










• RPLS:









PT

X1



 ,




BQT

Y1









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• BRPLS:









PT

PT
1



 ,




BQT

B1Q1
T










One way to interpret the RPLS algorithm is that PT and BQT can be viewed as

the representative samples for the historical data X and Y, as they are the set of

orthogonal bases that span the principal subspace of data block X and Y, respectively.

Similarly, for BRPLS, PT
1 and B1Q

T
1 can be viewed as the representative samples for

the new data block. When RPLS and BRPLS are implemented, the number of PLS

components is often determined through cross-validation, and is usually much smaller

than the number of samples in the data sets. Therefore, part of the information

contained in the original data will be lost when PT and BQT (or PT
1 and B1Q

T
1 ) are

used to replace the data blocks. By choosing the size of the new data block carefully,

the PLS sub-model (i.e., PT
1 and B1Q

T
1 ) can adequately capture the variability in the

new data. However, this may be difficult to achieve when there are sudden changes

in the process, as shown in the industrial case study II. When the size of the new

data block is too small, the PLS sub-model may not adequately capture the variability

of the new process condition, as the variability in the residual space of the PLS sub-

model is completely discarded. On the other hand, if the size of the new data block is

too big, the delay associated with data accumulation may deteriorate the soft sensor

performance. Therefore, for the cases where the process is not sampled frequently,

RPLS is a more reliable choice compared to BRPLS.

d) A modified data scaling approach

It has been recognized that data scaling affects the soft sensor performance, especially

when there exists operation point changes. One disadvantage associated with the

commonly used data scaling method for RPLS, i.e., Equations (5.13) and (5.14), is

that when n (i.e., the number of samples) is large, the mean and the variance do not

change much, no matter how the new data differs from the old data, as the weighting
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assigned to the new data becomes negligible for large n. To address this limitation, a

modified data scaling method is proposed by replacing n with N , where N is a fixed

integer. In this way fixed weightings are assigned to the previous data and the new

data.

The effect of the number of PLS components retained for prediction

For model prediction, Qin [138] recommended that the number of components to be

determined through cross-validation for various recursive PLS algorithms. However, in the

same work, it was also pointed out that “An interesting issue that deserves further study is

how to perform cross-validation online to update the number of components needed for pre-

diction”. In this subsection, the performance of the RO-DPLS soft sensor with different ways

of selecting the number of components for prediction is compared and our recommendations

are provided. The performances of the RO-DPLS soft sensor with five different component

selection methods are compared using the simulated data.

a) Number of components is determined through leave-one-out cross-validation with max-

imum allowed number of components as 10.

b) Number of components is determined through block cross-validation, with maximum

allowed number of components as 10, i.e., all training data are divided into four blocks

and three of them are used to build the model while the fourth one is used for cross-

validation.

c) Number of components for prediction is fixed to two.

d) Number of components for prediction is fixed to three.

e) Number of components for prediction is fixed to four.

In this comparison, only the results on the RO-DPLS with regular RPLS update scheme

are presented. The results on other model update schemes are similar to those on RPLS.
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Figure 7.8 shows the MSE and ME for the five cases over a wide range of model updating

intervals. Figure 7.8 indicates that the two cross-validation approaches perform better than

the approaches with fixed number of components, especially when the soft sensor model is

not updated frequently. However, around the optimal updating intervals, i.e., model update

every 10 samples, there is not much difference among the different component selection ap-

proaches in terms of MSE and ME. To gain a better understanding on how cross-validation

0 10 20 30 40 50 60 70 80 90 100110 120130140 150
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

Model update interval (No. of samples)

M
S

E

 

 

CBcv
LOOcv
2pc
3pc
4pc

(a)

0 10 20 30 40 50 60 70 80 90 100110 120130140 150
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Model update interval (No. of samples)

M
E

 

 

CBcv
LOOcv
2pc
3pc
4pc

(b)

Figure 7.8: Simulated case study, MSE (a) and ME (b) of RO-DPLS prediction with fixed
or cross-validation selected components for a range of updating intervals.

approaches perform, the number of components determined through cross-validation for each
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Figure 7.9: Histogram of the number of components determined through cross-validation
in the simulated case study for two different cross-validation methods. (a) four contiguous
blocks cross-validation with model updated every 10 samples; (b) four contiguous blocks
cross-validation with model updated every 100 samples; (c) leave-one-out cross-validation
with model updated every 10 samples; (d) leave-one-out cross-validation with model updated
every 100 samples.

update is monitored over the entire testing period. Two representative cases are examined,

model update every 10 samples and model update every 100 samples. Figure 7.9 shows the

histogram of the number of components determined through cross-validation approaches.

From Figure 7.9, it is observed that when the model is updated every 10 samples, the num-

ber of components for prediction determined through two cross-validation approaches have

a wide distribution from 1 to 10. However, when 100 samples are used for update, the se-

lected number of components becomes either 1 or 2. One possible reason for such difference

is the large variation presented in the process. When fewer samples are used to update

the model, the disturbances and noises contained in the new measurements have a bigger
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impact on cross-validation. Consequently, the number of components determined through

cross-validation shows a wide distribution. Because the dominant process variability is not

likely to change so dramatically with in a short period of time, the great variability in the

number of components for prediction determined through cross-validation many not repre-

sent the process correctly. Therefore, when the soft sensor is updated every 10 samples,

using the approach of fix number of components is preferred. On the other hand, when more

samples (e.g., 100 samples) are used to update the model, the process may experience a

sequence of changes during the update interval. Consequently, using more components will

provide better description for one segment of the data, but it may yield poorer prediction

for another segment of the data, as the process may have already changed. In contrast, if

fewer components are selected, the model will only capture the most dominant directions of

process variation which are not likely to change over a period of time. This is why only one or

two components are selected for optimal prediction when 100 samples are used to update the

model. For the simulated case study and industrial case study I, when the model is updated

every 10 samples, there is not much difference in the model prediction performance between

the cross-validation approaches and the fixed number of components approach. However, for

the industrial case study II, even though the MSE for both approaches are similar, their de-

tailed prediction performances look different. In Figure 7.10(a), the histogram of the number

of components determined through cross-validation is shown and Figure 7.10(b) compares

the detailed prediction performance of the fix number of components (i.e., 2 components) and

cross-validation approach. Figure 7.10(a) shows that for 40% of the testing period, only one

component is selected, this is due to the extremely volatile nature of this industrial process.

Figure 7.10(b) indicates that due to the limited amount of process variability captured by

one component, several segments of the predictions are nearly constant. In contrast, when

the number of components is fixed at 2, there is no segment with nearly constant predictions.

This example further supports the choice of the fixed number of components approach for
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model prediction for the processes of volatile nature which require a frequent model update.
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Figure 7.10: Histogram of the number of components determined through cross-validation
(a) and comparison of prediction performance for fixed number of components vs. cross-
validation approach (b) for industrial case study II.

7.4 Application of the Recursive RO-DPLS Soft Sensor to Digester Control

In this section, the recursive version of the RO-DPLS soft sensor with RPLS updat-

ing scheme is applied to control the simulated Kamyr digester. Two control scenarios are
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compared: PID control with Kappa number measurement feedback (CL-1), and PID con-

trol with the soft sensor predicted Kappa number feedback (CL-2). In this case study, a

challenging control problem is considered: rejecting the disturbance of wood type change.

It is worth noting that wood type change (from softwood to hardwood and vice versa) is

a major disturbance in pulping process, and usually results in off-spec product during the

transition [185].

7.4.1 Simulation Setup

The Purdue model introduced in section 7.3.1 is implemented to simulate the Kamyr

digester. The simulation starts with softwood as feeding material. Ten hours after the

process reaches steady-state, the feed is switched from softwood to hardwood, i.e., a step

disturbance. The corresponding reaction kinetics parameters and stoichiometric coefficients

for the different types of wood can be found in [146]. The parameters of the integrated white

noise are the same as those listed in Table 6.4. The secondary variables are sampled every 6

minutes, and the primary variable (i.e., the Kappa number) is sampled every 30 minutes plus

30 minutes measurement delay. For soft sensor update, the RO-DPLS with regular RPLS

update scheme is implemented and the soft sensor model update interval is 10 samples of

the Kappa measurement.

7.4.2 Controller Design

Similar to the work presented in [176], the transfer function model for the Kamyr digester

is identified through step response. The transfer function uses a second order plus time delay

(SOPTD) to approximate the dynamics between the input (lower heater temperature) and

the output (the Kappa number); i.e.,

G(s) =
Kpe

−θps

τ 2s2 + 2ζτs + 1
(7.5)
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Table 7.8: PID controller settings

Case Feedback scheme Kc τI(min) τD(min)
CL-1 measurement feedback -0.0796 54.21 22.27
CL-2 soft sensor prediction feedback -0.1114 54.21 22.27

with Kp = −2.4, τ = 34.7 min, and ζ = 0.78. Here θp = 112.3 min represents the transport

delay associated with the pulping process. When the measurements are fed back to con-

trol the process, measurement delay has to be considered, and the overall transfer function

becomes

G(s) =
Kpe

−(θp+θm)s

τ 2s2 + 2ζτs + 1
(7.6)

where θm = 30 minutes is the measurement delay associated with the Kappa number. Based

on the identified SOPTD model, the PID controller settings are determined following the

IMC tuning relationships [167]. To make the comparison consistent, the same closed-loop

time constant is used to tune the two controllers, where τc is set to be θp + θm, which is a

relatively conservative setting. For Kappa number measurement feedback, the overall delay

time is θ = θp + θm = 142.3 minutes, and the feedback frequency is every 30 minutes. For

soft sensor estimated Kappa number feedback, because the soft sensor predicts the future

Kappa number with future horizon (θf = 42 minutes), the overall delay θ = θp − θf = 70.3

minutes. In addition, because the soft sensor provides the Kappa number every 6 minutes,

the feedback frequency is every 6 minutes. The same tuning rule is applied to both control

scenarios. The corresponding PID controller tuning parameters are listed in Table 7.8.

7.4.3 Comparison of Closed-Loop Performance

In this section, the performance of the recursive RO-DPLS soft sensor is examined, then

the closed-loop performances for the two PID controllers are compared. Figure 7.11 shows

the Kappa number measurement vs. soft sensor prediction in the open loop operation after
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a wood type change disturbance is introduced. Figure 7.11 indicates that with recursive

update, the RO-DPLS soft sensor can track the major process change very well.
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Figure 7.11: Open loop response to a wood type disturbance and soft sensor prediction

Figure 7.12 shows the closed-loop performance for the two control scenarios. By com-

paring the two closed-loop responses, it is clear that feeding back the predicted future Kappa

number can significantly improve the closed-loop performance by considerably reducing set-

tling time. This improvement is mainly achieved by the significantly reduced overall process

delay (from θp + θm to θp − θf ), which allows a much more aggressive controller tuning. In

addition, the improvement is due to the more frequent feedback which is also enabled by

the soft sensor. It is worth noting that the controller performances depicted in Figure 7.12

present a fair comparison but are not optimized, which can be improved through optimizing

control tuning parameters. However, the conclusion that the closed-loop control with soft

sensor prediction feedback greatly outperforms the closed-loop control with measurement

feedback will not change under any fair comparison.
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Figure 7.12: Comparison of closed-loop response for CL-1 (Kappa measurement feedback)
and CL-2 (soft sensor prediction feedback)

7.5 Conclusion and Discussion

In this chapter, the previously developed RO-DPLS soft sensor is extended to its online

adaptive version. Four different model update schemes are examined, namely RPLS, BR-

PLS, MW-BRPLS, and FF-BRPLS, together with their corresponding data scaling methods.

Extensive experiments were performed with one simulated case study and two industrial case

studies to investigate the properties of different model update schemes.

Results show that for the processes that experience constant changes and various distur-

bances such as the digester process, recursive RO-DPLS with RPLS model update scheme

generally performs the best with frequent update. This is expected because for processes that

are constantly changing, frequent update provides better tracking of the process changes.

Also, for frequent model update, it is preferred to use the new process data directly to update

the soft sensor model (i.e., the RPLS scheme), instead of using the sub-PLS model extracted

from the new data as in the BRPLS scheme. This is because the sub-PLS model built based

on the new process data with limited sample size may lose important process information

if it is not in the principal subspace defined by the directions of dominant process variation
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during that short period. In addition, although the cross-validation method is usually rec-

ommended to determine the number of components for model prediction, it is found that

when the soft sensor model is updated frequently, it would be better to fix the number of

components for prediction. This is because when the number of samples for model update

is small, the results from the cross-validation method may be overly sensitive to process

disturbance and results in dramatic changes in the number of selected components, which

may negatively affect prediction performance.

The effectiveness of the recursive RO-DPLS soft sensor with RPLS update scheme is demon-

strated through a digester closed-loop control case study where a PID controller is used

to reject a major process disturbance, wood type change, and other common process dis-

turbances. By comparing the closed-loop performance between measurement feedback and

soft sensor prediction feedback, it is shown that the closed-loop control performance can be

significantly improved if the soft sensor prediction is fed back to the PID controller. The

improvement is mainly due to the reduced overall process delay as well as more frequent

feedback enabled by the reduced order model and the high frequency Kappa number predic-

tions.

Finally, it is worth noting that outlier detection plays a critical role in PLS-based soft sensor,

especially for recursive soft sensors that are updated online. In this chapter, the industrial

data are pre-processed to remove all outliers before applying soft sensors scaling, as the focus

is to investigate the different recursive update schemes and data scaling methods. However,

for industrial application, online outlier detection is an imperative component for recursive

data-driven soft sensor development and will be addressed in the next chapter.
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Chapter 8

Bayesian Supervision of Outliers for a Recursive Soft Sensor Update

8.1 Introduction

In many industrial processes such as distillation columns and pulping digesters, the

primary product variables that are required for feedback control are either not measured

online or not measured frequently. To address this challenge, many data-driven soft sensors

have been developed and implemented in process industry (see comprehensive reviews in

[140], [49] and references cited therein). Various adaptation techniques have been published

to update data-driven soft sensors online, and Kadlec et al. [139] provide a comprehensive

review on the adaptation mechanisms for data-driven soft sensors. In Chapter 6, a reduced-

order dynamic PLS (RO-DPLS) soft sensor was developed to address some limitations of

the traditional DPLS soft sensor when applied to processes with large transport delays [63].

By taking the process characteristics into account, RO-DPLS soft sensor can significantly

reduce the number of regressor variables and improve prediction performance. More re-

cently, the RO-DPLS soft sensor was extended to its online adaptation version in order to

track process changes [67], as described in Chapter 7. Since the focus in [67] was to in-

vestigate the properties of different recursive updating schemes and data scaling methods,

the industrial datasets were preprocessed to remove all outliers before subjecting them to

different experiments. However, it should be noted that the PLS algorithms are sensitive

to outliers in the dataset [186]. Therefore, outlier detection and handling plays a critical

role in the development of the PLS based soft sensors, and there exist extensive studies on

outlier detection for off-line model building [187]. Typical approaches are based on statistics

of historical data such as the 3σ outlier detection method [188] and the more robust Ham-

pel identifier method [189]. In addition, multivariate outlier detection methods have also
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been proposed, such as the PCA-based Jolliffe parameter [190]. Although many methods

have been published, outlier detection remains a challenging problem. Therefore, it is often

recommended to accompany any outlier detection method with a graphical inspection of

the residual space and model parameters to eliminate any possible outlier masking effect

(i.e., outliers are classified as consistent samples) and outlier swamping effect (i.e., consis-

tent samples are classified as outliers) [191]. For online adaptation of soft sensor models,

if erroneous readings are used to update the soft sensor model, future predictions from the

updated model may deteriorate significantly. In addition, online outlier detection is even

more challenging since while outliers could be erroneous readings, they could also be nor-

mal samples of new process states. It is worth mentioning that an alternative approach to

reduce the effect of outliers on soft sensor performance is to use the robust versions of PLS

algorithms [186, 192–195]. However, the robust versions of PLS algorithms usually involve

much more complicated computation, and may have various limitations, such as applicable

to one-dimensional response variable, not resistant to leverage point, and not applicable to

high dimensional regressors. More importantly, unlike the conventional PLS algorithm which

has various recursive versions available for online updating, currently there are no recursive

versions available for the robust PLS algorithms. Therefore, they are not desirable for online

model updating, and in this work the conventional PLS algorithm is considered only. In this

chapter, multivariate monitoring methods are developed for both off-line and online outlier

detection. In addition, to differentiate the samples that represent a process change from

those of erroneous readings, a Bayesian supervisory approach to further analyze and classify

the detected outliers is proposed [71, 72].

8.2 Outlier Detection Methods

In this section, the proposed outlier detection methods for off-line and online detection

are described in detail.
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8.2.1 Off-line Outlier Detection for Initial Model Building

A combination of automatic outlier detection, via leverage and y-studentized residuals,

together with a visual inspection of the behavior of the different variables (e.g. zero-order

hold and evident outliers) is proposed to detect outliers off-line. Leverage of an observation

is a concept developed in the ordinary regression theory [196], which defines the influence

that a given sample will have on a model and is related to the Hotelling’s T 2 statistic [191].

The leverage in terms of the T scores [197] is computed as follows:

hi =
1

n
+

a∑

j=1

t2
i,j

tT
j tj

(8.1)

where n is the total number of samples, ti,a is the vector of scores for object i, and a is the

number of principal components retained. A sample is classified as an outlier if its leverage

hi > β(1 + a)/n, where β is a constant (usually 2 or 3). In this work, β = 3 is chosen as this

setting provides a balanced performance between desired sensitivity and specificity. For a

given sample, the studentized residual is an indication of the lack of fit of the y-value, which

is defined as the following [197].

ri =
fi

s(1 − hi)1/2
(8.2)

where fi = yi − ŷi is the residual of the dependent variable, ŷi is the ith prediction of the

dependent variable provided by the soft sensor model, and 1
n−a−1

∑n
i=1 f 2

i is the sample

estimate variance of the residual. To detect outliers, the studentized residuals are usually

compared to a normal distribution N(0,1) [191]. In this work, if |fi| > 3, the sample is

classified as an outlier.

8.2.2 Online Outlier Detection for Recursive Model Update

For online outlier detection, the SPEx and SPEy (squared prediction error for X and

Y) indices [6, 8] are used to monitor the independent variable and dependent variable space,

respectively. It is worth noting that Hotelling’s T 2 index is not used to detect outliers,
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although it is commonly used in conjunction with SPE index for fault detection. Our choice

of SPE over T 2 is mainly due to their different roles in process monitoring. It has been

suggested that for the samples whose T 2 indices exceed the threshold but not the SPE

indices, in many cases they correspond to process operation changes instead of outliers [8].

Our own experiences also confirm that when a real outlier occurs, it is usually identified by

both the T 2 index and SPE index. Therefore, in this chapter, the SPE index is used alone

to detect outliers in the independent and dependent variable space. Specifically, if the SPE

index (i.e., SPEx or SPEy) violates its corresponding control limit, the sample is declared

an outlier and should be analyzed further. SPEx and SPEy for a new sample to be used for

soft sensor update are defined as:

SPEx =
m∑

i=1

(xnew,i − x̂new,i)
2 (8.3)

SPEy =

p∑

i=1

(ynew,i − ŷnew,i)
2 (8.4)

where m is the number of independent variables, p the number of dependent variables,

xnew,i and ynew,i are the new samples of independent and dependent variables, and x̂new,i

and ŷnew,i are the corresponding predictions. The thresholds for SPEx and SPEy can be

determined based on the theorems developed by Box [198] using the training data, or they

can be determined empirically using the training or validating data under normal operating

conditions [123, 124].

8.3 Bayesian Supervisory Approach for Online Outlier Classification

For online outlier detection, once a new sample is identified as an outlier, it is necessary

to determine whether it corresponds to an erroneous reading, or it represents a new process

state. In this work, a Bayesian supervisory approach is proposed to perform this task. It

should be noted that this task is less difficult for off-line data, because the data collected after

148



the outlier(s) are available to help make the decision. In the proposed Bayesian supervisory

approach, once an outlier is detected by the SPE indices, we wait for few more measurements

to become available and apply Bayesian inference to make the decision. The basic assumption

is that if an outlier is due to erroneous readings, the increase in the SPE indices will not

be sustainable and will result in an impulse or short step disturbance in the time series of

SPE indices. On the other hand, if an outlier is caused by a process change, the following

samples will all deviate from the previous model and will result in a sustained step or ramp

disturbance in the time series of SPE indices. Therefore, when an outlier is identified,

it is tried to classify whether the change in the SPE index belongs to an impulse/short

step or a ramp/step disturbance in order to determine whether the outlier is due to an

erroneous reading or a process change. In this work, the classification is achieved through a

Bayesian approach. By definition, Bayes’ Theorem is a simple mathematical formula used for

calculating conditional probabilities. Simply put, it gives the probability of a random event

A occurring given that we know a related event B occurred. This probability is denoted as

P (A|B) and is called the posterior probability, since it is computed after all other information

on A and B is known. Using Bayes’ Theorem, the posterior probability can be computed as

P (A|B) =
P (B|A)P (A)

P (B)
(8.5)

In our case, event B corresponds to the measurements collected after the outlier is detected

and event A corresponds to a specific disturbance type. In the proposed approach, instead of

using the values of SPE indices directly which are often affected by the stochastic nature of

the process, the indexes values are transformed into a more robust statistic-based probability

description using Bayesian statistics. In this way, different processes with different dynamic

characteristics can be analyzed using a unified statistical framework.
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8.3.1 Bayesian Outlier Classification Procedure

Figure 8.1 shows the schematic diagram of the proposed Bayesian outlier classification

procedure, which is a modification of the previously developed Bayesian approach for detec-

tion and classification of different disturbances in the semiconductor processes [199]. The

classification algorithm is triggered by the identification of an outlier through SPE indices,

and a brief description is provided below.

1. Denote the time index of the outlier as k; construct the pre- and post-change windows

around the outlier k. The pre-change window contains a few samples SPE indices

prior to the identified outlier; while the post-change window contains the SPE indices

after (and including) the outlier. In this work, the width of the pre-change window is

fixed to 5 samples, while the width of the post-change window varies depending on the

assumed type of disturbance.

2. Wait until sample k+1 is available, then perform hypothesis testing using Bayes The-

orem to determine whether the disturbance is an impulse.

3. If the hypothesis is rejected, we wait for more future samples to determine whether

the sample is part of a short step disturbance (with duration 2, 3 or 4).

4. If all previous hypotheses are rejected, it is concluded that a real process change has

occurred.

It is worth noting that the posterior probabilities in the post-change window form different

patterns depending on the pre-assumed disturbance type and observation values in the post-

change window. Instead of putting a threshold on a single posterior probability, which is

a univariate method [200], the proposed Bayesian approach compares the pattern of the

posterior probabilities in the post-change window to the predefined patterns in order to

classify the type of disturbance. This pattern matching approach is a multivariate method,

which is more robust compared to the univariate method, and greatly improves classification
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Figure 8.1: Bayesian disturbance classification procedure

accuracy and reduces classification delay. In addition, it makes the classification results not

sensitive to the a priori probability (in this work, the a priori probability is set to 0.5).

Detailed description of different patterns of posterior probability in the post-change window

and pattern matching procedure can be found [199]. In addition, by specifying different

post-change window widths for different disturbances, the classification delay is minimized.

In other words, the classification decision is made when the minimum required information

becomes available.

8.4 Soft Sensor Recursive Update with Outlier Detection and Classification

In this section, the proposed outlier detection and classification methods are integrated

into the previously developed RO-DPLS soft sensor [63, 67] for online recursive update.

Based on the results of a comprehensive comparison of different recursive PLS update

schemes [67], regular recursive PLS updating scheme is chosen to update the RO-DPLS

soft sensor model. Both simulated case study and industrial case studies of the single vessel
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Kamyr digester are used to demonstrate the performance of the proposed approach. In this

section, the performance of the RO-DPLS soft sensor is compared for four scenarios.

a) Static model without update;

b) Recursive update without outlier detection, i.e., all samples are used to update the

model;

c) Recursive update with outlier detection, i.e., all outliers identified by SPE indices are

excluded from model update;

d) Recursive update with Bayesian supervisory approach for outlier detection, i.e., erro-

neous readings are excluded from model update, while process changes are used for

model update;

Simulated case study

In this subsection, the simulated Kamyr digester is used to illustrate how the Bayesian

supervisory approach works. The extended Purdue model [146] is implemented to simulate

a single vessel high yield Kamyr digester. The RO-DPLS soft sensor set up can be found

in Chapter 6. In this case study, a very challenging problem is considered: tracking the

disturbance of a wood type change. It is worth noting that wood type change (from softwood

to hardwood and vice versa) is a major disturbance in pulping processes, and usually results

in off-spec product during the transition. Both single and consecutive multiple outliers (i.e.

impulses and short steps) are added to the process, and the Kappa number measurements are

plotted in Figure 8.2. From Figure 8.2, it is seen that the dramatic change in Kappa number

during the transition period is due to the wood type change, and the samples during the

transition should be used to update the model; while the changes that occur at samples 10

(impulse), 45 (short step with duration 3) and 65 (short step with duration 2), are introduced

outliers and should not be used for model update. The soft sensor predicted Kappa number

values are also plotted in Figure 8.2, with the corresponding mean squared prediction error
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(MSE) and mean prediction error (ME) given in Table 8.1. Both Figure 8.2 and Table 8.1

demonstrate the important roles of outlier detection and classification, and their impact

on soft sensor performance. It is shown that outlier detection alone may even deteriorate

the performance of a soft sensor if process changes were treated the same as erroneous

measurements. On the other hand, if the proposed Bayesian outlier classification mechanism

is integrated into outlier detection, the soft sensor can be made more robust to erroneous

measurements and at the same time is able to track process changes. Figures 8.3(a)

Table 8.1: Performance of different soft sensors for the simulated case study

Soft Sensor MSE ME
(a) 405.4800 -10.8817
(b) 1.1476 -0.1695
(c) 120.6689 -3.7614
(d) 0.8505 -0.1526
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Figure 8.2: Prediction comparison of different approaches applied to a simulated case study

and 8.3(b) show the SPEx and SPEy indices for the Bayesian supervisory approach, together

with the classified outliers. Figure 8.3 shows that SPEx and SPEy indices can promptly

identify the outliers caused by both erroneous reading and process change, and the Bayesian
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supervisory approach is effective in classifying the identified outliers. Without the Bayesian

supervisory approach, all identified outliers will be excluded from updating the model, which

results in poor prediction performance of approach (c), similar to the static model. For

approach (b) where all new samples are used for model update, the negative impact of using

erroneous readings for model update are illustrated more clearly with the insert in Figure 8.2.
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Figure 8.3: SPE indices for the simulated case study. (a) SPEx; (b) SPEy
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Industrial case study

In the industrial case study, the process data were collected from a Kamyr digester at a

pulp mill located in Mahrt, Alabama run by MeadWestvaco Corp. The training data were

collected in 2006 which contain 1100 samples, while the testing data for online update were

collected in 2010 which contain 300 samples. Clearly, this case study presents a challenging

problem as training and testing data sets were collected about 4 years apart. The soft sensor

setup for the industrial case is the same as that reported in Chapter 6. Figure 8.4 plots a
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Figure 8.4: Comparison of predictions of different approaches for the industrial case study

segment of the testing data to illustrate the prediction performance of different soft sensors

and compare them with the process measurements, and Table 8.2 lists the MSE and ME

of different approaches for the whole testing data set. Figures 8.5(a) and 8.5(a) show the

SPEx and SPEy indices for the Bayesian supervisory approach, together with the classified

outliers. It should be noted that for this case study the soft sensor that updates recursively

with outlier detection (but without classification) performs exactly the same as the static

soft sensor. This is due to the big difference between the training data and testing data,

which causes all new data to be classified as outliers. From this case study, it is clear that
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Table 8.2: Performance of different soft sensors for the industrial case study

Soft Sensor MSE ME
(a) 75.3031 7.3024
(b) 34.8632 1.0535
(c) 75.3031 7.3024
(d) 29.4228 0.7468
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Figure 8.5: SPE indices for the industrial case study. (a) SPEx; (b) SPEy

the Bayesian supervisory approach is effective and robust in determining whether an outlier

is caused by erroneous reading or process change.
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8.5 Conclusion and Discussion

Outlier detection and handling plays a critical role in data-driven soft sensor develop-

ment. In this chapter, multivariate approaches for both off-line outlier detection (for initial

soft sensor model building) and online outlier detection (for soft sensor model recursive

update) are proposed. Specifically, for off-line outlier detection leverage and y-studentized

residuals are combined; while for online outlier detection, the squared prediction error indices

for X and Y are used to monitor the independent variable and dependent variable space,

respectively. For online outlier detection, to differentiate the outliers caused by erroneous

reading from those caused by process changes, a Bayesian supervisory approach is proposed

to further analyze and classify the identified outliers. The classification of outliers is achieved

through matching the pattern generated by the posterior probabilities in the post-change

window to pre-defined patterns corresponding to different disturbances. Both simulated and

industrial case studies show that by updating the soft sensor model and correctly analyzing

the identified outliers, the soft sensor enhances its prediction performance qualitatively and

quantitatively.
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Chapter 9

Conclusions and Proposed Future Work

9.1 Summary of Contributions

The overall goal of this work is to advance the state-of-the-art of industrial process

monitoring and soft sensor design techniques.

9.1.1 Process Monitoring

As industrial processes become more complex, advance monitoring techniques play a

fundamental role in assessing the process performance. By promptly detecting process up-

sets and/or instrumentation faults, process monitoring techniques not only aid in improving

product quality and process efficiency, but also guarantee a safe operation. In this work,

the potential for fault detection and diagnosis of a new state-of-the-art process monitoring

framework is studied. The statistics pattern analysis framework, by utilizing the statistics of

the process instead of the process variables themselves, not only improves the detection per-

formance compared with traditional linear process monitoring methods, but also outperforms

nonlinear extensions of PCA-based monitoring such as Kernel PCA (KPCA) and indepen-

dent component analysis (ICA). Furthermore, due to the flexible nature of the framework,

different statistics can be incorporated to the statistic pattern (SP) to capture the dominant

process characteristics such as nonlinearity, non-Gaussianity and dynamics. Additionally, in

SPA, the diagnosis of the root cause of different faults is improved not only by providing a

clear indication of the contribution of the variable that is most related to the given fault,

but indicating the nature of the type of fault (e.g. mean or variance change).

In this work, the properties of the SPA-based monitoring of continuous processes are studied

using two different case studies. With the quadruple-tank case study, the SPA-based process
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monitoring showed that it can correctly detect and diagnose faults of a nonlinear process that

are difficult to detect visually or by using traditional monitoring approaches. In addition,

in this case study SPA showed that it can offer excellent fault detection rates in the event

of limited samples in the training data set. Evidently, due to the calculation of different

statistics, when the training data are limited, window overlapping is necessary to have a

representative number of SPs. In the study, an increase in the false alarms rate is observed

as the percentage in overlapping increases. This effect is caused by the lack of independence

if the samples (e.g. SPs). The study showed that for a case with an overlapping of around

60%, SPA still observes a high detection performance and a reasonable false alarm rate. On

the other hand, when the number of training samples is significant, SPA is able to detect

and diagnose faults in a more reliable manner. Type I errors in normal testing data (e.g.

false alarms) are close to the expected confidence level. In addition, both SPA-based fault

detection and diagnosis is significantly better than traditional monitoring methods.

In the TEP case study, the SPA framework was tested to monitor a more complex process.

The good performance observed in the quadruple-tank case study is confirmed with the

more complicated TEP process. In this case study, the performance of SPA was compared

to other linear and nonlinear monitoring methods. By monitoring the statistics of the pro-

cess variables instead of the process variables themselves, SPA was able to outperform the

detection and diagnosis performance of the other monitoring methods. Furthermore, even

that detection delay is associated with window-based approaches like SPA, it this study, it

was found that after the assembly of the validating window, the detection delays of SPA

compared to other methods are not significant. A closer look at the detection performance

indicates that SPA-based monitoring can offer a more consistent and reliable detection com-

pared to the other methods, which are important characteristics to consider in an online

implementation. In regards of the computation load, the complexity of SPA compared with

the two linear methods (e.g. PCA and DPCA) is not significant, and much less expensive
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than the observed in the nonlinear case studies evaluated in this study. For fault diagno-

sis, the contributions to the different monitoring indices in SPA show a clear and reliable

indication of the root cause of different faults. Additionally, the hierarchical contribution

approach provides the framework with extra information about the nature of the faults (e.g.

mean or variance change). As a summary, the research findings indicate that the SPA-based

monitoring is a promising alternative for monitoring processes especially where nonlinearities

and multi-modal distributions are present.

9.1.2 Soft Sensor Development

In modern process operation, a massive amount of data from secondary measurements

(e.g. easy-to-measure) are readily available at high frequencies, but data indicating product

quality and/or yield are scarce and often times sampled at low frequency (e.g. hard to mea-

sure). As a result, developing data-driven software sensors (or soft sensors) using secondary

measurements (e.g. variables easy to measure) to predict primary measurements based on

multivariate regression techniques is gaining wide application in industry. The prediction of

these key process variables not only provides a way to have real time measurements, but also

aids in improving quality and preventing undesirable operating conditions. In this work, the

dynamic partial least squares (DPLS) soft sensor is studied in depth due to its successful

application in industry. Despite its successful applications, before this work, there was a

lack of theoretical understanding on the properties of the DPLS soft sensor. One of the

major contributions of this dissertation is the development of a theoretical understanding of

why a DPLS-based soft sensor can adequately capture process dynamics and provides unbi-

ased estimates under closed-loop operation. The theoretical analysis confirms that a DPLS

soft sensor is a dynamic estimator that gives unbiased estimate of primary measurements

for both open loop and closed-loop data. In addition, to overcome the difficulties related

with processes with large transport delays, a reduced-order DPLS (RO-DPLS) soft sensor

approach is proposed.
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Real industrial processes have time-varying behavior and soft sensors developed off-line are

prone to fail as time progresses, thus indicating that an updating strategy is necessary. To

address this issue, the RO-DPLS soft sensor is also extended to its adaptive version by

exploring the properties and the characteristics of different recursive update schemes. In

addition, practical issues such as data scaling and the presence of outliers off-line and online

are studied.

It is well known that introducing outliers at the design and update stage of any data-driven

approach will deteriorate its performance. The task of detecting outliers off-line is relatively

easier compared to do it online. One of the major reasons is that the data and expert knowl-

edge are present to make a decision. For online outlier detection, the resources are limited

as expert inputs are not available to base the decision. Furthermore, outliers online can be

part of two groups; erroneous readings and process change. Outliers that are part of a group

of erroneous readings need to be identified and discarded from the update procedure. On

the other hand, outliers that are part of a process change are necessary, and need to be kept

to update the soft sensor model. In this aspect, the contribution of this work is significant.

Based on multivariate techniques for outlier detection online (e.g. SPE), once an outlier is

detected online, the monitoring indices are transformed into probabilities of the occurrence

of a given type of fault (e.g. impulse, short step etc.). In this work, a Bayesian-based ap-

proach is developed to further analyze the detected outliers and the probabilities obtained

from the SPE indices. These probabilities are compared with patterns of probabilities cor-

responding to different type of events. For example, with the Bayesian-based supervisory

approach, SPE indices corresponding to samples that are part of impulses and short steps

can be categorized as outliers. On the other hand, if the pattern of probabilities defines

a sustained change (e.g. process change), those identified outliers are not discarded, and

the multivariate observations of these secondary measurements are used to update the soft

sensor model. In both, simulation and industrial cases, the recursive RO-DPLS soft sensor

with outlier detection and classification approach observed enhanced prediction capabilities
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if compared with the static RO-DPLS and with recursive-only RO-DPLS. As a summary,

the RO-DPLS has been equipped with the necessary tools for handling challenging cases

where a prediction of a key indicator of production performance is required.

9.2 Suggestions for Future Work

Future research directions which deserve further investigation are summarized in this

section.

9.2.1 Process Monitoring

• As discussed in this work, the SPA-based fault detection and diagnosis is a promis-

ing alternative for monitoring industrial processes, especially when nonlinearities are

prevalent. One of the major requirements of the framework is the availability of data

to obtain a number of training SPs (e.g. observations) that is statistically significant

compare to the number of statistics included in the SP (e.g. variables). Nowadays, pro-

cesses can be categorized as data rich, and thus this is not a big limitation. However,

to address this requirement, the following strategy to monitor continuous processes

only is proposed (for batch processes the advantages provided by SPA are far superior

than other methods). First, after the collection of the process variables that will be

part of the monitoring strategy, a PCA decomposition is performed to obtain both,

scores and loadings representing the process. Second, a subset of scores (e.g. defined

by the retained number of principal components) is used to characterize the process.

In other words, although nonlinearities might be present and obviously inherited by

the scores in PCA, redundancies and measurement noise are discarded in the last few

components, and only the first few scores are retained to represent the process. Third,

instead of calculating the statistics of the process variables to perform SPA, which

require the availability of a good amount of data, the statistics of the first few retained

scores are determined to perform SPA in the latent variable space. At the time of
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the preparation of this document, preliminary results indicate that although PCA fails

to detect faults for some cases (e.g. especially when nonlinearities are prevalent), the

statistics of the projections (or scores) contain enough information to correctly define

normal and faulty operating conditions. Thus, enhancing the detection power of reg-

ular PCA. In addition, since the number of retained scores a is normally much lower

than the number of available variables m, the number of observations needed to obtain

the matrix of SPs is much less (e.g. data to calculate different statistics). One chal-

lenge associated with this approach is to develop a way to diagnose the variable that

is most related to the fault. In other words, since two PCA models are used (e.g. for

reducing the dimensionality, and for SPA), a method to back-calculate or estimate the

contribution of the input variables based on the contributions of the different statistics

to a fault in the latent variable space needs to be defined.

• A more thorough study of different properties of SPA need to be performed. In this

work, the effect of adding/removing different statistics, the effect of window-overlap

and fault diagnosis issues were addressed. More insights need to be developed to

generate rules of thumb to define groups of statistics that need to be included as pat of

the SP, based on the known characteristics of the process, which is important from the

point of view of online implementation. An additional factor is the study of providing

weights to different groups of statistics. Preliminary results indicate that not only

defining the right set of statistics enhances both, detection and diagnosis performance,

but also the weights of different statistics can contribute to achieve these two goals.

• In this work, the SPA framework has been shown to be a promising alternative for

monitoring industrial processes, especially where nonlinearities and multi-modal dis-

tributions are present. Additionally, the framework has shown good results even in

the event of window overlapping. Although, depending on the amount of overlapping,

an increase in the false alarm rates is observed. Closer evaluation of these results
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raises one question, Is the overlapping the only source of the increment of the false

alarms rates?. In this regard, our experience indicate that other factors are involved

and can be studied to overcome this issue. First, it has been observed that although

cross-validation is a reasonable way to determine the number of principal components

to use as representative of the input space, it can provide a number of PCs that only

improves fault detection, but does not offer a balance of reduction of Type I and Type

II errors. In this regard, more testing needs to be done to evaluate this effect. In

addition, for the sake of a fair comparison, the empirical way of determining the SPs

is utilized in this work. However, it is possible that developing a way to determining

the thresholds for monitoring, taking into account the amount of overlapping, can aid

balancing the fault detection performance and the reduction of the false alarm rates of

normal testing and validating data.

9.2.2 Soft Sensor Development

• As PCA, the SPA framework can be extended to the development of soft sensors.

In other words, the statistics of secondary measurements in a batch or a window

can be utilized to predict key product quality variables. In this aspect, preliminary

results show that SPA-based soft sensors can effectively outperform the prediction

power offered by soft sensors based on PCA and PLS [201]. A preliminary study with

data from a semiconductor fabrication site have already shown promising results.

• As discussed previously, the recursive RO-DPLS soft sensor with outlier detection and

classification approach has shown impressive results in tracking the variability of kappa

number for the digester case study. In this regard, additional testing needs to be done

to expand the outlier detection and classification approach, to handle the update of

the thresholds of monitoring instead of a static threshold. Preliminary results in this

matter indicate that providing an update of the monitoring threshold can cope with
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issues of transitioning the SPE indexes to a different operating region, and still provide

consistent outlier detection close to the given significance level.

• Although in this work some efforts were done in regards to making use of the prediction

provided by the RO-DPLS soft sensor for control, an extended comparison of the

benefits associated with it can be done. In other words, different control strategies such

as Smith predictor with PID and model predictive control (MPC) can be implemented

to highlight further the benefits associated with the future predictions provided by the

RO-DPLS soft sensor.
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Appendix A

Derivation of the linear relationship between ec
k and es

k

The state-space representation of the system which includes both the primary and sec-

ondary outputs is the following,

xk+1 = Axk + Buk + [ Ks Kc ]




es

k

ec
k



 (A.1)




ys

k

yc
k



 =




Cs

Cc



xk +




es

k

ec
k



 (A.2)

Since we assume that the secondary output variables and the input variables can com-

pletely describe the system dynamics, the system can also be described by the following

state-space representation,

xk+1 = Axk + Buk + Kes
k (A.3)

ys
k = Csxk + es

k (A.4)

By comparing Eqn. (A.1) and Eqn.(A.3), we can see that

[ Ks Kc ]




es

k

ec
k



 = Kes
k (A.5)
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By rearranging the above equation we have

ec
k = (Kc)† (K − Ks) es

k

= Fes
k (A.6)

where (Kc)† denotes the pseudo-inverse of Kc. Eqn. (A.6) shows that ec
k and es

k are linearly

correlated under the assumption that (A,Cs) is observable.
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Appendix B

Detailed evaluation of E
{
ec

f (k)
[
[zp(k)]T [zf−1(k)]T

]}

E





ec

f (k)




zp(k)

zf−1(k)





T



= lim
n→∞

1

n










ec
k ec

k+1 · · · ec
k+n−1

ec
k+1 ec

k+2 · · · ec
k+n

...
... · · ·

...

ec
k+f−1 ec

k+f · · · ec
k+f+n−2









uk−p uk−p+1 · · · uk−p+n−1

ys
k−p ys

k−p+1 · · · ys
k−p+n−1

...
... · · ·

...

uk uk+1 · · · uk+n−1

ys
k ys

k+1 · · · ys
k+n−1

...
... · · ·

...

uk+f−2 uk+f−1 · · · uk+f+n−3

ys
k+f−2 ys

k+f−1 · · · ys
k+f+n−3





T





(B.1)
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= E





ec
kuk−p ec

k+1uk−p · · · ec
k+f−1uk−p
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ky

s
k−p ec

k+1y
s
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s
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... · · ·
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kuk ec

k+1uk · · · ec
k+f−1uk

ec
ky

s
k ec

k+1y
s
k · · · ec

k+f−1y
s
k

ec
kuk+1 ec

k+1uk+1 · · · ec
k+f−1uk+1
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ky

s
k+1 ec

k+1y
s
k+1 · · · ec

k+f−1y
s
k+1
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... · · ·
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kuk+f−2 ec

k+1uk+f−2 · · · ec
k+f−1uk+f−2

ec
ky

s
k+f−2 ec

k+1y
s
k+f−2 · · · ec

k+f−1y
s
k+f−2




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=





0 0 · · · 0

0 0 · · · 0

...
... · · ·

...

0 0 · · · 0

0 0 · · · 0

E {ec
kuk+1} 0 · · · 0

E
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ec

ky
s
k+1
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0 · · · 0

...
...

. . .
...

E {ec
kuk+f−2} E
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ec

k+1uk+f−2
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· · · 0

E
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s
k+f−2
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{
ec

k+1y
s
k+f−2
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· · · 0





T

6= 0 (B.2)

It can be seen from the above derivation that the lower triangular part of the matrix is

non-zero due to feedback control, which is the reason why the linear relationship Eqn. (6.9)

does not provide unbiased estimate of yc
f (k) under closed-loop control when f > 1.
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Appendix C

Detailed derivation of Equation (5.13) and (5.14) for mean and variance recursive update.

For variable mean, by plugging the definition of variable mean to the right hand side

(RHS) of Equation (5.13):

RHS =
n − 1

n

(
1

n − 1

n−1∑

i=1

xi

)
+

1

n
xn

RHS =

∑n
i=1 xi

n
= xn = LHS (C.1)

where LHS denotes the left hand side of Equation (5.13).

For variable variance in Equation (5.14):
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RHS =
n − 2

n − 1

[
1

n − 2

n−1∑

i=1

(xi − xn−1)
2

]

+
(xn − xn)2

n − 1
+ (xn − xn−1)

2

=
1

n − 1

[
n−1∑

i=1

(xi − xn + xn − xn−1)
2 + (xn − xn)2

]

+(xn − xn−1)
2

=
1

n − 1

[
n∑

i=1

(xi − xn)2 + (n − 1)(xn − xn−1)
2

+2(xn − xn−1)
n−1∑

i=1

(xi − xn)

]
+ (xn − xn−1)

2

= σ2
n + (xn − xn−1)

2 +
2

n − 1
(xn − xn−1)

[(n − 1) (xn−1 − xn)] + (xn − xn−1)
2

= σ2
n + 2(xn − xn−1)

2 − 2(xn − xn−1)
2

= σ2
n

= LHS (C.2)
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Appendix D

Derivation of Equation (5.16).

xn−1 =
n

n − 1
xn −

1

n − 1
xn

(xn − xn−1)
2 =

(
xn −

n

n − 1
xn +

1

n − 1
xn

)2

(xn − xn−1)
2 =

[
1

n − 1
(xn − xn)

]2

Therefore,

(xn − xn−1)
2

1
n−1

(xn − xn)2 =
1

n − 1
(D.1)
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Appendix E

Detailed derivation of Equation (5.17) and (5.18) for block mean and variance recursive

update.

For variable mean in Equation (5.17):

RHS =
(n − n1)

n

∑n−n1

i=1 xi

n − n1

+
n1

n

∑n
i=n−n1+1 xi

n1

=
1

n

[
n−n1∑

i=1

xi +
n∑

i=n−n1+1

xi

]

=
1

n

n∑

i=1

xi = xn = LHS (E.1)
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For variable variance in Equation (5.18):

RHS =
n − n1 − 1

n − 1
σ2

n−n1
+

n1 − 1

n − 1
σ2

n,B

+
n1 (n − n1)

n (n − 1)
(xn−n1

− xn,B)2

=
1
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[
n−n1∑

i=1

(xi − xn−n1
)2 +

n∑

i=n−n1+1

(xi − xn,B)2

]

+
n1 (n − n1)

n (n − 1)
(xn−n1

− xn,B)2

=
1

n − 1

[
n−n1∑

i=1

(xi − xn + xn − xn−n1
)2 +

n∑

i=n−n1+1

(xi − xn + xn − xn,B)2

]

+
n1 (n − n1)

n (n − 1)
(xn−n1

− xn,B)2

=
1

n − 1

[
n∑

i=1

(xi − xn)2 + (n − n1) (xn − xn−n1
)2

+2

n−n1∑

i=1

(xi − xn) (xn − xn−n1
) + n1 (xn − xn,B)2

+2
n∑

i=n−n1+1

(xi − xn) (xn − xn,B)

]
+

n1 (n − n1)

n (n − 1)
(xn−n1

− xn,B)2

= σ2
n +

1

n − 1

[
(n − n1) (xn − xn−n1

)2 − 2 (n − n1) (xn − xn−n1
)2

+n1 (xn − xn,B)2 − 2n1 (xn − xn,B)2]+
n1 (n − n1)

n (n − 1)
(xn−n1

− xn,B)2

= σ2
n −

1

n − 1

[
(n − n1) (xn − xn−n1

)2 + n1 (xn − xn,B)2]

+
n1 (n − n1)

n (n − 1)
(xn−n1

− xn,B)2 (E.2)

The first and second terms inside the bracket in Equation (E.2) can be rewritten using

Equation (5.17) as follows:

(n − n1) (xn − xn−n1
)2 = (n − n1)

[n1

n
xn,B −

n1

n
xn−n1

]2
(E.3)

n1 (xn − xn,B)2 = n1

[
n − n1

n
xn−n1

−
n − n1

n
xn,B

]2

(E.4)
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Therefore, Equation (E.2) can be rearranged as follows:

RHS = σ2
n −

1

n − 1

[
(n − n1) n2

1

n2
(xn−n1

− xn,B)2 +
n1 (n − n1)

2

n2
(xn−n1

− xn,B)2

]

+
n1 (n − n1)

n (n − 1)
(xn−n1

− xn,B)2

= σ2
n −

1

n − 1

n1 (n − n1)

n2
[n1 + (n − n1)]

[
(xn−n1

− xn,B)2]

+
n1 (n − n1)

2

n2
(xn−n1

− xn,B)2

RHS = σ2
n = LHS (E.5)
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