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Abstract

Ground vehicle localization is a problem of significance in an urban setting given the

recent global conflicts, security interests, and rapid growth of sensor networks. This task is

often difficult due to the lack of information regarding a target vehicle’s position, velocity,

and destination. Field operatives can provide binary measurements of a target’s presence

in an area, and these measurements can be processed to obtain estimates of the target’s

location. A particle filter is more suitable for this application than a Kalman filter due to

its ability to handle non-Gaussian distributions and non-differentiable measurement models,

however it is computationally expensive.

Suppose there is a mobile ground vehicle of known description but unknown position,

velocity, or destination that is to be found, tracked, and intercepted by an unmanned aerial

vehicle. The vehicle is known to be in an urban environment, and full knowledge of that

environment (roads, obstacles, intersection constraints, and speed limits) is available. There

are numerous issues of interest within this problem. A particle filter in an urban environment

was developed to locate, track, and intercept a ground vehicle given soft binary measurements

(measurements from human sources). Two particular issues are studied in this work: the

effect of a sophisticated particle dynamic model on target localization and tracking, and the

development of a real time path planning routine in the particle filter framework to enable

target interception.

The contributions of this work are threefold. First, the importance and impact of an

accurate particle time update on target localization and tracking is validated. Secondly, a

thorough investigation into the effect of particle spatial resolution in the presence of imperfect

measurements is made that will prove valuable for future particle filter applications. Finally,

the path planning routine offers reduced computational expense when compared to existing
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systems and lends itself to unmanned aerial vehicle implementation. Proper exploitation and

implementation of the particle filter framework prove vital in the complete characterization

of the urban tracking problem.
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Chapter 1

Introduction

Modern statistical and engineering practice requires the ability to estimate and predict

the behavior of nonlinear systems with accuracy, precision, and efficiency. This need, coupled

with increased computational capabilities, has lead to a focused interest in nonlinear filtering

over the past 30 years. Most problems of interest require a sequential estimate of a set of

variables that may or may not change over time, called the state of the dynamic system. The

state completely describes the dynamic system under investigation. Estimates of the state

are made by analysis of measurements taken on that system. Measurements are assumed to

be imperfect or noisy.

One scenario of significance to which nonlinear filtering has been applied is that of a

ground target vehicle in an urban environment. The problem of locating, tracking, and

intercepting a ground target in an urban environment presents numerous challenges. Tradi-

tional measurements such as range and range rate are not often readily available at regular

intervals in such a setting. Information may come in the form of binary measurement reports

from sources such as human observers, fixed cameras, or intermittent satellite images. This

nontraditional measurement format can provide valuable information, although it is coupled

with increased uncertainty. Therefore, it must be processed in an efficient and effective

manner in order to account for its irregular frequency and non-differentiable measurement

model. Additionally, prior knowledge of terrain and road networks provide vital insight into

the target’s state. Such information cannot be properly accounted for by estimation routines

based on Gaussian assumptions.

This dissertation is centered on the numerous benefits the particle filter offers in solving

certain difficult nonlinear filtering problems that exist, namely in urban warfare. Chapter 2
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describes the most common approaches to the nonlinear filtering problem and the differences

in their probabilistic representations of the state. The particle filter is compared to its more

commonly used counterpart, the Kalman Filter, and its variations. The ease of adaptability

of the particle filter to any motion model and the ability to represent knowledge of the state

with a probability density function of arbitrary shape decided its application to this problem.

Section 2.4 details previous work done in the field of particle filters, path planning, and risk

assessment, as it relates to this dissertation.

Chapters 3 and 4 describe the benefits of improving and tuning each step in the particle

filtered estimation process of prediction, correction, and resampling. Chapter 3 compares

two methods for modeling the prediction step: a simplistic model and a heuristic model

based off of conventional traffic rules. Both dynamic models are compared in regard to the

time to detect the target, their ability to track the target, and their computational expense.

Chapter 4 introduces a sensor model that provides false reports. Throughout the dynamic

model study, the effect of additional variables are also investigated. The measurement model

in question involves a human component, which presents the possibility of a false report. In

the presence of a false report, the spatial resolution of the particle cloud is compromised based

on bad information. False reports diminish tracking performance, but improvements may be

made by adjusting built in parameters in the particle filter framework. The measurement

update step updates particle weights in accordance with the amount of confidence the filter

has in the measurements it receives. The amount the particle filter trusts a measurement

may be tuned to reduce error when a sensor of known false alarm rate is in play. Section

4.1 details a study to determine the effect of the amount of confidence the particle filter has

in a sensor’s report. This confidence parameter is present in the likelihood function in the

measurement update, or correction, step. The study involves Monte Carlo runs done with

three sensor models and eleven possible confidence values for each sensor.
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The frequency of resampling is also a particle filter design point. Resampling is done

when the number of effective particles, or particles with significant weight, falls below a de-

sired threshold. When imperfect measurements are known to be possible, resampling after

each measurement is bad practice as the spatial resolution is compromised. An investigation

of the effect of the number of effective particles was done to tune the filter to an optimal

value based on the sensor’s estimated performance. Section 4.2 explains how the frequency

of resampling was treated as a control variable through tuning the number of effective parti-

cles. Following the determination of the most beneficial values of confidence and number of

effective particles for each sensor model, a Bayesian risk assessment was included as outlined

in Section 4.3 as an additional means of dealing with possibly false reports.

The discussion of the second phase of this dissertation begins in Chapter 5. An un-

manned aerial vehicle (UAV) is introduced into the urban scenario with the mission of

intercepting the ground target. A path planning routine was developed by the use of re-

ceding horizon control. A novel path-selection metric is developed to provide for target

interception in the particle filter framework. A new cost function is created to avoid high

computational expense of previously used minimum entropy formulations. The path planner

selects paths with high particle weight, taking anticipated travel time into account. In addi-

tion, a minimum distance between a path and the location of the heaviest particle is desired.

This method selects paths with maximum likelihood, while reducing entropy, with far fewer

calculations than previous work. This will prove most effective in smaller platforms where

computational power is limited, as in small UAV’s to be utilized in urban warfare.

The result of this work is a robust simulation with real world applications and benefits

to the modern war fighter.
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Chapter 2

The Nonlinear Dynamic System Filter Problem

The objective of nonlinear filtering is to recursively estimate the state of a dynamic

system based on measurements. The estimation of the state is typically broken into two

steps: prediction and correction. The prediction step models the propagation of the state

through time between measurements. The equations of motion of the state variables are

propagated through time until a measurement is taken. Process noise is included in the

state equations to account for inaccurate modeling and unforseen disturbances. This noise

causes the accuracy of the state estimate to diverge from the true state until a measurement

is taken. In the ground-target scenario, this divergence can be attributed to uncertainty in

a target’s position, velocity, or destination. The correction step incorporates measurement

data into the state estimate. Each measurement is taken into account in accordance with

its confidence to improve the state estimate.

These models can be represented probabilistically and therefore lend themselves to the

Bayesian framework. In this rigorous general approach, a probability density function (pdf)

is used to store all knowledge and belief about the true state. During the prediction step, the

state pdf is generally translated, deformed, and broadened, whereas following the corrector

step, it is typically tightened. The state pdf is updated with the new measurement by

applying Bayes’ theorem.

Suppose the target state vector is xk ∈ Rn, where the k is the time index, R is the set

of real numbers, and n is the dimension of the state vector. The state evolves according to

a discrete-time stochastic model in a first-order Markov process.

xk = fk−1 (xk−1,vk−1) (2.1)

4



In Eq. (2.1), the function fk−1 describes the behavior of the state at xk−1, and vk−1 is

the process noise. Because the state evolves according to a Markov process, the future state

is only dependent upon the current state.

zk = hk (xk,wk) (2.2)

Measurements are related to the state by the measurement vector of dimension m. In

Eq. (2.2), the function hk is a known and possibly nonlinear function of the state and it

includes some measurement noise, wk. Both the measurement noise and process noise are

assumed to be white, independent, and to have known probability density functions. The

sequence of all measurements, Zk ≡ {zi, i = 1, ..., k}, is used to obtain filtered estimates of the

state. For implementation in the Bayesian framework, a posterior pdf must be constructed

to quantify the belief in the state xk given Zk. This pdf, p (xk | Zk), is calculated recursively

using the prediction correction process. It is assumed that p (x0 | Z0) is known where z0 is

the set of no measurements and therefore independent of all noise.

To begin recursive estimation, it is assumed that p (xk−1 | Zk−1) is available. The pre-

diction step is carried out by using the system equation (2.1) to create the predicted or prior

density of the state at time k via the Chapman-Kolmogorov equation:

p (xk | Zk−1) =

∫
p (xk | xk−1) p (xk−1 | Zk−1) dxk−1 (2.3)

The probabilistic model of the state evolution, or the transitional density, p (xk | xk−1), is

defined by the system equation (2.1) and the known statistical parameters of vk−1. When

a measurement, zk, becomes available, the correction stage begins. By use of measurement

zk, the prior density p (xk | Zk−1) is modified and the posterior density of the current state
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p (xk | Zk) is obtained.

p (xk | Zk) = p (xk | zk,Zk−1)

=
p (zk | xk,Zk−1) p (xk | Zk−1)

p (zk | Zk−1)
(2.4)

=
p (zk | xk) p (xk | Zk−1)

p (zk | Zk−1)

p (zk | Zk−1) =

∫
p (zk | xk) p (xk | Zk−1) dxk (2.5)

From this posterior density, an optimal state estimate may be computed. Such forms for the

estimate include the the minimum mean-square error (2.6) and the maximum a posteriori

estimate (2.7), or the conditional mean of xk and the maximum of p (xk | Zk), respectively.

x̂MMSE
k|k ≡ E {xk | Zk} =

∫
xkp (xk | Zk) dxk (2.6)

x̂MAP
k|k ≡ arg max

xk

p (xk | Zk) (2.7)

Recursive propagation of the posterior density through Eqs. (2.3) and (2.5) provide the

basis for the optimal Bayesian solution, however it is only conceptual in that it cannot be

generally determined analytically. The storage and representation of the entire pdf requires a

finite dimensional representation of an infinite dimensional function. Consequently, approx-

imations or suboptimal Bayesian algorithms are conventionally used in practice. Namely,

the Kalman filter, the extended Kalman filter, the Unscented Kalman filter, and the particle

filter are methods of note in tracking applications [1].

2.1 The Kalman Filter

In 1960, R. E. Kalman published a paper that provided a rigorous mathematical ap-

proach for sequentially processing observations of a linear dynamic system [6]. This approach

was conveniently introduced at a time when computational power and technology were on
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the rise, allowing for its successful implementation in numerous applications and consequen-

tial popularity. The set of recursive equations outlined in the 1960 paper are known as the

Kalman filter [2].

The Kalman filter requires certain restrictive assumptions. It is assumed that the pos-

terior density is Gaussian at every time step. This provides for the posterior density to be

characterized by its mean and covariance, but it also requires that the system equation xk

be a linear function of xk−1 and vk−1, the measurement equation zk is a linear function of

xk and wk, and the noise terms vk−1 and wk are drawn from Gaussian densities of known

mean and variance. If these restrictions hold, the Kalman filter yields the optimal solution

[1]. In the Kalman filter framework, Eqs. (2.1) and (2.2) become:

xk = Fk−1xk−1 + vk−1 (2.8)

zk = Hkxk + wk (2.9)

where Fk−1 (n x n) and Hk (m x n) are known. Also, the sequences vk−1 and wk are mutually

independent zero-mean white Gaussian noise with covariances Qk and Rk, respectively. Due

to the assumption that all posterior pdf ′s are Gaussian, the pdf update equations become:

p (xk−1 | Zk−1) = N
(
xk−1; x̂k−1|k−1,Pk−1|k−1

)
(2.10)

p (xk | Zk−1) = N
(
xk; x̂k|k−1,Pk|k−1

)
(2.11)

p (xk | Zk) = N
(
xk; x̂k|k,Pk|k

)
(2.12)

where N (x;µ,P) is a Gaussian density with argument x, mean µ, and covariance P, defined

by:

N (x;µ,P) ≡ |2πP|−1/2 exp

{
−1

2
(x− µ)T P−1 (x− µ)

}
(2.13)
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The Kalman filter measurement update equations for the mean and covariance are given

by the equations below.

x̂k|k−1 = Fk−1x̂k−1|k−1 (2.14)

Pk|k−1 = Qk−1 + Fk−1Pk−1|k−1F
T
k−1 (2.15)

Kk = Pk|k−1H
T
k

[
HkPk|k−1H

T
k + Rk

]−1
(2.16)

x̂k|k = x̂k|k−1 + Kk

(
zk −Hkx̂k|k−1

)
(2.17)

Pk|k = [I−KkHk] Pk|k−1 (2.18)

The Kalman Filter provides optimal solutions for a certain class of problems, but it was

expanded upon in order to be applied to nonlinear systems and/or measurement models.

This lead to the development of the Extended Kalman Filter and the Unscented Kalman

Filter [1].

2.1.1 The Extended Kalman Filter

In practical situations, the strict restrictions on the Kalman Filter are not satisfied.

The Extended Kalman filter (EKF) operates on the basic premise that the true state is

sufficiently close to the estimated state. This provides for the use of a linearized first order

Taylor series expansion to represent the error dynamics. The posterior pdf p (xk | Zk) is

assumed Gaussian and therefore Equations (2.10) through (2.12) are valid. Although the

EKF is not considered optimal like the Kalman Filter, it is a well known technique for

nonlinear system estimation [2].

In the Extended Kalman Filter framework, Equations (2.1) and (2.2) become:

xk = fk−1 (xk−1) + vk−1 (2.19)

zk = hk (xk−1) + wk (2.20)
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The random noise sequences vk−1 and wk are assumed zero mean, mutually indepen-

dent, white Gaussian with covariances Qk−1 and Rk, respectively. The following recursive

equations are used to compute the mean and covariance of the state:

x̂k|k−1 = fk−1

(
x̂k−1|k−1

)
(2.21)

Pk|k−1 = Qk−1 + F̂k−1Pk−1|k−1F̂
T
k−1 (2.22)

Kk = Pk|k−1Ĥ
T
k

[
ĤkPk|k−1Ĥ

T
k + Rk

]−1

(2.23)

x̂k|k = x̂k|k−1 + Kk

(
zk − hk

(
x̂k|k−1

))
(2.24)

Pk|k = Pk|k−1 −Kk

(
ĤkPk|k−1Ĥ

T
k + Rk

)
KT

k (2.25)

The local linearizations of fk−1 and hk are F̂k−1 and Ĥk. They are the Jacobian of the

corresponding nonlinear equations evaluated at x̂k−1|k−1 and x̂k|k−1, respectively. The EKF is

known as an analytic approximation because the aforementioned Jacobians must be derived

analytically. Clearly, if the nonlinear functions fk−1 and hk are discontinuous or nondiffer-

entiable, the EKF may not be applied. In addition, the EKF is restricted by its assumption

that the posterior pdf p (xk | Zk) is Gaussian. Models with severe nonlinearities will result

in increased errors due to this assumption. As a result, discrete sampling approaches, such

as the Unscented Kalman Filter and the Particle Filter, were developed. These methods are

more suited for urban tracking problems.

2.2 The Particle Filter

The Particle Filter is a suboptimal filter that performs sequential Monte Carlo estima-

tion utilizing independent random samples of probability densities. These samples, called

particles, are point mass representations of the posterior pdf of the state. Like the Kalman

filter, the Particle filter (PF) gained heightened popularity with an increase of computational

capabilities. Although the framework for sequential Monte Carlo estimation originated in

statistics in the 1950’s, the method was also limited by the use of sequential importance
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sampling, which degenerates over time. The introduction of the resampling step in the early

1990’s [3], coupled with increased computational capabilities, lead to the drastic increase in

PF implementation.

Monte Carlo methods for the numerical evaluation of multidimensional integrals form

the basis for the PF approach. Suppose the solution to the following multidimensional

integral is required, where x ∈ Rn:

I =

∫
g(x)dx (2.26)

Monte Carlo (MC) integration methods factorize g(x) = f(x)π(x) such that π(x) may

be interpreted as the posterior pdf in the Bayesian framework. It is assumed possible to

draw N independent samples {xi; i = 1, ..., N}, where N � 1, distributed according to π(x).

This yields the unbiased MC estimate of I, IN , that converges to I with error of the order

O(N−1/2).

I ≈ IN =
1

N

N∑
i=1

f(xi) (2.27)

The rate of convergence is independent of the dimension of the integrand because the

samples, xi, are chosen from regions of high importance relative to the state space. It is,

however, often difficult to sample from the posterior pdf as it is nonstandard, multivariate,

and not fully known. Consequently, the MC integration method of importance sampling

is used sequentially to draw samples that represent the posterior pdf . The importance-

sampling method samples and weighs the points from a known importance density function

to simulate the samples from an unknown distribution. This method represents the posterior

pdf with a set of random samples and associated weights, then estimates the state based on

the samples and weights. When importance sampling is applied to the nonlinear filtering

problem described in Section 2, the result is the Sequential Importance Sampling (SIS)

algorithm, a sequential MC filter also known as the Particle Filter.
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An initial estimate of the state pdf , p(x0), is assumed known, may be arbitrarily chosen,

and is described by the set of particles xi0 with associated weights wi
0, such that

∑N
i=1w

i
k = 1

at any time k. The PF follows the same prediction-correction pattern as the aforementioned

filters. The state pdf at time k − 1 is approximated by a sum of delta functions:

p (xk−1 | Zk−1) ≈
N∑
i=1

wi
kδ(xk−1 − xi

k−1) (2.28)

The prediction step consists of propagating the particles forward in time according to the

dynamic model, xk = fk−1(xk−1,vk−1). This yields the predicted state pdf , p (xk | Zk−1).

When a measurement, zk, is received, the state pdf is updated in the correction step.

p (xk | zk) =
p (zk | xk) p (xk | Zk−1)

p (zk | Zk−1)
(2.29)

The measurement likelihood function, p (zk | xk), is used to update the particles weights

according to Bayes’ Rule.

wi
k =

wi
k−1p (zk | xi

k)∑N
j=1 w

j
k−1p

(
zk

∣∣ xj
k

) (2.30)

It has been shown that the variance of the importance weights can only increase over

time in the presence of measurements [4]. This degeneracy phenomenon results in one

particle holding all of the weight after a certain number of recursive steps. It is desirable to

keep track of the number of effective particles that hold a non-negligible weight, Neff < N .

This is done through the following calculation:

Neff =
1∑N

i=1(wi
k)2

(2.31)

The process of resampling is used when Neff falls below the desired threshold, Nthr. Although

resampling is computationally expensive because it is not parrallelizable, it is necessary to

avoid particle degeneracy. Resampling eliminates particles with relatively low weight and

creates duplicates of particles with relatively high weight. The new set of particles is obtained
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by resampling with replacement N times from the approximation of p (xk | zk) given by the

set of particle states and weights, {xi
k, w

i}. The resulting particle set is an independent and

identically distributed sample from the posterior pdf . There are multiple resampling meth-

ods, but one of the most computationally efficient, O(N), and simple methods is systematic

resampling. The pseudocode for systematic reampling is given below [1], where xik is the

state of the ith particle, wi
k is the weight of the ith particle, and CSW is the cumulative sum

of the particle weights.

Initialize the CSW : c1 = w1
k

for i = 2 : N do

Construct CSW : ci = ci−1 + wi
k

end for

Start at the bottom of the CSW : j = 1

Draw a starting point : u1 ∼ U [0, N−1]

for i = 1 : N do

Move along the CSW : ui = u1 + (i− 1)/N

while ui > ci do

j = j + 1

end while

parent(i) = j

end for

Assign sample : xk = xk(:, parent)

Assign weight : wk = 1/N

Figure 2.1 pictorially describes the process for determining which particles should be

eliminated and which should be duplicated. The cumulative sum of particle weights (CSW)

is compared to the random variable ui, i = 1, ..., N that is uniformly distributed on the

interval [0, 1]. If a particle’s weight does not significantly increase the cumulative sum when

compared to the next element in the uniform distribution, that particle will be eliminated.
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Conversely, if a particle’s weight significantly increases the cumulative sum when compared

to the next element in the uniform distribution, that particle will be duplicated at least

once. Given sufficient computing power and trustworthy sensor input, resampling should be

Figure 2.1: The Resampling Process

done following each measurement to maintain sufficient particle resolution. Figure 2.2 [1]

illustrates the introduction of a measurement and the effect of resampling. More particles

are introduced in areas of higher probability and particles are removed from areas of low

probability.

Figure 2.2: Effect of Resampling

It is evident that the PF framework does not make assumptions regarding the shape of

the posterior pdf . Also, it puts no restriction on the forms of the dynamic or measurement
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models. Therefore, it is utilized in this work to estimate the location of a moving ground

vehicle.

2.3 Entropy of a Probability Density Function

Entropy is often used as a measure of uncertainty of an estimate in the field of target

tracking, [24, 26, 28]. It is a positive scalar quantity that represents the amount of un-

certainty in an estimate. Entropy reduction has been used in cost functions in problems

regarding sensor assignment to determine the best configuration to reduce uncertainty in

target location.

For a general filtering density, p (xk|Zk), the entropy is given by:

H (p (xk|Zk)) = −
∫
X

log2 (p (xk|Zk)) p (xk|Zk) dxk (2.32)

For an n-dimensional Gaussian variable with covariance matrix P, as in the Kalman filter

framework, the entropy H is given by:

H = log
√

(2πe)n|P | (2.33)

When put into the particle filter framework, the resulting expression for entropy is:

H (p (xk|Zk)) ≈ −
N∑
i=1

wi
k log2(wi

k) (2.34)

This result is incorrect as it gives no mention to the location and local density of the particle

distribution. For example, the two sample distributions illustrated by Fig. 2.3 each contain

four particles of equal weight (0.25) that are used to represent the location of a target [5].
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(a) (b)

Figure 2.3: (a) Low density pdf and (b) High Density pdf

The distribution in Fig. 2.3(a) is more spread out than that in (b), corresponding to

more uncertainty in target location given the distribution. However, both distributions would

have an entropy value of 2 if Eq. (2.34) is used.

The development of an approximate expression for the entropy of a non-Gaussian pdf

as is often present in particle filter implementations has been the subject of recent research.

Driessen et al. [5] used a 2-D bimodal distribution in a target tracking application to validate

the following entropy approximation:

H (p (xk|Zk)) = −
∫
X

log2 (p (zk|xk) p (xk|Zk−1)) p (xk|Zk) dxk+

log2 (p (zk|Zk−1))

H (p (xk|Zk)) ≈ log

(
N∑
i=1

p
(
zk|xi

k

)
wi

)
−

N∑
i=1

log

(
p
(
zk|xi

k

)( N∑
j=1

p
(
xi
k|xi

k−1

)
wj

k−1

))
wi

k
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Skoglar et. al [26] implemented and tested the following expression on a 1-D Gaussian

sum density:

H (p (xk|Zk)) ≈
N∑
i=1

wi
k log p

(
zk|xik

)
−

N∑
i=1

wi
k log

N∑
i=1

wi
k−1p

(
xjk|x

i
k−1

)
+

log
N∑
i=1

wi
k−1p

(
zik|xik−1|k

)
In addition, Ryan [28] derived a piecewise linear approximation of a pdf represented by a

particle set by using particle locations as vertices of triangular elements, and the height of

the elements being p(xik|Zk). Figure 2.4 illustrates the evolution of the particle cloud after

a measurement update and the piecewise linear approximation of the pdf implemented by

Ryan [28] to calculate the entropy of the distribution.

Figure 2.4: Piecewise linear approximation of a PDF

As there is yet to be a standard expression for the entropy of a distribution represented

by particles, an indirect method for reducing entropy is desired. Hoffmann and Tomlin [24]
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present an information utility function, I(zk|xk), that when maximized, will reduce the ex-

pected entropy of the target state, H (p (xk|Zk)).

H (p (xk|Zk)) = H (xk)− I (zk; xk)

where

H (xk) = −
∫
p (xk) log2 p (xk) dx

H (p (xk|Zk)) = −
∫
p (xk, zk) log2 p (xk|zk) dxdz

I (zk; xk) =

∫
p (xk, zk) log2

p (xk, zk)

p (xk) p (zk)

Additionally, Hoffmann and Tomlin express I (zk; xk) as:

I (zk; xk) = H (zk)−H (p (zk|xk))

which can be approximated by:

H (zk) ≈ −
∫ { N∑

i=1

(
wi

kp
(
zk|xik

))
log2

[
N∑
i=1

(
wi

kp
(
zk|xik

))]}
dz

H (zk|xk) ≈ −
∫ N∑

i=1

[
wi

kp
(
zk|xik

)
log2 p

(
zk|xik

)]
dz

The Information Utility Function is based on the idea that minimizing the posterior un-

certainty is equivalent to maximizing the difference between the uncertainty that any par-

ticular observation will be made H (zk), and the uncertainty of the measurement model,

H (p (zk|xk)). The terms above are readily available in a particle filter and may be used to

select sensor placement to indirectly reduce the entropy of a particle distribution.
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2.4 Applications to Target Localization and Tracking

The most computationally efficient algorithms used for ground target tracking are based

on Kalman filtering [5, 6, 7]. However, the aforementioned strict assumptions in Kalman

filtering do not hold in urban target tracking, as the system is nonlinear, non-Gaussian,

and possibly multi-modal. A particle filter requires no assumption about the distribution

of the uncertainties and linearity of the system dynamics, consequently a non-Gaussian

posterior distribution is admissible [1, 3, 4, 8]. The urban terrain is characterized by a road

network, traffic signs and signals, speed limits, crossings, and traffic participants such as

vehicles, bicycles, and pedestrians. Solutions that do not utilize these features may lead

to suboptimal performance. Exploitation of prior knowledge of the terrain attributes, for

instance, road maps and traffic information, are therefore highly desirable to significantly

improve the target tracking performance [9].

The earliest usage of particle filters for target tracking with road network information

can be found in [10], where Arulampalam et al. presented an algorithm termed Variable

Structure Multiple Model Particle Filter (VS-MMPF) with ground moving target indicator

(GMTI) radar using non-standard information such as road maps and terrain-related visibil-

ity conditions. Subsequently, Agate and Sullivan [11] demonstrated the feasibility of jointly

tracking and identifying targets using a particle filter. Yang et al. [12] explored several ways

to include terrain database and road maps to assist the tracking of ground targets and dis-

cussed motion models for brake to stop, road intersections, and target interactions. Further,

Ulmke and Koch [13] developed a GMTI based target tracking approach using the discrete

Gauss-Markov target dynamics and road-map information. Ekman and Sviestins [14] intro-

duced the Multiple Likelihood Model Particle Filter (MLM-PF) for target tracking in the

presence of hard constraints such as speed or acceleration demonstrating excellent tracking

performance. Concurrently, Kamrani and Ayani [15] presented a method for path planning

of an unmanned aerial vehicle with the task of tracking a moving target on a road network.
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Orguner et al. [16] considered the problem of tracking targets, which can move both on-

road and off-road, while the results suggested the preference of Interacting Multiple Model

Particle Filter over Bootstrap Multiple Model Particle Filter. Kreucher et al. [23] utilized

a particle filter and the expected information gain as the metric to assign a sensor to track

multiple targets. Each second, a 100 m x 100 m section of the simulation space was inspected

and a binary response of target presence was given.

With the intention of reducing computational time, Hong et al. [17] presented a Multi-

rate Interacting Multiple Model Particle Filter that reduced by half the computational cost

in comparison to the Multiple Model Particle Filter for terrain based ground target track-

ing. Thereafter, Kravaritis and Mulgrew [18] introduced the Variable-mass Particle Filter

(VMPF) for terrain-aided tracking problem by allocating particles with variable masses to

the modes as against VS-MMPF. The simulation results in [18] showed the improved effi-

ciency of the VMPF. Skoglar et al. [19] proposed a Rao-Blackwellized Particle Filter to reduce

the dimension of a state space in road target tracking application, and showed the use of

prior information about the probability of detection can be used to improve the estimation

performance.

The goals of the search problem are well framed in the context of information theo-

retic costs. Information theoretic cost metrics have been used to manage sensors [20], and

have led to algorithms to control sensor networks for information gathering over an area by

parameterizing the motion of collectives of vehicles [21]. The optimal probing control law

to minimize Shannon entropy for the dual control problem has been shown to be the input

that maximizes mutual information [22]. The expected alpha-divergence of a particle filter

distribution was used for sensor management, and specialized to select modes for binary sen-

sors, though scalability in sensor network size was not addressed, and the Shannon entropy

was only found in the limit of the presented equations [23]. An earlier version of entropy

approximation techniques was presented in [24]. The continuation of that work, presented

in [25], develops an entropy-based metric to maximize the mutual information in a mobile
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sensor network. Significant work has been done in the field of sensor assignment. Spletzer

and Taylor select the difference in the expected value of the pdf and each particle’s location

as the metric for path selection [31].

Wang et al. study a linearized system with a Kalman Filter in the Bayesian framework

to optimize when to accept an estimate and the risk associated with it based on Renyi

information divergence. [32]. O’Reilly applied Bayesian likelihood ratio tests to the detection

of faults within a sensor by observing potential changes in the variance of the estimate [33].
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Chapter 3

The Effect of the Particle Motion Model

A ground vehicle is to be located and tracked in an urban environment. This chapter

will investigate the effect of a high fidelity particle motion model on localization and tracking

performance given unconventional measurements. Two motion models will be compared to

explore the benefits and development of a sophisticated dynamic model. The performance

of each motion model will be studied in three ways: computational expense, the amount of

time to detect the target, and the tracking capabilities post-detection. The particle filter is

not restricted in the form of the dynamic models or probability distributions. This chapter

will investigate the multi-resolution problem of maintaining sufficient spatial resolution while

distributing particle weight according to the likelihood of target presence.

A thorough description of the simulation environment will be discussed, as well as the

necessary assumptions that were made. The motion model utilized to simulate the target

ground vehicle will be introduced, followed by the measurement model and the two particle

motion models. Section 3.5 presents comparison results for the two motion models. Reduced

performance by the high-fidelity model in the amount of time it takes to detect the target

motivated further investigation into the role of particle spatial resolution by means of particle

redistribution and allowing for the belief of the presence of false measurement reports.

3.1 Problem Description

Suppose there is a mobile ground vehicle of known description but unknown position,

velocity, and destination that is to be found, tracked, and intercepted by an unmanned aerial

vehicle. The vehicle is known to be in an urban environment, and full knowledge of that

environment (roads, obstacles, intersection constraints, and speed limits) is available. Urban
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warfare often relies on information from passersby, agents in the field, and traffic cameras.

The inclusion of such non-traditional and non-differentiable measurements in addition to

the shape of a complex road network necessitates the use of a particle filter to estimate

the location of the target vehicle. In this problem, measurements are received from field

operatives in the form of binary responses of target presence within a sector of the city.

There are numerous issues of interest within this problem. The effect of a sophisticated

particle motion model on target localization time and tracking capabilities in the presence

of unconventional measurements will be studied in this chapter.

Figure 3.1: Map of Urban Environment

The urban environment utilized in this work is illustrated by Fig. 3.1, where obstacles

are orange and roads are white. Complete knowledge of the map is assumed, including the

location of obstacles and roads.

Several assumptions are made throughout the simulation. Roads have known speed

limits related to their width (as consistent with practice), are assumed to have constant

heading, and permit two way travel. Large avenues have a speed limit of 35 mph and

smaller roads have a speed limit of 25 mph. The target is restricted to ±10 mph of the
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specified road speed limit to simulate a realistic traffic scenario. Although the same map is

used throughout this work, the particle filter framework is suitable for any road network [29].

3.1.1 Target Motion Model

It is known that the target vehicle is located within the urban environment, with no

bias given to any particular road initially. Therefore, the initial particle distribution, p(x0),

consists of N particles of equal weight scattered throughout the roadways. The x and y

locations of each particle is drawn from the distribution 1000U [0, 1], under the restriction

that the point [x, y] lies within a road. A uniform distribution was used to create the initial

particle distribution because there is equal probability that the target lies in any location

throughout the map.

for i = 1 : N do

rand ∼ U [0, 1]

xik = 1000rand

rand ∼ U [0, 1]

yik = 1000rand

point = [xik, y
i
k]

while point ∈ Obstacle do

rand ∼ U [0, 1]

xik = 1000rand

rand ∼ U [0, 1]

yik = 1000rand

point = [xik, y
i
k]

end while

wi
k = 1/N

end for
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It is assumed that the target is a mobile ground vehicle that is modeled as a simple car

illustrated by Fig. 3.2 [30], with position [x,y], wheelbase L, turn angle φ, and heading θ

measured clockwise from the positive y-axis.

Figure 3.2: Geometry of a Simple Car

ρmin =
L

tanφmax

(3.1)

The wheelbase, L, is set to 2.8 m and a minimum turning radius of 11.5 m is utilized

throughout the simulation, as consistent with a standard sedan. Equation (3.1) is used to

compute a maximum turning angle, φmax, of 13.7◦.

The target is required to remain on the right side of the road and stay within ± 10

mph of the road specific speed limit. The speed at each time step is updated with noise to

account for unknown accelerations. The value for the noise, νk, is a random draw from the

distribution U [0, 1].

Vk+1 = Vk +
Vk(νk − 0.5)

2
(3.2)

The resulting range of possible values for Vk+1 is the set [0.75Vk, 1.25Vk]. If the speed

escapes the bounds of ± 10 mph of the speed limit, it is adjusted by the following control

sequence:

Vmin = Vroad − 10

Vmax = Vroad + 10
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while Vk+1 < Vmin do

Vk+1 = Vk + Vk |(νk − 0.5)/2|

while Vk+1 > Vmax do

Vk+1 = Vk − Vk |(νk − 0.5)/2|

end while

end while

In addition, the target may not reverse and must remain within the simulated map, and

therefore is required to make a U-turn at the map’s edge. Although the target’s path is

unknown to the estimation routine, two candidate paths were chosen for simulation, one

predominantly straight and one winding, and are illustrated by Fig. 3.3.

(a) (b)

Figure 3.3: (a) Straight Path and (b) Winding Path

3.1.2 Measurement Model

It is assumed that a soft measurement source (a measurement from a human) is able

to provide information on each 200 m × 200 m sector depicted by the grid squares in Fig.

3.4, and that there is no cost associated with utilizing any sensor. Every three seconds,

a measurement is taken at the sector containing the highest particle weight sum. The

highlighted square region in Fig. 3.5 represents the sector being measured. The structure of

the sensor grid was arbitrarily chosen. The filter framework is also applicable to overlapping
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sensor regions, sparse sensor coverage, non-stationary sensors, and sensor regions of irregular

shape. In addition, the measurement report rate of one measurement per 3 seconds was

chosen to observe the effect of receiving reports at a reduced frequency. Any frequency could

be used in this framework. Finally, only one sensor region was polled per measurement.

However, if in practice more regions may be polled at once, the particle filter framework

presented herein is suitable for such an application.

Figure 3.4: Determine Region of Highest Particle Weight

The polled sensor returns a binary response, where 0 means the target is not present and

1 means the target is present somewhere in the associated region. No specific location within

the region is given. This information is fused into the measurement likelihood function to

update particle weights. A sensor that always reported the truth was initially used. However,

the assumption of a perfect sensor is unrealistic, especially as the sensor is modeled after a

human operator. Because of this, false positive and false negative rates of 10 % were later

introduced into the sensor model. Methods used to account for an imperfect soft binary

sensor will be discussed in Chapter 4.

26



Figure 3.5: Measure Region of Highest Particle Weight

3.2 Dispersion Motion Model

The effect of the particle motion model was the first major investigation in this work.

The initial particle dynamic model was that of a constant-velocity point-mass unicycle, as

illustrated by Figure 3.6 where r = 0. This model caused the particles to randomly disperse

through the road network until they reached an obstacle, at which point their heading was

rotated 180 deg. The dispersion model was chosen for comparison because of its ease of

implementation and its tendency to fill the roadway. A similar model was used by Kreucher

et al. in [23] to track a target with the same dynamic model on a random walk, with no

obstacles obstructing its motion. The following equations describe the particle motion in the

dispersion model:

xik+1 = xik + V i
k sin θikdt (3.3)

yik+1 = yik + V i
k cos θikdt (3.4)

V i
k+1 = V i

k (3.5)

θik+1 = θik + (νk − 0.5)
π

10
(3.6)

27



where the ith particle’s position at time k is denoted [xik, y
i
k], its heading θik is measured

clockwise from the positive y-axis, the time step dt is 1 second, and the noise νk is a random

draw from the distribution U(0, 1), thus limiting the change in heading per second to the

range [−9◦, 9◦].

Figure 3.6: Geometry of Unicycle

3.3 Traffic Motion Model

In addition to the dispersion model, an alternative first-order Markov model was devel-

oped to exploit the knowledge of vehicle tendencies in an urban environment. In an urban

setting, state variables may not be solely time dependent, but also location dependent. The

traffic model accounts for road conditions such as in-lane travel, speed limits, two-way traffic,

changing lanes to execute a future turn, and pauses at intersections. A complete characteri-

zation of the road network is assumed available. This requires categorizing regions into four

categories: road, intersection, obstacle, or off-map. Each road has two possible headings

that reflect two-way traffic. The required heading is based on a particle’s position on the

road, as to mimic two way traffic flow and driving on the right side of the road. Figure 3.7

illustrates the required headings of two roadways and their intersection at the grey region.

Each particle stores a variable in its state vector that is related to the required heading of

the road it is on, or the required heading of the road it is turning on to. This variable, q,

becomes important during a turning maneuver.
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Figure 3.7: Intersection of Two Roads

Because state variables in an urban setting are both time and location dependent, each

particle stores a variable in its state that corresponds to the motion model it is to use. The

value of this variable mi
k is based on whether the particle is on a road, going straight in an

intersection, turning, left, turning right, or making a U-turn. The motion models for each

of these modes are described below.

While on the rth road with speed limit Vr and mi
k = 2, the ith particle is propagated

forward in time using the following discrete-time dynamic model:

xik+1 = xik + V i
k sin θikdt (3.7)

yik+1 = yik + V i
k cos θikdt (3.8)

V i
k+1 = V i

k +
V i
k (νik − 0.5)

2
(3.9)

Subject to Vr − 10mph ≤ V i
k+1 ≤ Vr + 10mph (3.10)

θik+1 = θik (3.11)

where xik and yik define the position relative to the origin, which is located in the bottom left

corner of the map in Fig. 3.1, θik is the heading angle measured clockwise from the positive

y-axis, the time step dt is 1 second, and νk is a random draw from the distribution N (0, 1).

Because the road network used in this work is modeled after a grid-like street pattern, the

roadways are straight and a constant heading is desirable along them. However, a directed
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graph could be used to determine a road’s heading in order to apply this model to any road

network [29].

As mentioned in Section 3.1.1, the target is required to make a U-turn at the map’s

edge. All particles are subject to the same restriction. If when propagated forward to the

next time step, a particle would be located outside of the map’s boundaries, a U-turn is

performed. During this maneuver, it is necessary to know which road the particle is on so

that the proper heading and position may be obtained following the U-turn.

Figure 3.8: U-turn course adjustment

Figure 3.8 illustrates how a particle’s position and heading are adjusted when it is to

cross the map’s boundary, drawn in red. In this example, the center of the road is the dashed

line and the particle is initially on the lower half of the road, heading to the right. During

the U-turn, it moves to the other side of the road. The distance between the particle and

the edge of map is d1, and the distance between the particle and the center of the road is

d2. The particle’s proximity to the center of the road is preserved following a U-turn as that

distance is used to determine what turns a particle is capable of performing.

The heading variable is changed by π radians and the x and y position variables are

adjusted based on heading and the values of d1 and d2, respectively. The equations for the

U-turn motion model depend on the particle’s initial heading. The equations below are

used during the U-turn motion model for the example in Fig. 3.8 where the particle’s initial

30



heading is π/2. The three additional sets of equations for the U-turn motion model are

derived in a similar manner.

xik+1 = xik (3.12)

yik+1 = yik + 2d2 (3.13)

V i
k+1 = V i

k +
V i
k (νik − 0.5)

2
(3.14)

Subject to Vr − 10mph ≤ V i
k+1 ≤ Vr + 10mph (3.15)

θik+1 = θik + π (3.16)

If a particle will be located in an intersection at the next time step, it must make a

decision on which way to go based on what is permitted by the road network. At the start of

the simulation, a list of possible turns from every direction at each intersection is generated

based on the map. This turn list provides for obstacle avoidance. When a particle enters

an intersection, its location is used to determine which intersection it is in and its heading

is used to determine the turning possibilities. The list of possible turn choices is compiled

and a random selection is made to indicate the chosen turn direction, either left, right,

or straight. Next, the particle’s proximity to the obstacles on its right and left, velocity,

span-wise location on its current road, and the width of all possible future roads are taken

into account to determine what adjustments must be made to complete the chosen turn.

Figure 3.9 illustrates the various parameters that are taken into account to prepare for a

turn, where the particle’s initial position is in the bottom right with a heading of θ = 0 in

the positive y direction.

First, the width of the possible future road, denoted as r2 in Fig. 3.9, is calculated.

In the map used in this simulation, the width of the road is determined by the size of the

intersection and is assumed constant along the length of the road. If either rright or rleft

are greater than r2, a lane change would be necessary to successfully make the turn in their

respective directions. In the example illustrated by Fig. 3.10, the ith particle at position
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Figure 3.9: Geometric characterization of an intersection

[xik, y
i
k] has chosen to turn right, but its distance from the nearest obstacle to the right, rright,

is larger than half of the width of its future road, r2. If it were to turn in its current position,

it would be on the wrong side of the road when it reached the new road. Therefore, it must

merge to the right. The particle will merge to its new distance from the obstacle, rnew, which

is equal to ρmin + 1.

xik+1 = x1,obs − (ρmin + 1) (3.17)

The lane change maneuver depends on the chosen turn direction and the particle’s heading.

Similar update equations are derived for the remaining configurations.

Lane changes are permitted when approaching an intersection to provide for improved

tracking. This was motivated by the resampling step in the particle-filter framework. As a

result of resampling, particles of significant weight are duplicated into multiple particles of

smaller weight. Because the noise in the velocity term will only separate duplicated particles
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Figure 3.10: Example of a Required Lane Change

along the length of a road and not along the width, lane changes allow the particle cloud to

more fully describe the possible motion of a target vehicle entering an intersection, without

violating the simulated vehicle’s physical constraints, namely ρmin. The appropriate lane is

determined by the particle’s velocity and chosen turn direction.

Once a turn direction is randomly chosen and a lane adjustment is made, if necessary,

the particle’s turning parameters are computed. While turning, a particle’s heading will

change a total of π/2 and the particle’s path during a turn will follow an arc of constant

radius, ρi, which is the distance between the ith particle an the nearest obstacle in its chosen

turning direction. The two choices for ρi are rright and rleft, as illustrated by Fig. 3.9.

Because the dynamic system is a first order Markov process, the future state depends

only on the current state. Therefore, only the state at time k is stored. In addition, the

time step used in the simulation is 1 second. This presented a challenge during turning

maneuvers, as the amount of time it takes to complete a turn is not always an integer or
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constant. This required the use of the aforementioned variable q to determine when the

appropriate amount of turning had occurred. The value of a particle’s q ∈ [1, 2, 3, 4] and it

is related to a particle’s heading by Eq. (3.18) and is illustrated by Fig. 3.11.

θik = (qik − 1)
π

2
(3.18)

Figure 3.11: Definition of q Variable

If a particle chooses to turn right, its mode variable mi
k becomes 1. Similarly, if a

particle chooses to turn left, mi
k is set to -1. When a particle makes a decision to turn, qik is

updated by use of the mode variable mi
k, as indicated in Eq. (3.20), and is always restricted

to the set [1, 2, 3, 4]. The value of qik is used to update a particle’s heading during a turn.

While on a road, qik remains constant as the heading is constant.

qik = qik +mi
k (3.19)

qik = mod(qik, 4) (3.20)

Given the selected turn direction and turning radius, the number of time steps to complete a

turn, Ns, is then computed based on the arc angle to be traversed per time step, α. Because

the number of time steps to complete a turn depends on the velocity, no noise is introduced
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into the velocity during a turn, thus keeping it constant.

tanφi
k =

L

ρik
(3.21)

αi =
mV i

k

L
tanφi

k (3.22)

N i
s =

⌊
π/2

αi

⌋
+ 1 (3.23)

Figure 3.12 illustrates the parameter α that is utilized during a sample turn where Ns = 5,

m = 1, and the value of q changes from 1 to 2. The position of the ith particle along the arc

during a turn at each time step k is illustrated by the black dot.

Figure 3.12: Geometry During a Sample Turn

The angle γi is always less than or equal to αi as it is the remainder of the arc to be

traversed at the final time step of a turn. This simulates steering to stay in the same lane.

γi =
π

2
−mαi(Ns − 1) (3.24)
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Figure 3.13: Geometric Turning Parameters

Once the above parameters are determined, the time update parameters illustrated by

Fig. 3.13 are determined. The time dependant variable βk is the angle between the heading

at which the particle entered the intersection, θk0, and the next way point along the arc,

[xk+1, yk+1]. The constant h is the distance between [xk, yk] and [xk+1, yk+1]. These param-

eters are computed by the following set of equations, where θk0 is obtained by determining

the previous value of q:

θk0 = [(q −m)− 1]
π

2
(3.25)

βk = θk0 + [(k − 1) + 1/2]α (3.26)

h = ρm sin(α)/ cos(
α

2
) (3.27)

Finally, the state variables for the ith particle are updated by the algorithm below for the

sample turn in Fig. 3.12. The variable k is stored in each particle’s state vector in order to

keep track of how far into a turn the ith particle is.

if ki < Ns then

βi
k = θik0 + [(k − 1) + 1/2]αi

xik+1 = xik + hi sin(βi
k)

yik+1 = yik + hi cos(βi
k)

θik+1 = βi
k
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ki = ki + 1

else

xik+1 = xik + ρik sin γi

yik+1 = yik + (xik+1 − xik) tan(γi/2)

thetaik+1 = (q − 1)π/2

ki = 0

end if

The updated x and y position during a turn is calculated in a Markov process by

trigonometric relationships that include quadrant adjustments. The same update equation

is used for all steps before the final, and the final step ensures the vehicle completes the

in-lane turn and enters the road with proper heading. Once a particle finishes turning, it’s

mode variable, m, is set to zero until it exits the intersection and enters a road at a constant

heading.

3.4 Measurement Update

It is assumed that there is a sensor that may be polled in each 200 m × 200 m region and

that each sensor can view its entire region, as illustrated by Fig. 3.14. Only one sensor may

be polled per measurement, therefore a metric of sensor selection must be established. The

region of highest importance must be determined at each measurement interval in order to

determine which sensor to poll. In this work, it was decided that the region with the highest

particle weight sum was the most important and should be observed. A measurement was

taken every three seconds.

At each measurement, the sector with the highest particle weight sum is polled by a

sensor. The results presented in this chapter reflect a true sensor report at each measurement

update. The effect of introducing false sensor reports is discussed in Chapter 4.
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Figure 3.14: Determine Region of Highest Particle Weight

3.4.1 Particle Weight Update

In general, the measurement update step will adjust each particle’s weight according to

the information the measurement provides and the confidence level the particle filter has in

the measurement source. As mentioned in Section 2.2, when a measurement, zk, is received,

the state pdf is updated through the following likelihood update:

p (xk | zk) =
p (zk | xk) p (xk | Zk−1)

p (zk | Zk−1)
(3.28)

The values for each term are determined based on the sensor’s report and whether a particle

is in the measured region or not. A sample measurement update of a smaller environment will

be detailed for completeness. Suppose the measurement regions are divided as illustrated by

Fig. 3.15, where the eight circles are particles of equal weight (1/8), and the star is the target.

The region with the highest particle weight is the region in the bottom right corner, so it

will be polled by the sensor. The sensor finds the target within the region. The likelihood

function for each particle is computed based on its location. There are N = 8 particles and

the array of particle weights is wi,−
k = 1/8, i = 1, ..., N .
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Figure 3.15: Measurement Update Example Scenario

In general, when the sensor reports a detection, the particles in the measured region (the

bottom right corner) are updated as follows, where - corresponds to before a measurement

is taken and + corresponds to after a measurement is taken.

p (zk | xk) = 1−Rfalse (3.29)

p (xk | Zk−1) =

Nin∑
i=1

wi,−
in (3.30)

p (zk | Zk−1) = (1−Rfalse)

Nin∑
i=1

wi,−
in + (3.31)

(Rfalse)(1−
Nin∑
i=1

wi,−
in ) (3.32)

p (xk | zk) =
p (zk | xk) p (xk | Zk−1)

p (zk | Zk−1)
(3.33)

wi,+
k =

wi,−
k p (xk | zk)∑

w−in

In the equations above, zk is the measurement report at time step k, xk is the state of the pdf

at time k, Zk−1 is the set of all measurements up to time k-1, win is the array of weights of

the particles in the measured region, and Rfalse is the is the percentage of times the particle

filter believes that the sensor reports it has found the target when it is actually not present.

In this example,
∑

w−in = 3/8 and the false positive rate is zero. This results in the new

weights for the particles in the lower right corner to each be wi,+
in = 1/3, i = 1, 2, 3.
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Similarly, when the sensor reports a detection, the particles outside of the measured

region (the two top sections and the bottom left corner) are updated as follows:

p (zk | xk) = Rfalse (3.34)

p (xk | Zk−1) =
Nout∑
i=1

wi,−
out (3.35)

p (zk | Zk−1) = (1−Rfalse)
∑

w−in + (3.36)

(Rfalse)(1−
∑

w−in) (3.37)

p (xk | zk) =
p (zk | xk) p (xk | Zk−1)

p (zk | Zk−1)
(3.38)

wi,+
k =

wi,−
k p (xk | zk)∑Nout

i=1 wi,−
out

where wout is the array of weights of the particles outside of the measured region. This

results in the weights of the particles not located in the measured region to each be set to

zero. A similar formulation including a false negative rate is used when a sensor reports a

non-detection.

In the work discussed in Section 3.5, it is assumed that the sensor always reports the

truth. Therefore, if a sensor reports that the target is present within a region, the weights of

all the particles located outside of that region are set to zero. Similarly, if a sensor reports

that the target is not present within a region, the weights of all the particles located inside

of that region are set to zero.

The resulting particle distribution is illustrated by Fig. 3.16, where larger particles hold

more weight than smaller particles and the numbers indicate the ith position of the particle

in the array wk = wi
k, i = 1, ..., N . The effect of including a false report rate belief in the

particle filter’s measurement update step is introduced in Section 3.6.2 and discussed in

detail in Chapter 4.
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Figure 3.16: Post-measurement Update for Example Scenario

3.4.2 Resample Step

Because the sensor model used in this chapter is believed to always report the truth, re-

sampling is done after each measurement update, resulting in Neff = N . The resulting weight

array in the sample used discussed in the previous section is wk = [0, 0, 0, 0, 0, 1/3, 1/3, 1/3],

where the last three elements are the weights of the three particles in the bottom right cor-

ner. The resampling algorithm given in Section 2.2 is used to break up the large particles

in to smaller ones and to eliminate particle of insignificant weight. Figure 3.17 illustrates

the particle distribution following resampling. The three particles in the bottom right cor-

ner were duplicated and the particles with zero weight outside of the measured region were

eliminated. After resampling, duplicate particles will have the same state, and their weights

become equal following normalization.

for i = 1 : N do

wi
k =

wi
k∑N

j=1 w
j
k

end for

The particles are separated in Fig. 3.17 for visualization purposes. In the urban tracking

simulation, duplicate particles obtain separation over time through the noise terms in the

particle-motion model.
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Figure 3.17: Resampled Distribution for Example Scenario

3.5 Motion Model Comparison Results

Monte Carlo simulations were conducted to study the effect of particle motion on the

time to detect and tracking performance when the target path was varied between a straight

path (Fig. 3.3 (a)) and a meandering one (Fig. 3.3 (b)). The time to detect is defined as

the amount of simulated time that elapses before a measurement is received indicating that

the target has been found for the first time. The system is observed for 60 seconds following

the aforementioned initial target detection time. The tracking performance is measured by

the mean square error. The mean square error is computed after each time step by summing

the product of the weight of each particle with the square of its distance from the target.

eMSE(t) =
N∑
i=1

[(
xT − xik

)2
+
(
yT − yik

)2
]
wi (3.39)

Following the last run of a trial consisting of Nruns total runs, the mean square error is

averaged at time t after detection according to:

eave(t) =

∑Nruns

j=1 eMSE,j(t)

Nruns

(3.40)

It is important to note that the mean square error establishes an approximation to the area

that the particles cover. The area covered by a regional sensor, 4 x 104 m2, can be used as

a metric of comparison.
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Two hundred Monte Carlo runs were completed for each configuration, each with iden-

tical initial target position, velocity, and heading. The four configurations detailed below

consist of the two aforementioned motion models with two possible values of the total num-

ber of particles. All simulations were done in MATLAB on a standard desktop computer

with a 2 GHz processor, and values for time to detect, tracking performance, and simulation

time are presented as the average of the Monte Carlo runs. It is presented in Table 3.1 that

Table 3.1: Time to Detect Results for Straight Path, Perfect Sensor

Particle Model Number of Time to Detect
Particles

Dispersion 500 51.09 sec
Traffic 500 36.13 sec
Dispersion 1000 53.59 sec
Traffic 1000 29.31 sec

Table 3.2: Time to Detect Results for Winding Path, Perfect Sensor

Particle Model Number of Time to Detect
Particles

Dispersion 500 71.82 sec
Traffic 500 56.38 sec
Dispersion 1000 66.13 sec
Traffic 1000 69.54 sec

the Traffic Motion Model provides for faster detection times the case of a straight path and

in the case of a winding path with 500 particles. Whereas, the Dispersion Motion Model pro-

vides for faster detection time in the case of a winding path with 1000 particles according to

the results in Table 3.2. For comparison, searching randomly through the 25 sensor regions

would provide an expected time-to-detect of 75 seconds. The benefit of the Traffic Motion

Model is clear after observing the tracking performance results in Figs. 3.18 and 3.19. In

the case of a straight path, after approximately, 20 to 25 seconds, the model difference is

evident by high error divergence in the Dispersion Model results and reduced divergence in
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the Traffic Model results for both both N = 500 and N = 1000. This divergent behavior was

investigated further and is discussed in Section 3.6.1. The Dispersion Model yields better

tracking performance in the case of a winding path, as the particles in the Dispersion Model

tend to not traverse in a straight path. As expected, increasing the number of particles

generally helps to improve the time to detect and tracking performance, with the exception

of the Traffic Motion Model in the case of a winding path. This will be further investigated

in Chapter 4.

Table 3.3: Computational Expense Comparison

Particle Model Number of Time to Simulate
Particles One Second

Dispersion 500 0.0375 sec
Traffic 500 0.0847 sec
Dispersion 1000 0.0755 sec
Traffic 1000 0.1698 sec

Although the Dispersion Model is less computationally expensive, the values in Table

3.3 indicate that run time of the Traffic Motion Model is manageable. The simulation time

includes the time to simulate the target, sensor, and particle filter. Also, an important

observation of these results is that the difference in simulation time scales linearly with the

number of particles. Further investigation to decrease detection time for the Traffic Motion

Model when the target is on a winding path is necessary and will be discussed in Section

3.6.2.
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Figure 3.18: Average Mean Square Error After Target Found, Straight Path
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Figure 3.19: Average Mean Square Error After Target Found, Winding Path
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3.6 Importance of Spatial Resolution

The disparity in the average time to detect values between the two candidate paths

warranted a thorough investigation into the stability and behavior of the simulation. The

stability of the Traffic Motion Model was studied by observing the spatial resolution of the

particles at the start of the simulation and as time progressed, without any measurements.

Figure 3.20 illustrates that the Traffic Motion Model is stable in that no clusters of particles

form and an even distribution of particles is present at both the start of the simulation and

as propagation progresses.

(a) (b)

Figure 3.20: (a) Time = 0 sec. (b) Time = 200 sec.

The sensor model used in this work is non-differentiable, non-smooth, and results in a

challenging estimation problem. In addition, because the physical size of the measurement

area is large, additional interest must be taken in the spatial resolution of the particle cloud.

For instance, when the sensor reports that the target is found, no additional information

is available concerning where in the measured region the target is located. If the particles

within the measured region are not near the target, poor tracking performance may result.

Therefore, the effect of redistributing the particles to fill the measured region following a

“target found” report is described in Section 3.6.1.

Additionally, if the target is located just outside of the measured region, it is not found

but many of the particles near it are eliminated. This increases the time to detect. The idea
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of not eliminating all particles within a region of non detection was then studied. This was

accomplished by allowing the particle filter to no longer assume the sensor always reports

the truth, and instead has a false report rate. This is detailed in Section 3.6.2.

3.6.1 Particle Redistribution

The divergent nature of the mean square error presented in Section 3.5 was studied in an

effort to provide for improved target tracking for the Traffic Motion Model. The statistical

properties of the sensor were considered and the idea of particle redistribution was invented

and investigated. Because it was assumed that the sensor was perfect, all particles outside

of the region with reported target presence were being deleted. In addition, the location of

the particles within the region of detection were not necessarily the best estimate of target

location, as the sensed region is large (200 m × 200 m) and no indication is given to the

target’s location within the region. Therefore, when a positive target detection is reported,

all particles are then redistributed throughout a 300 m square region about the center of the

detection region, as illustrated by Fig. 3.21.

Figure 3.21: Redistribution Region
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The center of the square measured region is located at the point [xmid, ymid], and the

particles are scattered through the roads within a 300 m square region about that point,

excluding regions that are defined as obstacles, which are shown in orange in Fig. 3.21. The

variable ρr is used to characterize the size of the region. The size of the redistribution region

was chosen to extend slightly beyond the edge of measured region to improve tracking if

the target is found near a the edge of the region. Redistribution about a certain point is

done in a manner similar to creating the initial particle distribution, and is outlined by the

algorithm below.

ρr = 150

for i = 1 : N do

rand ∼ U(0, 1)

xik = (xmid − ρr) + 2ρrrand

rand ∼ U(0, 1)

yik = (ymid − ρr) + 2ρrrand

point = [xik, y
i
k]

while point ∈ Obstacle do

rand ∼ U(0, 1)

xik = (xmid − ρr) + 2ρrrand

rand ∼ U(0, 1)

yik = (ymid − ρr) + 2ρrrand

point = [xik, y
i
k]

end while

wi
k = 1/N

end for

The process of redistribution disregards the a priori pdf to reflect the new information

from the sensor. If the target was reported found in a region, there was no guarantee that

there was a sufficient particle distribution on the same road as the target or heading in
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the same direction. The sensor report only indicated that the target was present within

a region, similar to the beginning of the simulation where it is only known that a target

is located within a 1000 m × 1000 m region of a city. Redistributing the particles to fill

the sensed region was necessary given the presence of such a large regional sensor that was

trusted completely. This provides for complete spatial particle resolution within the region of

interest and resulted in improved tracking performance and prevented error divergence. The

redistribution routine was implemented in two different methods. Method 1 redistributed

particles at the first detection with ρr = 150 m, and at the first loss of detection following

the initial detection, with ρr = 175 m. Following the first loss of detection, the redistribution

area was increased to a 350 m square around the center of the region in which the target was

last detected. Method 2 redistributed particles at the first detection only with ρr = 150 m.

The effect of redistribution on the tracking performance is illustrated by Figs. 3.23

and 3.24, where the redistribution methods are compared to the best performers without

redistribution from Section 3.5. It is evident by Figs. 3.23 and 3.24 that Redistribution

Method 2 significantly improves performance in the case of both straight and winding paths.

The addition of particle redistribution did not significantly affect the computational run

time, as it is only done once in the chosen method. The time to detect is not affected by the

practice of redistribution as it only occurs after the target is found.
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Figure 3.22: Average Mean Square Error After Target Found, Straight Path, Traffic Motion
Model
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Figure 3.23: Average Mean Square Error After Target Found, Straight Path, Traffic Motion
Model, Final 30 seconds
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Figure 3.24: Average Mean Square Error After Target Found, Winding Path, Traffic Motion
Model
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Figure 3.25: Average Mean Square Error After Target Found, Winding Path, Traffic Motion
Model, Final 30 seconds
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The practice of redistribution provides vital improvement to the tracking performance

in the case of a target on a straight or a winding path. Because the true path of the target is

not known a priori to the particle filter, redistribution should be included in the presence of a

sensor model that covers such a large region. It should be noted that the area of each sensor

region is 40, 000m2, and by the inclusion of Redistribution Method 2 with 1000 particles, the

mean square error is kept below that value in both path cases.

3.6.2 False Rate Inclusion

In an effort to decrease the time to detect the target, the idea of a false report rate was

introduced into the particle filter’s measurement update. The belief in a false report rate

would decrease the particle filter’s confidence in a measurement’s report. This detuning of

the measurement update would allow for the weight of particles in regions of non-detection

to be decreased, but not set to zero. This practice would decrease the rate at which particles

in regions of non-detection were eliminated due to resampling, and preserve some of the

spatial resolution of the particle cloud. This was motivated by the observation that in some

cases, if the target is located just outside of the measured region, it is not found but many

of the particles near it are eliminated, which could lead to increases in the time to detect.

Figure 3.26 illustrates the effect that the particle filter’s belief of the false report rate has

on the particles in a region of non-detection. Each image is taken after the one measurement

update and resample step, and the measurement region is the same in each scenario. It is

observed that as the particle filter’s confidence in the sensor’s performance decreases, the

resolution of particles in the region of non-detection is maintained. As expected, all particles

in the region of non-detection are eliminated when it is believed that the sensor has no false

report rate. In addition, if it is believed that the sensor has a 50% false report rate, no

weight is shifted into or out of the region of non-detection, as the particle filter associates

no benefit to any report from the sensor.

52



In addition, the effect of the false report belief was studied in the case of a target

detection. Three beliefs are compared in Fig. 3.27 over the course of two measurements, one

taken every three seconds. The particle cloud contracts to the measurement region much

more quickly as the false report rate belief decreases. This is an important factor to consider

when tuning a particle filter to estimate a state that is measured by a sensor with a known

false report rate. The spatial resolution of the particle distribution is preserved for a longer

period as the particle filter’s confidence in the sensor is decreased. In the case of the report

of a false detection, if the false report belief is properly tuned, the particle filter will maintain

its spatial resolution following subsequent measurements that could correct the false report.

The tracking performance and time to detect where also investigated under the belief of

a false report rate. In this study, the particle filter believed the sensor had false positive

and false negative rates of 10%, however in reality, the sensor always reports the truth. This

caused particle weights in regions of non-detection to be significantly reduced, but not always

eliminated in the resampling process. Conversely, particles outside of a region of detection

were no longer automatically eliminated until after repeated detection. The results listed

below were obtained using 1000 particles, a sensor that always reported the truth, and a

particle filter that believed the sensor had a 10% false report rate.

Table 3.4: Time to Detect Results for Straight Path, N = 1000

Particle Model Sensor Belief Time to Detect
Dispersion Perfect 53.59 sec
Traffic Perfect 29.31 sec
Dispersion 10% False Report 57.9 sec
Traffic 10% False Report 28.8 sec

The times to detect results obtained in Section 3.5 changed slightly for both models in

the case of a straight path, but there was a significant more difference in the case of the

Traffic Motion Model on a winding path. The results in Table 3.4 indicate that the inclusion

of the assumption of a false report rate in the presence of a perfect sensor decreased the
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(a) 0% False Report Belief (b) 10% False Report Belief

(c) 20% False Report Belief (d) 30% False Report Belief

(e) 40% False Report Belief (f) 50% False Report Belief

Figure 3.26: Effect of false report rate belief on particle spatial resolution and weight distri-
bution
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(a) 0% False Report Belief, after 1 measurement (b) 0% False Report Belief, after 2 measurements

(c) 10% False Report Belief, after 1 measurement (d) 10% False Report Belief, after 2 measurements

(e) 20% False Report Belief, after 1 measurement (f) 20% False Report Belief, after 2 measurements

Figure 3.27: Effect of false report rate belief on particle spatial resolution and weight distri-
bution
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Table 3.5: Time to Detect Results for Winding Path, N = 1000

Particle Model Sensor Belief Time to Detect
Dispersion Perfect 66.13 sec
Traffic Perfect 69.54 sec
Dispersion 10% False Report 67.7 sec
Traffic 10% False Report 32.2 sec

time to detect for the Traffic Motion Model. This trend is also observed in the results in

Table 3.5 with a much more significant improvement to the detection time for the Traffic

Motion Model. In both cases, the Dispersion Model did not benefit from the inclusion of

a false report rate belief. No significant change was observed in the time to detect for the

Dispersion Model, further indicating the importance of a high fidelity model in the presence

of an accurate sensor.
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Figure 3.28: Average Mean Square Error After Target Found, Straight Path, 90% Confidence
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Figure 3.29: Average Mean Square Error After Target Found, Winding Path, 90% Confidence

The tracking performance results obtained after including a false report rate are il-

lustrated by Figs. 3.28 and 3.29. In both cases, the Traffic Motion Model out performed

the Dispersion Model. As expected, the Dispersion Model’s performance in the case of a

straight path was poorer than its performance in the case of a winding path, as the heading

variable in the Dispersion Model is altered at each time step. The Traffic Motion Model’s

tracking performance improved with the inclusion of a false report belief, and consequently

eliminated the need for particle redistribution, significantly reduced the time to detect in

the case of winding target, and showed the importance of spatial resolution in the particle

filter framework.

3.6.3 Reduced Number of Effective Particles

The resampling step is one of the more computationally expensive parts of a particle

filter routine, as it is not parallelizable. Therefore, the frequency at which a probability

density function is resampled is a design point. When the number of effective particles,
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(a) Measurement 1: target found, resample (b) Measurement 2: target found, no resample

Figure 3.30: Effect of the number of effective particles on particle spatial resolution, Neff >
90%N

Neff, falls below a desired threshold,Nthr, the particle cloud is resampled. Equation 2.31 is

repeated below for convenience.

Neff =
1∑N

i=1(wi
k)2

(3.41)

If the required number of effective particles is set less than the total number of particles

(N), the distribution may not be resampled after each measurement. This could provide for

reduced detection time by preserving some particles This could be important in the presence

of a sensor with a false report rate. By not resampling after each measurement, the spatial

resolution of the particle cloud is not immediately lost after a measurement, reducing the

effect of a false report. For example, consider the initial particle distribution is illustrated

by Fig. 3.30 (a) where the required number of effective particles is set to 90%N and a non-

detection is reported in the region where 400 ≤ x ≤ 600 and 200 ≤ y ≤ 400. Figure 3.30 (b)

illustrates that the particles in the region of non-detection are not automatically eliminated

because the distribution was not resampled.

An investigation was done into the effect of reducing the required number of effective

particles on the spatial resolution of the particle distribution. Two thresholds for the required

number of effective particles were used: 90%N and 80% N. The sensor always reported the
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truth and the false report rate belief was set to 0%. Six measurements are taken, one every

three seconds, and the particle distribution is shown after each measurement. The target is

found in the first measurement, and the initial contraction and then gradual expansion of

the particle cloud over time is shown. Particles of significant weight are blue and particles

of lower weight are red. The rectangular region where 400 ≤ x ≤ 600 and 0 ≤ y ≤ 200 is

measured at each measurement.

Both thresholds cause the particle distribution to contract to within the measured region

after the first measurement. In addition, both thresholds cause the distribution to not be

resampled after the second measurement. After the fourth measurement, the distribution is

not resampled in the case of the 80% threshold, while it is resampled under a 90%N threshold.

In both cases, when the target leaves the measured area and is not found, particles are not

preserved in the region of non detection. Because the target is near the edge of the measured

region but not detected after the fifth measurement, it would be beneficial to preserve some

particles in the region of non-detection, as this could improve tracking performance.

In addition to spatial resolution, tracking performance and time to detect data was

collected. The sensor always reported the truth, and the particle distribution was only re-

sampled when the number of effective particles fell below the specified threshold. Thresholds

for the number of effective particles of 80%N and 90%N were used, and the performance was

measured in the case of both a winding and a straight target path.
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(a) Measurement 1: target found, resample (b) Measurement 2: target found, no resample

(c) Measurement 3: target found, resample (d) Measurement 4: target found, resample

(e) Measurement 5: target not found, resample (f) Measurement 6: target not found, resample

Figure 3.31: Effect of the number of effective particles on particle spatial resolution, Neff >
90%N
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(a) Measurement 1: target found, resample (b) Measurement 2: target found, no resample

(c) Measurement 3: target found, resample (d) Measurement 4: target found, no resample

(e) Measurement 1: target not found, resample (f) Measurement 6: target not found, resample

Figure 3.32: Effect of the number of effective particles on particle spatial resolution, Neff >
80%N
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Figure 3.33: Dispersion Model, Average Mean Square Error After Target Found, Straight
Path, 80%N and 90%N Effective Particle Thresholds

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 104

Time (sec)

M
ea

n 
S

qu
ar

e 
E

rr
or

 (m
2 )

 

 Traffic 100% N
Traffic 90% N
Traffic 80% N

Figure 3.34: Traffic Motion Model, Average Mean Square Error After Target Found, Straight
Path, 80%N and 90%N Effective Particle Thresholds
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Figure 3.35: Dispersion Model, Average Mean Square Error After Target Found, Winding
Path, 80%N and 90%N Effective Particle Thresholds
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Figure 3.36: Traffic Motion Model, Average Mean Square Error After Target Found, Winding
Path, 80%N and 90%N Effective Particle Thresholds

63



Table 3.6: Time to Detect Results for Straight Path, N = 1000

Particle Neff Time to
Model Threshold Detect
Dispersion 100% N 53.59 sec
Traffic 100% N 29.31 sec
Dispersion 90% N 56.61 sec
Traffic 90% N 35.38 sec
Dispersion 80% N 60.93 sec
Traffic 80% N 29.89 sec

Table 3.7: Time to Detect Results for Winding Path, N = 1000

Particle Neff Time to
Model Threshold Detect
Dispersion 100% N 66.13 sec
Traffic 100% N 69.54 sec
Dispersion 90% N 73.02 sec
Traffic 90% N 44.83 sec
Dispersion 80% N 65.64 sec
Traffic 80% N 50.95 sec

3.7 Summary of Results

A high fidelity traffic model was developed to propagate a particle filter in time in an

urban environment to track a ground target vehicle. The sensor model used to locate and

track the target vehicle was non-differentiable and provided only a binary response of target

presence within a large region. In all cases, it is observed that the Traffic Motion Model pro-

vides for superior target tracking, and computational time may be appropriately decreased

without significant loss of fidelity by adjusting the number of particles used, keeping spatial

resolution in mind.

These results are encouraging, given the ease of introducing a false report belief into the

particle filter framework and when paired with the previously obtained tracking performance
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results. By decreasing the particle filter’s confidence in the sensor, a softer pdf is obtained.

This forces a broader spatial resolution of particle cloud and decreases the probability of

losing the target after it is detected. It is nonintuitive to detune a filter to improve per-

formance, but because the sensor model in this problem requires an added focus on spatial

resolution, it is necessary.

This result also brings to light the coupling between the performance due to the dy-

namics model, sensor model, and particle management. Chapter 4 will explore the effect of

an imperfect sensor on the performance of each model. The false report rate belief may be

tuned to maintain the spatial resolution of the particle distribution after a false detection is

reported. In addition, decreasing the required number of effective particles could provide for

sufficient spatial resolution in the presence of a missed-detection. Chapter 4 discusses this in

a structured and systematic approach to tuning the spatial resolution to achieve improved

performance in the presence of various sensor models. The importance of the dynamic model

has been solidified in the presence of a perfect sensor.
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Chapter 4

Accounting for an Imperfect Sensor

Following the validation of the simulation’s stability and the effectiveness of the Traffic

Motion Model, a more realistic sensor model was introduced. Because the regional sensor is

modeled after a human operator, the possibility of a false report must be addressed. The

idea of adjusting the particle filter’s belief in the sensor’s false report rate was introduced in

Section 3.6.2. By increasing the particle filter’s belief in the false report rate without actually

simulating false measurements, the spatial resolution of the particle cloud was preserved

such that the target was not always lost when it was just outside of a measured region. This

decreased the time to detect the target. The benefit provided by adjusting the believed false

report rate provided insight into how to improve performance in the presence of actual false

reports.

The previous chapter indicates the vital role of the motion model in tracking perfor-

mance and the flexibility of the particle filter framework when sensor data is true. The

results given in this chapter indicate the importance of the measurement update in the

presence of untrustworthy measurements. A thorough investigation into the tuning of the

existing parameters in the measurement update was done in order to establish the effect of

each parameter. The detrimental impact of accepting a false report to be true is presented,

in addition to the idea of establishing a risk metric that could be used to determine if a

measurement is likely false.

The sensor model was modified to provide false reports at some measurements. For

example, if a sensor is said to have a 10% false report rate (Rfalse), each measurement has

a 10% chance of reporting the opposite of the truth. This results in identical values for

missed detection and false detection rates. False measurements are achieved through the
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following steps: measure a region, determine the truth, take a random draw from a uniform

distribution between 0 and 1, if the random value is greater than 1 - Rfalse, the opposite of

the truth is reported.

Figure 4.1 illustrates the diminished tracking performance that results from the intro-

duction of a sensor with a 10% false report rate. It should be noted that in each case, the

particle filter believed the sensor had a false report rate of 10%. The particle filter’s belief in

the false report rate affects how much a particle’s weight is changed based on a measurement.

It does not affect if the particle filter accepts or rejects a measurement. Each measurement

is accepted to be true. As mentioned in Section 3.5, the tracking performance is measured

for 60 seconds following the first time a detection is reported. By introducing a 10% false

report rate into the sensor model, the tracking performance could begin being measured

before the target is actually found. In the 10% false report example in Fig. 4.1, 60% of the

initial “detection” reports were false reports. This resulted in seemingly diminished tracking

performance when compared to a perfect sensor.

The results in Table 4.1 indicate that the average values of detection time decreased, as

would be expected with the possibility of a reported detection actually being a false positive.

For example, if measurements are taken every 3 seconds by a sensor with a false positive

rate of 10%, one would expect a maximum time to detect around 30 seconds. This measure

is less than the time to detect for the Dispersion and Traffic Motion Models presented in

Section 3.5, which indicates a high probability of a false positive occurring before the target

is actually found.

Trusting a false positive is a significant cause of decreased tracking performance. Sec-

tions 4.1 and 4.2 examine the effect of tuning parameters that exist within the standard

particle filter framework in an effort to improve tracking performance in the presence of false

reports. Section 4.1 investigates the measurement update step and the effect of the particle

filter’s belief of the sensor’s false report rate. Section 4.2 studies the effect of adjusting the

resampling step by tuning the effective number of particles. Both parameters play into the
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Figure 4.1: Impact of a Sensor with 10% False Report Rate, Traffic Model, Winding Path,
N = 1000, False Report Belief 10%

importance of maintaining proper spatial resolution of the particle cloud based on a sensor’s

perceived accuracy. After the most beneficial values for the sensor belief and number of

effective particles is determined for each sensor model, a risk assessment is introduced. The

practice of assessing the cost of resampling after a measurement and accepting a positive

measurement through a Bayesian risk analysis is discussed in Section 4.3.

4.1 Sensor Belief Study

As previously discussed in Section 3.6.2, the inclusion of a believed false report rate into

the particle filter’s measurement update caused particle weights in regions of non-detection

to be significantly reduced, but not always eliminated in the resampling process. Conversely,

some particles outside of a region of detection were no longer immediately eliminated until

after a repeated detection. Recall, the particle update process directly involves the particle
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Table 4.1: Time to Detect Results for Winding Path, N = 1000, False Report Belief 10%

Particle Model Target Path Sensor Model Time to Detect
Dispersion Straight Perfect 57.9 sec
Dispersion Winding Perfect 67.7 sec
Traffic Straight Perfect 28.8 sec
Traffic Winding Perfect 32.2 sec
Dispersion Straight 10% False Report 17.43 sec
Dispersion Winding 10% False Report 20.9 sec
Traffic Straight 10% False Report 16.5 sec
Traffic Winding 10% False Report 22.35 sec

filter’s belief in the sensor’s false report rate, Rfalse.

p (zk | xk) = 1−Rfalse (4.1)

p (xk | Zk−1) =

Nin∑
i=1

wi
in (4.2)

p (zk | Zk−1) = (1−Rfalse)

Nin∑
i=1

wi
in + (4.3)

(Rfalse)(1−
Nin∑
i=1

wi
in)

p (xk | zk) =
p (zk | xk) p (xk | Zk−1)

p (zk | Zk−1)
(4.4)

wi
k =

wi
kp (xk | zk)∑

win

(4.5)

An investigation into the effects of the sensor accuracy on the amount of time required

to detect the target and the tracking performance was included in this study. Three sensor

models were used for comparison: a perfect sensor, a sensor with 10% false report rate, and

a sensor with 20% false report rate. Figures are shown for the converged average error over

200 Monte Carlo runs. The target traversed both a straight and a winding path, and was

initialized the same way at the start of each run. Particles were not redistributed in this

study.
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The following figures illustrate that regardless of the sensor model, the Traffic Motion

Model tracks the target better than the Dispersion Motion Model. Some additional consid-

eration will be given to the “optimal” value for the particle filter’s belief of the false alarm

rate as the target’s path is never truly known.
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Figure 4.2: Dispersion Model, Straight Path, False Report Belief Study, Perfect Sensor
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Figure 4.3: Traffic Model, Straight Path, False Report Belief Study, Perfect Sensor
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Figure 4.4: Traffic Model, Straight Path, False Report Belief Study, Perfect Sensor, final 20
seconds
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The figures above indicate that in the presence of a perfect sensor, improved tracking

performance is obtained when the particle filter assumes a false report rate exists, regardless

of motion model. The Dispersion Model yields slightly improved performance with a false

report rate belief of 5% and 10%. As expected, the Traffic Motion Model provides improved

tracking performance when compared to the Dispersion Model, and with the inclusion of a

false report rate belief of 15%. All of the results follow the same trend, except for the 50%

false report belief cases. In those cases, no benefit is given to region of detection, therefore

additional measurements do not improve tracking performance.

Table 4.2: Time to Detect Results, Straight Path, Perfect Sensor, False Report Belief 0%-
50%

False Report Time to Detect Time to Detect
Belief Dispersion Traffic
0% 57.93 sec 34.41 sec
5% 51.42 sec 30.91 sec
10% 49.23 sec 32.64 sec
15% 53.41 sec 36.19 sec
20% 51.91 sec 31.41 sec
25% 44.86 sec 33.21 sec
30% 50.86 sec 33.55 sec
35% 51.33 sec 33.45 sec
40% 47.53 sec 33.65 sec
45% 52.87 sec 34.66 sec
50% 284.58 sec 208.36 sec

The results in Table 4.2 indicate that some benefit is obtained by including a false report

belief in the measurement updated in the case of both motion models. The improved tracking

capabilities yielded by the Traffic Motion Model over the Dispersion Model consistently aids

in reducing the time to detect the target. In addition, the 50% false report belief results

indicate a significantly increased time to detect, as the particle weights are not altered

significantly based on any measurement.
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Figure 4.5: Dispersion Model, Winding Path, False Report Belief Study, Perfect Sensor
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Figure 4.6: Traffic Model, Winding Path, False Report Belief Study, Perfect Sensor
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Figure 4.7: Traffic Model, Winding Path, False Report Belief Study, Perfect Sensor, Final
20 seconds

In agreement with the results in the case of a straight path, the figures above indicate

that the Traffic Model outperforms the Dispersion Model’s tracking performance. In ad-

dition, tuning the sensor’s belief to 0% false report rate to match the sensor’s actual false

report rate provides improved tracking performance for both motion models. Tuning the

false report rate belief to 10% also provides improved tracking in the case of the Traffic

Motion Model, as consistent with the results in Chapter 3. The time to detect results are

consistent with that of a straight path, in that the Dispersion Model provides for faster

localization. However, both models benefit from the inclusion of a false report rate in the

measurement update. This occurs because the winding path traverses through the same

quadrant of the map for a significant amount of time. Therefore, if the target is located just

outside of a measured region, it would benefit from some of the particles in that measured

region being preserved. This would provide for improved particle spatial resolution in the

proximity of the target and therefore decrease the time to detect the target.
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Table 4.3: Time to Detect Results, Winding Path, Perfect Sensor, False Report Belief 0%-
50%

False Report Time to Detect Time to Detect
Belief Dispersion Traffic
0% 72.13 sec 38.85 sec
5% 73.43 sec 42.53 sec
10% 70.50 sec 39.61 sec
15% 63.06 sec 38.03 sec
20% 67.44 sec 40.96 sec
25% 62.20 sec 39.03 sec
30% 73.71 sec 38.40 sec
35% 62.28 sec 37.43 sec
40% 66.85 sec 40.96 sec
45% 74.14 sec 42.53 sec
50% 349.67 sec 265.15 sec

The following figures and tables illustrate the effect of including a sensor with a false

report rate of 10% and 20%, respectively. Tracking performance is greatly diminished, and

the mean square error is greater than the area of a regional sensor in all cases. False start rates

are included for comparison. The false-start rate is defined as the percentage of times the

first reported detection of the target is a false report, thus causing the tracking performance

to begin being measured when the target was not actually found.
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Figure 4.8: Dispersion Model, Straight Path, False Report Belief Study, 10% False Report
Sensor

Figure 4.8 illustrates that in the case of a target on a straight path and a 10% false

report rate sensor, the inclusion of a 5% false report belief results in improved performance

for the Dispersion Model. However, the best performers converge to an error that is close to

an order of magnitude larger than that of the perfect sensor, and well outside the bounds of

a sensor region.
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Figure 4.9: Traffic Model, Straight Path, False Report Belief Study, 10% False Report Sensor

Tuning the false report belief to that of the sensor’s actual false report rate provided for

optimal tracking performance when compared to the other false report belief values for the

Traffic Motion Model. Although the performance is much worse than that with results from

having perfect sensor data, the Traffic Motion Model provides for better target tracking than

the Dispersion Model, despite a consistently higher false start rate, as given by Table 4.4.

The higher false start rate was expected for the Traffic Motion Model in the presence of a

sensor with a false report rate, as its time to detect with a perfect sensor was higher than

that of the Dispersion Model for a perfect sensor. Therefore, because it would take longer

to localize the target given a perfect sensor, the probability of receiving a false report before

the target is actually found is higher than that of the Dispersion Model.
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Table 4.4: Time to Detect Results, Straight Path, 10% False Report Sensor, False Report
Belief 0%-50%

False Report Time to Detect % False Starts Time to Detect %False Starts
Belief Dispersion Dispersion Traffic Traffic
0% 18.58 sec 61.50 19.84 sec 65.00
5% 18.57 sec 55.00 20.26 sec 64.50
10% 20.04 sec 55.00 19.56 sec 57.50
15% 18.78 sec 63.50 21.25 sec 63.50
20% 20.01 sec 56.00 17.56 sec 67.50
25% 18.61 sec 62.00 21.21 sec 62.50
30% 20.07 sec 60.00 19.08 sec 62.50
35% 19.05 sec 58.50 19.77 sec 68.50
40% 17.51 sec 69.50 19.47 sec 58.50
45% 20.35 sec 65.00 21.77 sec 64.50
50% 28.02 sec 85.00 27.45 sec 90.00
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Figure 4.10: Dispersion Model, Winding Path, False Report Belief Study, 10% False Report
Sensor
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Figure 4.11: Traffic Model, Winding Path, False Report Belief Study, 10% False Report
Sensor

The results for a winding path are similar to those of a straight path. The Traffic Motion

Models shows improved performance when tuned to have a 25% false report belief, while the

Dispersion Model benefits from a 5% false report belief. Again, the tracking performance is

substantially worse than when the truth is always reported. Despite the higher false start

rate, the Traffic Motion Model produces better tracking results than the Dispersion Model

in the case of a winding path with a 10% false report rate sensor model.
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Table 4.5: Time to Detect Results, Winding Path, 10% False Report Sensor, False Report
Belief 0%-50%

False Report Time to Detect % False Starts Time to Detect %False Starts
Belief Dispersion Dispersion Traffic Traffic
0% 20.78 sec 55.50 20.79 sec 62.50
5% 20.73 sec 57.00 21.37 sec 70.00
10% 17.76 sec 65.00 20.91 sec 73.50
15% 18.28 sec 61.00 19.80 sec 61.00
20% 20.91 sec 59.50 21.06 sec 71.50
25% 18.36 sec 65.00 20.61 sec 64.50
30% 19.96 sec 69.00 20.02 sec 64.50
35% 20.37 sec 65.00 22.00 sec 65.50
40% 20.52 sec 62.00 21.19 sec 65.00
45% 21.03 sec 58.00 18.49 sec 69.00
50% 29.05 sec 94.50 31.25 sec 92.50
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Figure 4.12: Dispersion Model, Straight Path, False Report Belief Study, 20% False Report
Sensor
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Figure 4.13: Traffic Model, Straight Path, False Report Belief Study, 20% False Report
Sensor

The increase in the sensor’s false report rate from 10% to 20% nearly doubled the

tracking error for both motion models. The figures above indicate that the Dispersion Model

achieves increased performance when tuned to believe the sensor’s false report rate is 5%

or 35%, but does not yield convergent tracking performance. Whereas, the Traffic Motion

Model’s performance is heavily diminished in the presence of an average false start of 83%,

it is still able to produce tracking error that decreases over time, and the best performer is

that of a false report belief of 0% and 40%.
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Table 4.6: Time to Detect Results, Straight Path, 20% False Report Sensor, False Report
Belief 0%-50%

False Report Time to Detect % False Starts Time to Detect %False Starts
Belief Dispersion Dispersion Traffic Traffic
0% 13.06 sec 77.00 13.35 sec 82.00
5% 12.45 sec 80.00 14.79 sec 82.00
10% 12.36 sec 74.00 13.53 sec 84.00
15% 12.72 sec 77.50 12.15 sec 81.50
20% 13.26 sec 78.50 12.42 sec 83.50
25% 13.89 sec 76.00 14.01 sec 83.00
30% 11.24 sec 78.00 12.81 sec 87.50
35% 14.41 sec 76.00 13.72 sec 82.00
40% 11.53 sec 78.50 13.65 sec 84.50
45% 12.82 sec 76.50 13.68 sec 88.00
50% 13.72 sec 93.50 14.91 sec 90.50
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Figure 4.14: Dispersion Model, Winding Path, False Report Belief Study, 20% False Report
Sensor
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Figure 4.15: Traffic Model, Winding Path, False Report Belief Study, 20% False Report
Sensor

Similar to results in the case of a straight path, the results obtained for a target on a

winding path indicate that the Dispersion Model should be tuned to a 30% false report belief

and the Traffic Model to 0% or 15% false report belief. Both motion models suffered from

the elevated false start rate. The Traffic Motion model yielded convergent tracking error,

while tracking error diverged in the case of the the Dispersion Model.

Detuning the particle filter’s belief in the sensor’s false report rate provided increased

spatial resolution of the particle cloud. This improved the time to detect metric in the

winding target scenario, as it allowed for all particles in a region of non-detection to not be

eliminated immediately, providing for increased particle presence in the proximity of a target

just outside of a measured region. In the presence of a sensor with a false report rate, the

tracking performance is significantly diminished, regardless of the motion model that is used.

But, the Traffic Motion Model out performed the Dispersion Model’s tracking performance

in the presence of each sensor model. Section 4.2 will explore the effect of decreasing the
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Table 4.7: Time to Detect Results, Winding Path, 20% False Report Sensor, False Report
Belief 0%-50%

False Report Time to Detect % False Starts Time to Detect %False Starts
Belief Dispersion Dispersion Traffic Traffic
0% 13.05 sec 78.50 13.35 sec 87.50
5% 12.57 sec 74.50 14.40 sec 82.50
10% 13.62 sec 77.50 13.39 sec 83.00
15% 13.23 sec 70.50 12.75 sec 84.50
20% 12.34 sec 80.00 12.81 sec 86.50
25% 12.73 sec 75.50 13.57 sec 86.00
30% 11.92 sec 74.50 13.36 sec 83.00
35% 13.13 sec 73.00 12.36 sec 84.50
40% 12.34 sec 78.50 12.87 sec 86.50
45% 12.37 sec 75.50 13.29 sec 84.00
50% 14.13 sec 97.50 13.77 sec 95.50

required number of effective particles to further study the effect of spatial resolution on the

tracking performance and false alarm rate in the presence of a sensor with a false report

rate.

4.2 Number of Effective Particles Study

For example, if a detection is reported, weight is shifted to the particles within the

measured region and the region will be measured again, as it continues to maintain the

highest particle weight sum. However, if the number of effective particles remains below a

desired threshold, the particle cloud is not resampled. If the particles are not resampled and

the measurement was a false detection, the following measurement has a high probability

of reporting the truth and the particle cloud will maintain its previous coverage of the

simulation space. This will improve tracking performance, but will not provide for a means

of rejecting false reports, as all measurements are still believed to be true.

All simulations were done with 1000 particles, and all curves reflect the average value

of the mean square error for a case.
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Figure 4.16: Dispersion Model, Straight Path, Number of Effective Particles Study, Perfect
Sensor
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Figure 4.17: Traffic Model, Straight Path, Number of Effective Particles Study, Perfect
Sensor
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In the presence of a perfect sensor and a target on a straight path, improved tracking

results are achieved for the Dispersion Model when the particle distribution is resampled

after each measurement, as consistent with the Nthr = N . The Traffic Model displays its

best performance when the threshold is set at 85%N. The detection times indicate that faster

target localization results from resampling following each measurement and settingNthr = N .

This result could be used in future work to adapt the required number of effective particles

to the phase of the application: localization or tracking.

Table 4.8: Time to Detect Results, Straight Path, Perfect Sensor, Nthr = (100%− 50%)N

Resample Time to Detect Time to Detect
Threshold Dispersion Traffic
100% N 51.71 sec 33.33 sec
95% N 58.87 sec 32.86 sec
90% N 56.61 sec 35.38 sec
85% N 57.54 sec 35.97 sec
80% N 60.93 sec 29.89 sec
75% N 50.64 sec 36.54 sec
70% N 60.41 sec 34.14 sec
65% N 48.47 sec 36.91 sec
60% N 52.09 sec 38.07 sec
55% N 53.19 sec 30.39 sec
50% N 48.34 sec 27.73 sec
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Figure 4.18: Dispersion Model, Winding Path, Number of Effective Particles Study, Perfect
Sensor
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Figure 4.19: Traffic Model, Winding Path, Number of Effective Particles Study, Perfect
Sensor
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In the case of a winding path, the Dispersion Model benefits from tuning its required

number of effective particles to 95%N while the Traffic Model benefits from a 90%N threshold.

The times to detect at the tuned value of required number of effective particles are similar

to the minimal value for each motion model in the case of a winding target path.

Table 4.9: Time to Detect Results, Winding Path, Perfect Sensor, Nthr = (100%− 50%)N ,
False Report Belief 0%

Resample Time to Detect Time to Detect
Threshold Dispersion Traffic
100% N 59.37 sec 42.11 sec
95% N 60.99 sec 44.55 sec
90% N 73.02 sec 44.83 sec
85% N 53.10 sec 44.46 sec
80% N 65.64 sec 50.95 sec
75% N 54.11 sec 46.13 sec
70% N 64.29 sec 45.18 sec
65% N 61.65 sec 42.63 sec
60% N 61.88 sec 45.71 sec
55% N 68.51 sec 50.26 sec
50% N 58.06 sec 49.74 sec

The inclusion of a sensor with false report rate is expected to diminish tracking per-

formance and reduce the detection time, as false positives are believed true. The effect of

reducing the required number of effective particles is illustrated by the figures below. A

sensor with a false report rate of 10% and 20% were studied, and in each case, the particle

filter’s belief of the sensor’s false report rate was set to its actual false report rate.
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Figure 4.20: Dispersion Model, Straight Path, Number of Effective Particles Study, 10%
False Report Sensor
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Figure 4.21: Traffic Model, Straight Path, Number of Effective Particles Study, 10% False
Report Sensor
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Although the tracking performance is much weaker than that resulting from the use

of a perfect sensor, the number of effective particles play a role in the spatial resolution

of the particle cloud and can increase tracking performance. The Dispersion Model does

not benefit from the reduction in the amount of required effective particles, but the Traffic

Motion Model achieves improved tracking performance with a required number of effective

particles of 50%N.

Table 4.10: Time to Detect Results, Straight Path, Perfect Sensor, Nthr = (100%− 50%)N ,
False Report Belief 10%

Resample Time to Detect % False Time to Detect % False Starts
Threshold Starts Dispersion Traffic Traffic
100% N 15.60 sec 55.50 21.37 sec 56.50
95% N 21.03 sec 57.00 20.45 sec 58.00
90% N 16.95 sec 56.50 18.06 sec 57.00
85% N 17.53 sec 63.50 20.23 sec 60.50
80% N 19.21 sec 58.00 23.34 sec 62.50
75% N 19.06 sec 50.00 20.33 sec 63.00
70% N 19.91 sec 58.00 20.59 sec 61.00
65% N 20.52 sec 59.00 19.56 sec 60.00
60% N 17.12 sec 53.50 19.59 sec 66.00
55% N 16.98 sec 54.50 18.73 sec 59.50
50% N 16.78 sec 55.50 19.98 sec 57.50
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Figure 4.22: Dispersion Model, Winding Path, Number of Effective Particles Study, 10%
False Report Sensor
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Figure 4.23: Traffic Model, Winding Path, Number of Effective Particles Study, 10% False
Report Sensor

91



In the case of a target on a winding path, the Dispersion Model exhibits its best tracking

results when the required number of particles is set to 70%N, whereas the Traffic Model does

not benefit from a decreased number of effective particles.

Table 4.11: Time to Detect Results, Winding Path, 10% False Report Sensor, Nthr = (100%−
50%)N , False Report Belief 10%

Resample Time to Detect % False Time to Detect % False Starts
Threshold Starts Dispersion Traffic Traffic
100% N 18.19 sec 59.00 18.06 sec 60.50
95% N 19.45 sec 55.00 21.49 sec 69.50
90% N 18.52 sec 59.00 22.58 sec 66.00
85% N 20.85 sec 55.50 21.99 sec 72.00
80% N 17.59 sec 54.50 18.93 sec 68.50
75% N 20.96 sec 61.50 18.47 sec 62.50
70% N 15.42 sec 57.00 19.85 sec 66.50
65% N 18.05 sec 56.50 22.83 sec 59.50
60% N 17.97 sec 55.50 22.75 sec 68.50
55% N 19.80 sec 52.50 22.38 sec 64.00
50% N 19.43 sec 56.50 19.14 sec 69.50
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Figure 4.24: Dispersion Model, Straight Path, Number of Effective Particles Study, 20%
False Report Sensor
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Figure 4.25: Traffic Model, Straight Path, Number of Effective Particles Study, 20% False
Report Sensor
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The figures above indicate that the Dispersion Model achieves improved tracking per-

formance with a 70%N effective particle threshold, while the Traffic Motion Model performs

best with a 50% effective particle threshold. The false alarm rates and diminished tracking

performance are consistent with the results in Section 4.1. It remains true that believing a

false report to be true is damaging to the tracking performance.

Table 4.12: Time to Detect Results, Straight Path, 20% False Report Sensor, Nthr = (100%−
50%)N , False Report Belief 20%

Resample Time to Detect % False Time to Detect % False Starts
Threshold Starts Dispersion Traffic Traffic
100% N 12.36 sec 78.50 12.49 sec 77.50
95% N 12.55 sec 76.00 13.45 sec 78.50
90% N 12.07 sec 82.00 11.52 sec 83.00
85% N 12.16 sec 76.00 11.34 sec 85.50
80% N 12.60 sec 81.00 13.11 sec 79.00
75% N 12.54 sec 80.50 12.84 sec 78.00
70% N 12.81 sec 75.00 13.12 sec 76.00
65% N 11.43 sec 80.50 12.46 sec 77.50
60% N 11.73 sec 73.50 13.11 sec 82.50
55% N 11.05 sec 76.50 11.83 sec 82.50
50% N 12.30 sec 80.00 14.48 sec 79.50
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Figure 4.26: Dispersion Model, Winding Path, Number of Effective Particles Study, 20%
False Report Sensor
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Figure 4.27: Traffic Model, Winding Path, Number of Effective Particles Study, 20% False
Report Sensor
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Similar to the results for a target on a straight path, the Dispersion Model benefits from

a 75%N effective particle threshold and the Traffic Model benefits from a 50%N effective

particle threshold.

Table 4.13: Time to Detect Results, Winding Path, 20% False Report Sensor, Nthr = (100%−
50%)N , False Report Belief 20%

Resample Time to Detect % False Time to Detect % False Starts
Threshold Starts Dispersion Traffic Traffic
100% N 11.89 sec 79.50 12.79 sec 78.00
95% N 13.75 sec 79.00 13.90 sec 81.00
90% N 12.81 sec 80.00 12.90 sec 82.00
85% N 13.20 sec 75.50 12.63 sec 85.00
80% N 14.75 sec 76.00 11.20 sec 81.50
75% N 12.87 sec 79.50 11.70 sec 83.00
70% N 13.58 sec 78.00 13.87 sec 81.50
65% N 14.05 sec 77.00 13.74 sec 83.50
60% N 13.38 sec 81.00 12.15 sec 84.00
55% N 12.27 sec 83.50 12.70 sec 81.50
50% N 11.86 sec 78.50 14.22 sec 78.50

The number of effective particles may be tuned to improve performance, however false

sensor reports continue to diminish tracking performance. Decreasing the required number

of effective particles reduces the frequency of resampling and therefore forces a broader

probability density function and widens the spatial resolution of the distribution. When a

false detection is reported, significant weight is shifted to the measured region. That region

will be measured at the next measurement as it contains the highest sum of particle weight.

If a false detection is reported and the required number of effective particles is low (50-

75%N), significant particle coverage outside of the measured region is maintained. Upon

the next measurement of the detection region, it is likely that another false detection will

not be reported, causing particle weight to be shifted from that region back to the particles

outside the measured region that were preserved by not resampling. Then, the regional

sensor polling problem continues and other areas of the map are searched for the target. In

this situation, however, the tracking performance would have begun to be measured at the
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report of the false detection. This results in perceived poor tracking performance, as the

target was not actually found at the start of the 60 second observation period. After a false

detection is reported, the 60 second observation period is often spent searching the rest of

the map for the target, therefore preventing tracking performance similar to that of a perfect

sensor. The frequency of this increases as the false report rate of the sensor increases.

Because of the significant effect of false reports on the tracking performance, an addi-

tional means of improving performance was investigated. A measure of risk was developed

to determine the potential impact of accepting a measurement and resampling the particle

distribution. By the inclusion of a means to reject a possibly false measurement, the im-

portance of the number of effective particles and sensor belief will come to light. Without

reducing the number of effective particles and sensor belief in the presence of a sensor with

a false report rate, the first false detection would result in completely loss of particle resolu-

tion outside of the measured region, and therefore would result in a severely increased true

detection time.

4.3 Bayesian Risk

A Bayesian Risk Assessment was used to evaluate the risk of accepting a measurement

as true, based on an example where the expected change in the estimate variance was used to

determine the cost of a accepting a measurement [33]. In this application, the expected flux

of particle weight into or out of the measured region will be used as the cost of resampling

after a measurement. In the formulation presented by O’Reilly in [33], two hypotheses are

considered: the measurement is true (H0) and the measurement has been altered (H1). A

ratio of the likelihoods of each hypothesis given the data, d, is computed and denoted as

LR, the likelihood ratio.

LR =
p (d|H1)

p (d|H0)
(4.6)
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In order to determine which hypothesis to accept, the likelihood ratio is compared to a

threshold, denoted τ .

if
p (d|H1)

p (d|H0)
< τ, then H1 is accepted (4.7)

if
p (d|H1)

p (d|H0)
≥ τ, then H0 is accepted

The threshold τ may be formulated in the Bayesian framework based on the cost of accepting

a certain measurement and the probability associated with each hypothesis.

τ =
(C10 − C00)PH0

(C01 − C11)PH1

(4.8)

The cost variable CXY is the cost of accepting hypothesis HX if the hypothesis HY is actually

true. There is usually no cost associated with accepting a true hypothesis, in which case the

terms C00 and C11 are zero.

The framework outlined by the previous equations provide a means for assigning a

value of risk to each measurement. Risk is based on the likelihood of a measurement being

true, taking into account the amount of particle weight that would shift if a measurement

is accepted. If a measurement is deemed to risky to accept, the particle filter accepts the

measurement but does not resample the distribution. This preserves all particles outside of

the measured region. The risk assessment was used to control when to resample instead of

whether or not to accept a measurement. This was done because if a measurement is correct,

a repeated measurement will confirm it and when the risk decreases to an acceptable level,

the distribution is resampled. If a measurement was false, a repeated measurement will

often bring this to light and the spatial resolution of the particle cloud will not have been

compromised.

To examine the risk, the likelihood ratio must be established in terms associated with

the particle filter. The likelihood ratio is computed based on the expressions below for the

likelihoods that the target is actually present within the measured region (p(present)) or not

98



(p(not present)).

p (present) = (1−Rfalse)

Nin∑
i=1

wi
in + (Rfalse)(1−

Nin∑
i=1

wi
in) (4.9)

p (not present) = (Rfalse)

Nin∑
i=1

wi
in + (1−Rfalse)(1−

Nin∑
i=1

wi
in)

When a detection is reported, the likelihood ratio is given by:

LR =
p (not present)

p (present)
(4.10)

When a non-detection is reported, the likelihood ratio is given by:

LR =
p (present)

p (not present)
(4.11)

Expressions for the cost of accepting a measurement are derived below. The terms C00

and C11 in Eq. (4.8) are set to zero because there is no cost associated with accepting a true

measurement. The terms PH0 and PH1 depend on the received measurement. If a detection is

reported, PH0 is the sum of the weights of the particles inside the measured region, and PH1

is the sum of the weights of the particles outside of the measured region. If a non-detection

is reported, PH0 and PH1 are the sum of the weights of the particles outside the measured

region and the sum of the particles outside the measured region, respectively.

The cost associated with accepting a false measurement is quantified by the amount of

particle weight that would shift if a measurement was accepted. In the case of a detection
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being reported, the cost of accepting the measurement if it is false is computed by:

∆in =

∣∣∣(∑Nin

i=1 w
i
in)− p(+|present)

∣∣∣
Nin

(4.12)

∆out =

∣∣∣(1−∑Nin

i=1 w
i
in − p(−|present)

∣∣∣
Nout

(4.13)

τ =
∆out

∑
win

∆in(1−
∑Nin

i=1 w
i
in)

(4.14)

In the case of a non-detection being reported, the cost of accepting the measurement if it is

false is determined by the following expressions:

∆in =

∣∣∣(1−∑Nin

i=1 w
i
in)− p(−|not present)

∣∣∣
Nin

(4.15)

∆out =

∣∣∣∑Nin

i=1 w
i
in − p(+|not present)

∣∣∣
Nout

(4.16)

τ =
∆out(1−

∑Nin

i=1 w
i
in)

∆in

∑Nin

i=1 w
i
in

(4.17)

In a situation where all particle weight is located in a region and a non-detection is

reported, it is obvious that the measurement is most likely false. Also, if a region of very

low particle weight is polled and a detection is reported, it would be risky to believe such

a measurement. However, in such instances where there is significant particle weight in

each region, it is not immediately clear if a measurement should be accepted or rejected.

An example of such a case is outlined for completion. The risk associated with a reported

detection and a reported non-detection will be examined if a measurement is taken of the

region in the bottom right corner in Fig. 4.28. In the example illustrated by Fig. 4.28, it is

believed that the sensor has a false report rate of 10% and all particles have equal weight of

1/8.
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Figure 4.28: Measurement Update with Risk Assessment Example Scenario

If a detection is reported in the bottom right region of Fig. 4.28, the likelihood ratio is

computed as follows:

p(present) = (0.9)(3/8) + (0.1)(5/8) (4.18)

p(not present) = (0.1)(3/8) + (0.9)(5/8)

LR =
p (not present)

p (present)
= 1.5

The cost ratio, τ , is then calculated.

p(+|present) =
(1−Rfalse)

∑
win

p(present)
= 0.8438 (4.19)

∆in =
|(
∑
win)− p(+|present)|

Nin

= 0.1563

p(−|present) =
(1−Rfalse)(1−

∑
win)

p(not present)
= 0.9375 (4.20)

∆out =
|(1−

∑
win − p(−|not present)|

Nout

= 0.0625

τ =
∆out

∑
win

∆in(1−
∑
win)

= 0.2400

Because τ is less than the likelihood ratio, the particle cloud would not be resampled as the

risk is too high.

If the sensor reports that the target is not detected in the bottom right corner region,

that is a false report. However, there is significant particle presence in other sensor regions,
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so it is not immediately clear to the particle filter that the measurement is not likely true.

The likelihood ratio is the inverse of that of a detection, and is therefore 2/3.

The cost ratio, τ , is then calculated.

p(−|not present) =
Rfalse

∑
win

p(not present)
= 0.0625 (4.21)

∆in =

∣∣∣(1−∑Nin

i=1 w
i
in)− p(−|not present)

∣∣∣
Nout

= 0.1125

p(+|present) =
Rfalse(1−

∑Nin

i=1 w
i
in)

p(not present)
= 0.0625 (4.22)

∆out =

∣∣∣(1−∑Nin

i=1 w
i
in − p(−|present)

∣∣∣
Nin

= 0.0729

τ =
∆out(1−

∑Nin

i=1 w
i
in)

∆in

∑Nin

i=1 w
i
in

= 1.0802

Because the likelihood ratio is less than τ , the particle distribution would be resampled if

the number of effective particles is below the desired threshold.

4.3.1 Risk Assessment Results

The Bayesian Risk Assessment discussed above was implemented in the cases of the two

sensors with false report rates. The following values were used for the false report belief and

the number of effective particles:

The values in Table 4.14 were determined in Chapter 4. It is evident that the number

of effective particles should be reduced in the presence of an imperfect sensor and the false

report belief should be set to a value greater than or equal to the true false report rate.

Although the results in Section 4.1 indicate that the false report belief for the Traffic Motion

Model in the presence of a sensor with a 20% false repot rate should be set to 0%, the false

report belief for the Traffic Motion Model was set to 20% in this section. This was done

because in Section 4.2, the false report belief was set to the true false report rate of each

sensor, and superior tracking performance occurred in the case of the 20% false report sensor.
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Table 4.14: Tuned Values for Sensor Belief and Number of Effective Particles

Motion Target Sensor False Report Number of
Model Path Model Belief Effective Particles
Dispersion Straight 10% False Report 5% 60%N
Dispersion Winding 10% False Report 5% 70%N
Traffic Straight 10% False Report 10% 50%N
Traffic Winding 10% False Report 25% 65%N
Dispersion Straight 20% False Report 35% 55%N
Dispersion Winding 20% False Report 30% 60%N
Traffic Straight 20% False Report 20% 50%N
Traffic Winding 20% False Report 20% 50%N

In an effort to reduce the false alarm percentage, the time to detect was not established

until two consecutive detection measurements were reported. Any time a false alarm is

recorded, the second detection in the sequence is a false detection. Data regarding the time

to detect the target, tracking performance, and the decrease in false start rates is presented

to show the importance of the Bayesian Risk Assessment when a sensor with a false report

rate is supplying information.

In each figure, the results are presented for the optimal values found for the sensor belief

and number of effective particles found in Chapter 4 for each motion model. Results are

given without the risk assessment, with the risk assessment, and the results for a perfect

sensor are also plotted for comparison.

103



0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

Time (sec)

M
ea

n 
Sq

ua
re

 E
rro

r (
m

2 )

 

 Traffic Tuned No Risk
Traffic Tuned Risk
Traffic Perfect Sensor
Dispersion Tuned No Risk
Dispersion Tuned with Risk
Dispersion Perfect Sensor

Figure 4.29: Effect of Risk Assessment, Straight Path, 10% False Report Sensor

Figure 4.29 illustrates the benefit to the tracking performance provided by the risk

assessment in the case of the Traffic Motion Model. By not resampling after a possibly

false measurement, the spatial resolution of the particle cloud is preserved, and the tracking

performance greatly improves when compared to the error values when the risk assessment

is not included. The Dispersion Model yields poor tracking results in the case of a straight

path, regardless of the particle filter’s measurement update and inclusion of risk assessment.

The frequency of believing a false detection greatly decreased for both motion models. As

expected, this increased the time to detect when compared to the case of a perfect sensor

and the case of when all measurements are immediately accepted.
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Table 4.15: Time to Detect and False Start Results, Straight Path, 10% False Report Sensor

Motion Risk Sensor Time to Percent False
Model Assessment Model Detect Starts
Traffic No 10% False Report 22.53 sec 70.50
Traffic Yes 10% False Report 70.92sec 19.50
Traffic No Perfect 28.80 sec 0
Dispersion No 10% False Report 16.47 sec 45.00
Dispersion Yes 10% False Report 33.69 sec 10.00
Dispersion No Perfect 57.90 sec 0
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Figure 4.30: Effect of Risk Assessment, Winding Path, 10% False Report Sensor

Figure 4.32 illustrates the improved tracking performance that results from the imple-

mentation of the risk assessment in both motion models. The Traffic Motion Model continues

to provide improved tracking performance.
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Table 4.16: Time to Detect and False Start Results, Winding Path, 10% False Report Sensor

Motion Risk Sensor Time to Percent False
Model Assessment Model Detect Starts
Traffic No 10% False Report 19.68 sec 61.00
Traffic Yes 10% False Report 71.62 sec 21.00
Traffic No Perfect 32.20 sec 0
Dispersion No 10% False Report 17.29 sec 55.00
Dispersion Yes 10% False Report 39.19 sec 14.00
Dispersion No Perfect 67.70 sec 0
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Figure 4.31: Effect of Risk Assessment, Straight Path, 20% False Report Sensor

The tracking performance in the case of a straight path improved with the addition of

the risk assessment, and the requirement to only start observing tracking behavior after two

successive reported detections. The Dispersion Model did not experience as great a decrease

in the number of false starts as the Traffic Motion Model, but the tracking performance

was improved. The Traffic Motion Model had a higher percentage of false starts, but the

presence of the risk assessment aided in tracking performance for both motion models.
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Table 4.17: Time to Detect and False Start Results, Straight Path, 20% False Report Sensor

Motion Risk Sensor Time to Percent False
Model Assessment Model Detect Starts
Traffic No 10% False Report 22.53 sec 70.50
Traffic Yes 10% False Report 56.02sec 58.00
Traffic No Perfect 28.80 sec 0
Dispersion No 10% False Report 16.47 sec 45.00
Dispersion Yes 10% False Report 40.78 sec 42.00
Dispersion No Perfect 57.90 sec 0

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

Time (sec)

M
ea

n 
Sq

ua
re

 E
rro

r (
m

2 )

 

 Traffic Tuned no Risk
Traffic Tuned Risk
Traffic Perfect Sensor
Dispersion Tuned no Risk
Dispersion Tuned Risk
Dispersion Perfect Sensor

Figure 4.32: Effect of Risk Assessment, Winding Path, 20% False Report Sensor

In the case of a winding path, both motion models benefit from the inclusion of the risk

benefit. The Traffic Motion Model experienced a higher percentage of false starts, but was

able to produce better tracking results in all cases than the Dispersion Model.

In the presence of a sensor with a false report rate, the inclusion of the risk assess-

ment presented above helped to improve tracking performance by preventing resampling

after a possibly false measurement is received. As the false report rate increased, the risk
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Table 4.18: Time to Detect and False Start Results, Winding Path, 20% False Report Sensor

Motion Risk Sensor Time to Percent False
Model Assessment Model Detect Starts
Traffic No 10% False Report 19.68 sec 67.50
Traffic Yes 10% False Report 65.08 sec 61.00
Traffic No Perfect 32.20 sec 0
Dispersion No 10% False Report 17.29 sec 55.00
Dispersion Yes 10% False Report 35.19 sec 40.50
Dispersion No Perfect 67.70 sec 0

assessment’s benefit to tracking performance decreased. A false report is the result of three

possibilities: two false detections reported consecutively, a false detection followed by a true

detection, or a true detection followed by a false detection. The first case is most detrimental,

but is statistically less probable (1% chance in the case of a 10% false report sensor). The

second and third cases are undesirable, but because a true detection is involved, the target

is within the vicinity of the measured region and was likely located just on the edge of the

measured region. In that instance, the required number of effective particles and the sensor

belief play critical roles in the preservation of the particle spatial resolution outside of the

measured region. Further study of filtering out false detections is necessary.

With the inclusion of the risk assessment, much improved tracking performance was

obtained in the case of a sensor with a false report rate of 10%, and some improvement was

obtained in the case of a 20% false report sensor. Only the tuned values of the number of

effective particles and the sensor belief were used in the simulations in this section because

in the presence of false measurements, they provided for superior tracking performance.

A longer observation period would give further insight into the convergence rate of the

risk assessment method to the perfect sensor results. An additional investigation into the

long term tracking performance of each particle motion model. This was done to observe

the tracking performance throughout the entire simulation, not just after detection. This
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was motivated by the order of magnitude increase in the tracking error resulting from the

increasing the sensor’s false report rate by 10% increments.
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Figure 4.33: Dispersion Model Tracking Performance over 5 minutes, Straight Path
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Figure 4.34: Traffic Motion Model Tracking Performance over 5 minutes, Straight Path

Table 4.19: Time to Actually Detect, Straight Path

Motion Sensor Time to
Model Model Detect
Traffic Perfect 50.10 sec
Traffic 10% False Report 79.65 sec
Traffic 20% False Report 101.97 sec
Dispersion Perfect 48.59 sec
Dispersion 10% False Report 64.99 sec
Dispersion 20% False Report 75.78 sec

It is observed that regardless of the sensor model, the Dispersion Model yields a cyclical

fluctuation in tracking performance for a target on a straight path, with peaks of decreasing

amplitude as time progresses. The Traffic Motion Model’s tracking performance is, as ex-

pected, diminished by increased sensor inaccuracy. The 10% false report rate sensor model

yields tracking performance that decreases in error as time progresses toward the error values

from the perfect sensor. The 20% false report rate sensor error values decrease much more

110



slowly than the results from more accurate sensor models. The peaks and valleys in the

error values occur approximately every 20 to 30 seconds. That time period is approximately

how long it would take the target vehicle to traverse through a sensor region. This behavior

of the error value could relate to the effect of entering a new sensor region and potentially

losing track on the target or regaining track on the target. For both motion models, the

time to truly detect a target increases as the frequency of false measurements increases.
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Figure 4.35: Dispersion Model Tracking Performance over 5 minutes, Winding Path

111



0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 105

Time (sec)

M
ea

n 
Sq

ua
re

 E
rro

r (
m

2 )

 

 0% False Report
10% False Report
20% False Report

Figure 4.36: Traffic Motion Model Tracking Performance over 5 minutes, Winding Path

Table 4.20: Time to Actually Detect, Winding Path

Motion Sensor Time to
Model Model Detect
Traffic Perfect 36.57 sec
Traffic 10% False Report 66.78 sec
Traffic 20% False Report 116.70 sec
Dispersion Perfect 61.50 sec
Dispersion 10% False Report 82.29 sec
Dispersion 20% False Report 80.88 sec

Similar to the case of a straight path, tracking performance is diminished for both

motion models as sensor accuracy decreases. The tracking performance for the Dispersion

Model is less cyclical in the case of a winding path, as the Dispersion Model is more suited

to track a target on a winding path. However, the tracking performance diverges for each

sensor model at approximately 225 seconds after the start of the simulation. The Traffic

Motion Model exhibits similar behavior in the case of both target paths, and outperforms
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the Dispersion Model in all cases. Again, the time to truly detect the target in the presence

of false measurements increases as the sensor’s accuracy decreases. The true times to detect

give insight into why the false alarm rates in Sections 4.1 and 4.2 were so high.

The steady decrease in tracking error yielded by the Traffic Motion Model in the case of

each sensor model motivated its use in the next phase of the urban tracking problem. A UAV

is to intercept the ground vehicle that was being tracked in the aforementioned studies. The

UAV will utilize the information provided by the particle filter to plan its path to intercept

the target. The same sensor models will be used to study the effectiveness of the Traffic

Motion Model’s tracking performance in a target intercept problem.
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Chapter 5

Target Intercept

A constant velocity UAV is to be introduced into the urban scenario. The mission of

the UAV is to plan its path and intercept the target based only on the information provided

to it by the particle filter. In this work, the mission will be considered complete when the

UAV is within 100 m of and approaching the target, regardless of what road the UAV and

target are on.

The dynamic motion model for the UAV is based on the vector field following method

found in [34], and is discussed in Section 5.1. Initially, the UAV’s path will depend on only

measurements provided by the soft binary regional sensor. This reinforces the importance

of the particle filter’s tracking performance. The effect of adding a measurement source to

the UAV will also be investigated. The measurement model that will be added to the UAV

is discussed in Section 5.2.

The UAV is to plan its path to traverse above the roadways and must remain between the

obstacles. The receding horizon control method for calculating the UAV’s path is discussed in

Section 5.4. The method for path selection developed in this work is compared to a previously

implemented minimum entropy method to show similar performance and computational cost

reduction.

5.1 UAV Path Following

A constant speed dynamic model for the UAV was desired for this work. The vector

field following method described herein was chosen because it was developed for constant

speed MAV’s in the presence of unknown wind [34]. It has been experimentally validated

in a similar urban environment. In addition, it is assumed that the UAV is aware of its
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ground track position. Although the time step for the particle filter is 1.0 sec, a more refined

integration routine was necessary for the UAV. A fourth order Runge-Kutta integration with

a time step of 0.1 sec was used to integrate the UAV equations of motion. The state vector

below is used to describe the UAV, where V is the speed and θ is the heading angle. The

speed is held constant while on a road and during a turn.

ẋ = V sin θ (5.1)

ẏ = V cos θ (5.2)

It is assumed that the UAV is equipped with an autopilot that implements a course-hold

loop and that the resulting dynamics are represented by the first order system:

θ̇ = α(θc − θ) (5.3)

where θc is the commanded heading angle and α is a known positive constant that charac-

terizes the response speed of the autopilot loop.

Figure 5.1 illustrates the vector field leading to a straight path with path heading angle

of θpath = 0, as angles are measured clockwise from the positive y-axis. The time update

equations to follow this path angle will be discussed below. Quadrant adjustments to the

given equations are necessary for the three remaining path heading angles involved in the

map in this study.
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Figure 5.1: Vector field for straight-line following

The lateral difference between the UAV and the desired path is denoted d. The resulting

vector field approach will direct the UAV to approach the path at angle θ∞ when d is very

large. As d approaches zero, the heading angle will approach the path angle. The desired

heading angle, θd is computed as a function of the distance d by the following expression:

θd(d) = −θ∞
2

π
tan−1(kd) + θpath (5.4)

Figure 5.2 illustrates the effect of the value of k on the difference in the sharpness of the

approach to the path heading. Large values of k result in short, abrupt transitions, whereas

small values of k result in long, smooth transitions in the desired heading angle.
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Figure 5.2: Vector fields for various values of k

By restricting θ∞ to the range θ∞ ∈ (0, π/2), it can be shown by using the Lyapunov

function W1(d) = (1/2)d2 that y → 0 asymptotically if θ = θd(d) [34].

A sliding mode approach is used in [34] to ensure the set S = (d, θ) : θ = θd(d) is

positively invariant and the system trajectory reaches S in finite time. Defining θ̃d ≡ θ−θd(d)

and differentiating yields:

˙̃θd = θ̇ − θ̇d(d) (5.5)

= α(θc − θ) + θ∞
k

1 + (ky)2)
V sin θ (5.6)

(5.7)

By defining a second Lyapunov function, W2 = (1/2)θ̃2 and differentiating:

Ẇ2 = θ̃ ˙̃θ (5.8)

= θ̃(θ̇ − θ̇d(d)) (5.9)

= θ̃

(
α(θc − θ) + θ∞

k

1 + (ky)2)
V sin θ

)
(5.10)
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If the control signal is chosen as:

θc = θ − 1

α
θ∞

2

π

k

1 + (ky)2)
V sin θ − κ

α
sign (θ − θd) (5.11)

where

sign(x) =


1, if x > 0

0, if x = 0

−1, if x < 0

(5.12)

and the gain parameter κ > 0 and controls the shape of the trajectories onto the sliding

surface. Large values of κ drive θ̃ to zero quickly.

This results in Ẇ2 ≤ −κ|θ̃|, which yields that θ̃ → 0 in finite time. To avoid the

chattering associated with the sign function, the control signal is chosen as:

θc = θ − 1

α
θ∞

2

π

k

1 + (ky)2)
V sin θ − κ

α
sat

(
θ − θd
ε

)
(5.13)

where ε defines the width of the boundary region around the sliding surface in radians and:

sat(x) =

 x, if |x| ≤ 1

sign(x), otherwise
(5.14)

The values for the constants used throughout the path following routine listed in Table 5.1

were used in experimental tests in [34].
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Table 5.1: Path Following Constants

Constant Value

V 20 m/s

α 1.65 rad/sec2

k 0.02/m

θ∞ π/2 rad/sec

κ π/2 rad2/sec

ε 1.0 rad

Figure 5.3 illustrates a sample path that was implemented into the urban scenario used

throughout this work. The UAV’s starting point is the green square and stopping point

is the red square. The UAV successfully traversed down the center of roadways, as it was

commanded, and was able to complete smooth turns, and then re-center itself on a new

roadway. The minimum turning radius encountered on this path was 20 m.

Figure 5.3: UAV Path Following via Vector Fields Example
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5.2 UAV Measurement Update

The sensor on the UAV is modeled after the perfect binary sensor discussed in previous

chapters. It is assumed that the UAV will take one measurement per second and that the

field of regard spans the width of the road the UAV is traversing for one second, creating

the sensor footprint illustrated below.

Figure 5.4: UAV Sensor Requirements

The UAV is commanded to travel down the center of the road at a constant altitude of

30 m. The maximum width of a road in the road network is 100 m, resulting in a maximum

required pan angle of approximately 60◦ to the right and to the left of the center of the UAV.

This is illustrated by Fig. 5.5, where the dark arrow in the center of the road indicates the

direction of travel.
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Figure 5.5: UAV sensor span while traveling down-road

It is assumed that the UAV travels faster than the target vehicle, therefore a constant

speed of 20 m/s was chosen. In addition, to reinforce the importance of path planning, the

UAV was constrained to the road network by a forced constant altitude of 30 m, which is

less than the height of the obstacles. A constant commanded speed of 20 m/s, altitude of 30

m, and a measurement frequency of 1 Hz results in a maximum tilt angle of approximately

20◦. Figure 5.6 illustrates the 20◦ angle required to cover the required ground.
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Figure 5.6: UAV sensor tilt while traveling down-road

A constant commanded altitude of 30 m results in a maximum sight distance requirement

of 62 m for the UAV sensor. The UAV sensor will be assumed to have a 0% false report

rate. The particle cloud will not be resampled after each UAV measurement to conserve

computational expense as the UAV sensor footprint observes a relatively small subset of

particles each second. This small number of particles will contribute to but not greatly

affect the number of effective particles. This results in a sensor footprint that covers the

width of the road and the length of the road traversed by the UAV each second.

5.3 Candidate Path Formation

As the UAV is required to remain within the road network of the urban environment

used in this study, it must make a decision when it reaches an intersection as to which way

to proceed. The UAV’s path may contain up to three segments that must consist of one

road between two intersections; the UAV may not traverse over an obstacle. This problem is

similar to a directed graph where each intersection is a node and each road is an edge. The
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direction of each edge is based on the UAV’s heading at the time the path is planned. The

UAV may only travel forwards and is forced to stay on the map, requiring a U-turn at the

map edge. The node network used in this work is illustrated by Fig. 5.7.

Figure 5.7: Node Network

Only a subset of the total set of nodes is used to plan the UAV’s path as it approaches an

intersection. The subset of nodes are chosen based on their proximity to and relative direction

from the UAV at the time of path planning. This is done to limit the complexity of the

path planning problem, as the UAV replans its path at each new intersection it encounters.

Planning paths to nodes far beyond UAV’s position would be a waste of computational

expense, therefore a planning horizon is defined. The path planning routine collects all

permissable paths within a specified semi-circular region, known as the planning horizon, in

the direction of the UAV’s current heading. The radius for the planning horizon used in this

work is 350 m, and it is measured from the root node. The nearest intersection ahead of the

UAV’s current path at the time of planning is defined as the root node.

The aforementioned path planning parameters are illustrated by Fig. 5.8. The UAV,

illustrated by the green circle, is located at the point [550,400], with a heading angle of
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3π/2 as indicated by the arrow, and is approaching an intersection located at [450,400]. In

Fig. 5.8, the red circle is the target, the black circle is the root node. The blue semi-circle

illustrates the UAV’s planning horizon with a radius of 350 m. The seven nodes within

the planning horizon are denoted with an X. These nodes would be used to create a list of

candidate paths, from which the best path for the UAV will be selected. The UAV then

follows the selected path until it approaches another intersection.

Figure 5.8: UAV planning horizon

The remaining nodes outside of the planning horizon, denoted by blue circles, are in-

cluded in Fig. 5.8 for completeness. The nodes outside of the planning horizon are not

included in the formation of the candidate paths. The collection of intersections and roads

within the planning horizon are used to form a directed graph, where the intersections are

nodes and the roads are the edges.

It is assumed that the UAV has complete knowledge of the map within its planning

horizon, and is therefore aware of the location of each node and dimension and location
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of each road within the horizon. Paths must begin at the root node and may consist of

a maximum of three node points (intersections) beyond the root node to nodes within the

planning horizon. The roads eligible for path creation, given the planning horizon and root

node location in Fig. 5.8, are highlighted in yellow in Fig. 5.9. In the scenario given in

Fig. 5.9, there are 10 possible paths to consider, as paths may consist of up to three roads

and multiple routes to a node are permitted. An effective means to collect paths between

nodes in a directed grid-like map is outlined below.

Figure 5.9: Node Map

An algorithm was developed to build a directed graph to represent all candidate paths

from the root consisting of a maximum of three roads. This framework was motivated

by the use of a directed graph to represent map features such as intersections and curved

roadways [29]. In general, the the path formation process begins at the root node and

searches the four cardinal directions (θ ∈ [0, π/2, π, 3π/2]) in order of increasing magnitude

for nodes within the planning horizon. This is done by first ranking the set of nodes in a
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given direction within the planning horizon in order of increasing distance from the root.

When the nearest node in one direction is found, the path to that node is stored and the four

cardinal directions are searched from that node for additional nodes. This process continues

until all paths within the planning horizon consisting of a maximum of three roads have been

collected.

First, the direction θ = 0 is searched from the root for a node within the planning

horizon. If a node is found in that direction, the following quantities are stored to the

characterize the path from the root to the node: which road is between the root and the

node, the distance between the root and the node, the direction of travel from the root to

the node, and which node was found. From the node that was found, the direction θ = 0 is

searched for a node within the planning horizon. If a node is found in the search direction,

the path to that node is stored, and a third node beyond the root is searched for in the

direction θ = 0.

If at any point during this process a node is not found in the search direction, the search

direction proceeds in order of increasing values of θ until a node is found. If no node is found

in any direction, the routine returns to the node it searched to get to the current node, and

searches the remaining cardinal directions. When each direction has been searched from the

root node, and consequently all nodes within the planning horizon have been searched for

connections in each direction, all of the candidate paths have been collected. Each path is

characterized by which roads and intersections it involves, the distance between nodes, and

the direction each road would be traversed. The example below will be used to describe this

process in more detail.
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Figure 5.10: Example: Nodes and Roads for Candidate Paths

Consider the road network in Fig. 5.10, where roads and intersections are drawn in white,

obstacles in orange, node ID numbers are circled and road ID numbers are not circled. The

search angle θ is measured clockwise from the positive y-axis. In this example, the node

network in Fig. 5.10 is made up of only the nodes within the planning horizon. Node 4 is the

only node located at the edge of the map, and therefore a U-turn would be required to depart

from Node 4. The root node is denoted with an X. The intersections and roads within the

planning horizon have been collected and will be used to determined the candidate paths.

In this example, it is assumed that the UAV velocity is constant and each road is of

equal dimension, therefore the distance between nodes connected by only one road is equal.

This results in an equal travel time (T) for the UAV between any two nodes connected by

only one road. Beginning at the root node, the nearest node is searched for in in the direction

of θ = 0. Node 2 is found, and the path from the root to Node 2 is stored as detailed by
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Table 5.2, and the first edge of the directed graph is formed. Figure 5.11 illustrates the root

node as Node 1, the road ID number as the number 1 next to the edge connected the two

nodes, the direction of travel indicated by the arrow, and the end node ID as Node 2.

Table 5.2: Path to Node 2

Path Route Edge Road Travel Direction End
to Node ID Number ID Time of Travel Node ID
2 1 1 1 T 0 2

Figure 5.11: Edge of Directed Graph from Root Node to Node 2

After storing the first path to Node 2, a node in the planning horizon is searched for

from Node 2 in the direction of θ = 0. Node 5 is found and a path to Node 5 is stored,

consisting of the path from the root to Node 2 and the recently found road between Nodes

2 and 5, as in Table 5.3. Another edge is added to the directed graph, as illustrated by

Fig. 5.12.
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Table 5.3: Path to Node 5

Path Route Edge Road Travel Direction End
to Node ID Number ID Time of Travel Node ID
5 1 1 1 T 0 2

2 4 T 0 5

Figure 5.12: Edges of Directed Graph from Root Node to Node 5

From Node 5, the direction θ = 0 is searched for a node. Because there is no node in

that direction, the next direction (π/2) is searched, and Node 6 is found. The path to Node

6 is stored consisting of the three nodes from the root: nodes 2, 5, and 6. Because the path

to Node 6 consists of the maximum number of roads (3), no further nodes will be searched

for from Node 6. The directed graph is updated to include the recently found path to Node

6.
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Table 5.4: Path to Node 6

Path Route Edge Road Travel Direction End
to Node ID Number ID Time of Travel Node ID
6 1 1 1 T 0 2

2 4 T 0 5
3 5 T π/2 6

Figure 5.13: Edges of Directed Graph from Root Node to Node 6

As no more nodes may be searched for from Node 6, the routine will return to the node

it found immediately prior to Node 6, which is Node 5. The next direction to search from

Node 5 is θ = π. That would require a U-turn, which is not permitted when not at the

map’s edge. The routine then searches the final direction from Node 5, θ = 3π/2, and there

are no nodes in that direction. Therefore, the routine returns to the node it found prior to

Node 5, which is Node 2. As the direction θ = 0 has already been searched from Node 2,

the routine searches the next direction for Node 2, θ = π/2. Node 3 is found, and the path

to Node 3 is stored in the path list and the directed graph is updated. Next, the direction
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of θ = 0 is searched from Node 3 and Node 6 is found, resulting in a second route to Node

6. The path list is updated accordingly.

Table 5.5: Path to Node 3

Path Route Edge Road Travel Direction End
to Node ID Number ID Time of Travel Node ID
3 1 1 1 T 0 2

2 2 T π/2 3

Figure 5.14: Directed Graph after finding Node 3
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Table 5.6: Paths to Node 6

Path Route Edge Road Travel Direction End
to Node ID Number ID Time of Travel Node ID
6 1 1 1 T 0 2

2 4 T 0 5
3 5 T π/2 6

6 2 1 1 T 0 2
2 2 T π/2 3
3 6 T 0 6

Figure 5.15: Directed Graph after finding a second route to Node 6

Again, no additional nodes are searched for from Node 6 because the paths to Node

6 consist of the maximum number of edges. Therefore, the routine returns to the previous

node, Node 3. As there are no nodes in the directions π/2 or π from Node 3, and Node 2

would require an illegal U-turn, the routine retraces its path to Node 3 to Node 2. Searching

for a node in the direction of π from Node 2 would require an illegal U-turn, therefore the
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next direction is searched. The direction 3π/2 is searched from Node 2 and Node 4 is found

and the path to Node 4 is stored and the directed graph is updated.

Table 5.7: Path List

Path Route Edge Road Travel Direction End
to Node ID Number ID Time of Travel Node ID
4 1 1 1 T 0 2

2 3 T 3π/2 4

Figure 5.16: Directed Graph after finding Node 4

Node 4 is at the edge of the map, therefore a U-turn will be permitted, resulting in

another path to Node 2. As all nodes within the planning horizon have been searched in

each direction, the candidate path list is complete and is given in Table 5.8. There are a

total of seven candidate paths in the final directed graph illustrated by Fig 5.17.
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Table 5.8: Final Path List

Path Route Edge Road Travel Direction End
to Node ID Number ID Time of Travel Node ID
2 1 1 1 T 0 2
2 2 1 1 T 0 2

2 3 T 3π/2 5
3 3 T π/2 6

3 1 1 1 T 0 2
2 2 T π/2 3

4 1 1 1 T 0 2
2 3 T 3π/2 4

5 1 1 1 T 0 2
2 4 T 0 5

6 1 1 1 T 0 2
2 4 T 0 5
3 5 T π/2 6

6 2 1 1 T 0 2
2 2 T π/2 3
3 6 T 0 6

Figure 5.17: Directed Graph of Example Path Planning Problem

Following the collection of the candidate paths, a means of selecting the path with

the most benefit was developed. Section 5.4 outlines the maximum likelihood method for
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selecting the best candidate path that was developed in this work, and compares that method

to an entropy reduction method presented in previous work.

5.4 Path Selection

Once the candidate paths have been collected, the best path for the UAV must be

selected. It is desirable to choose a path that will enable the UAV to intercept the target as

quickly as possible based only on the information provided by the particle filter. Numerous

metrics exist for path selection such as minimal mean square error, maximal Information

gain, minimal Shannon entropy, and maximal likelihood of detection. In Chapters 3 and 4,

the large regional sensor measured the region of highest particle weight. The same metric

will be used to select the best candidate path. In this work, it will be shown that selecting

the path that holds the highest particle weight at the time the UAV will traverse it provides

for effective target intercept. In addition, comparable performance to a entropy reduction

method is achieved with a significant reduction in computational time. The time to intercept

the target and the amount of time to simulate one second will be used as metrics to compare

the two methods presented herein.

In the path planning comparison below, a path may consist of a maximum of three

roads. Both methods will make their path selections based on similar cost functions in an

effort to maximize the amount of information gained, minimize the distance between the

UAV and the expected value of the particle cloud, and minimize the travel time of the UAV.

Jpath =

Nedges∑
i=1

1

Path Valuei
+ di=Nedges

+ tpath,i (5.15)

The second two terms in the summation above will be the same for both methods. In the

maximum likelihood method, the first term will involve the sum of the particle weights to

be encountered on a path. In the minimum entropy method, the first term will involve a

mutual information utility function.
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Computational time is taken into account when the UAV approaches an intersection to

ensure enough time is available to select the next path and have a decision made when the

UAV arrives at an intersection. Although path are planned to have a length of up to three

roads, corresponding to upwards of 20 seconds in the future, paths are be replanned at each

intersection to account for additional measurement data from outside sources, as consistent

with receding horizon control. Therefore, four seconds before reaching the next intersection,

a new path is planned.

5.4.1 Maximum Likelihood

In previous work, path selection was based on maximizing the reduction in the entropy

of the pdf [24], [26], [28]. In this work, path benefit is based on the weight of the particles

along a path at the appropriate time, the distance between the final node on a path and the

expected value of the particle cloud, and the amount of travel time required by each path.

Jpath =

Nedges∑
i=1

R

Nwedgei

+

(
di
rplan

)Q

+
tpath

2
(5.16)

The cost function to be minimized is defined by Eq. (5.16), where Nedges is the number

of edges, or roads, in a path, N is total number of particles, di is the distance between the

final node in the path and the expected value of the particle cloud, rplan is the planning

radius for the UAV, and tpath is the amount of time it would take the UAV to complete the

path. The parameters R and Q may be used to adjust the impact of the weight term and

the distance term on the cost of a path. In this work, R is set to unity and Q is 2. A path

is chosen through a simple search for a minimum cost using the min function in MATLAB.

The particle weight of a road was calculated by propagating the particle cloud forward

in time without measurements from outside sources (human operatives). The weight of a

particles on a road is measured at two times: at the midpoint of the road and at the end node.

At each of those times, the region of the road the UAV has just passed is measured for particle

presence. The time of interest to which the particle cloud is propagated is determined by
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the speed of the UAV and the length of the road, which is stored in the candidate path list.

Figure 5.18 illustrates the two regions of two roads on a candidate path. The blue regions

would be measured at the midway point of the roads, times 5 and 15, respectively. The

orange regions highlight the second half of the road and the end node, which are measured

for particle weight at times 10 and 20. The road the a particle is on is stored in its state

vector. This reduces computational time by avoiding searching each road for N particles at

each time of interest.

Figure 5.18: Two Part Road Weight

If there are no particles on a road, the road weight is set to 1/N to avoid dividing

by zero in Eq. (5.16). The particle weight on the road of interest is then calculated to

determine target likelihood at the time when the mobile sensor will be on that road. This is

a computationally expensive process that is also necessary in minimum entropy methods.

5.4.2 Information Utility Function

A minimum entropy path selection routine as described in [25] was implemented to

provide for comparison to the maximum likelihood approach described above. As mentioned
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in Section 2.3, the Information Utility Function (IUF) is computed by:

I (zk; xk) = H (zk)−H (p (zk|xk))

The IUF is based on the idea that minimizing the posterior uncertainty is equivalent to

maximizing the difference between the uncertainty that any particular observation will be

made H (zk), and the uncertainty of the measurement model, H (p (zk|xk)). The entropy

terms are approximated by the following expressions:

H (zk) ≈ −
∫ { N∑

i=1

(
wi

kp
(
zk|xik

))
log2

N∑
i=1

(
wi

kp
(
zk|xik

))}
dz

H (zk|xk) ≈ −
∫ N∑

i=1

[
wi

kp
(
zk|xik

)
log2 p

(
zk|xik

)]
dz

Because in this work, only one measurement is received per time step, the integral falls

away, reducing the IUF to:

I (zk; xk) ≈ −
N∑
i=1

(
wi

kp
(
zk|xik

))
log2

N∑
i=1

(
wi

kp
(
zk|xik

))
+

N∑
i=1

[
wi

kp
(
zk|xik

)
log2 p

(
zk|xik

)]
The weights of the particles wi

k, i = 1, ..., N , are readily available. The measurement

likelihood p (zk|xik) is computed based on the UAV sensor model and the ith particle’s po-

sition, as discussed in Section 3.4. A false report belief of 1% was used to avoid taking the

logarithm of zero.

5.5 Method Comparison Results

Results for the maximum likelihood (ML) and Information Utility Function (IUF) sensor

routing methods are presented below. The target was initialized at a random location and
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the UAV was initialized at a constant location to begin each run, and the target traversed a

random path throughout each run. For a metric of comparison, an evaluation was done of

the expected amount of time it would take the UAV to travel between two random locations

in the map (See Appendix A). The expected value of the UAV’s travel time from a random

point in the environment to a random stationary point is 33.33 seconds. An average time

to detect for the perfect regional sensor for a target on a random path starting at a random

location was found to be 47.31 seconds. This time was added to the expected value of

travel time between two points to be used as a metric of comparison for target interception

time. Therefore, if the target were to be stationary, the expected intercept time should be

approximately 80 seconds.

The Traffic Motion Model was used to propagate the particles in time and 1000 particles

were used. The risk assessment was included and the sensor belief and number of effective

particles were tuned to the optimized results obtained in Chapter 4. The results in Table 5.9

indicate that the ML and IUF routines yield similar intercept times, while the IUF routine

outperforms the ML routine slightly in each case. After observing the similarity in the

intercept times, it can be concluded that there is not a significant difference in the paths

chosen by the maximum likelihood routine and the IUF routine. This also implies that the

ML routine indirectly reduces the entropy of the particle cloud as the IUF routine does, but

at a much reduced computational expense. This is a desirable result as the path planning is

to be done on board a small UAV, where computational power is limited.

The results in Table 5.9 indicated that in the case of a perfect sensor, the UAV inter-

cepted the target at approximately 81 seconds in both cases, which slightly greater than the

expected value of the time to intercept a stationary target of 80 seconds. This shows the

importance of path planning and the effectiveness of the chosen methods. Additionally, the

detection time in the case of a perfect sensor is less than the average value of 47.31 seconds

that was obtained without the presence of a UAV. This is because although the UAV did not
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take measurements, it could intercept the target on its own before the target was located by

the large regional sensor.

Table 5.9: Time to Intercept and Run Time Results, without UAV measurements

Sensor Path Selection Time to % False Average
Model Routine Intercept Alarms Detection Time
Perfect ML 81.28 sec 0 37.62 sec
Perfect IUF 80.44 sec 0 32.45 sec
10% False Report ML 111.35 sec 12.50 45.16 sec
10% False Report IUF 123.13 sec 15.50 43.44 sec
20% False Report ML 150.15 sec 40.50 36.67 sec
20% False Report IUF 147.75 sec 44.50 39.91 sec

When a sensor with a false report rate is utilized, the time to intercept increased for

both the ML and IUF routines beyond the 80 second mark to intercept a stationary target.

This delayed interception time is due to false reports incorrectly shifting particle weight,

despite the efforts of the risk assessment, throughout the path planning process. The ML

routine outperforms the IUF method in the case of a 10% false report rate sensor in regard

to intercept time. This reinforces the conclusion that the ML routine is an effective means

of path planning that requires reduced computational expense when compared to the IUF

routine. In addition, the false alarm rates for both imperfect sensor models are much lower

than those presented in Section 4.3. This occurs because the UAV is capable of intercepting

the target before the large regional sensor.

Table 5.10 lists the results given the use of the UAV as a measurement source. As

expected, the inclusion of the measurements from the UAV decreased the time to intercept.

The most significant decrease in interception time occurred in the case of the 10% false report

rate sensor. In addition, when a perfect regional sensor is used, the average detection time

decreased in the case of both ML and IUF routines when compared to the average value of

47.31 seconds achieved without the UAV. The reduction in the time to intercept the target

provided by UAV measurements was less pronounced in the case of a perfect sensor and a
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Table 5.10: Time to Intercept and Run Time Results, with UAV measurements

Sensor Path Selection Time to % False Average
Model Routine Intercept Alarms Detection Time
Perfect ML 77.65 sec 0 34.21 sec
Perfect IUF 81.53 sec 0 35.01 sec
10% False Report ML 105.98 sec 17.26 43.30 sec
10% False Report IUF 102.52 sec 14.00 39.88 sec
20% False Report ML 149.90 sec 43.50 36.08 sec
20% False Report IUF 146.42 sec 43.00 31.50 sec

sensor with a 20% false report rate. This illustrates the strong effect of the large regional

sensor on the particle cloud. The regional sensor is able to observe large areas (40,000 m2)

every 3 seconds, and there is complete coverage of the simulation space at all times. The

UAV is restricted to observe the area within its vicinity, with maximum coverage of 6,000 m2

over 3 seconds. To further illustrate this, the simulation was run with only measurements

from the UAV and no regional sensor. The particle distribution was resampled every 3

seconds and a measurement was taken by the UAV every second.

Table 5.11: Comparison of ML and IUF routines using UAV measurements without regional
sensor data

Time to
Routine Intercept
Maximum Likelihood 225.70 sec
Information 201.30 sec

The results in Table 5.11 illustrate the importance of the large regional sensor, and there-

fore the inclusion of non-traditional measurement sources into the target intercept problem.

In addition, the presence of the UAV is vital to the successful localization and tracking in the

presence of a regional sensor with a false report rate. The results in Chapter 4 indicate that

given the regional sensor alone, poor tracking results are obtained in the presence of false

reports. This is often the result of accepting a false report to be true, and therefore possibly
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losing the target completely. The inclusion of the UAV and an intelligent path planning rou-

tine provides for consistent target localization. Further benefit to intercept time reduction

would be obtained with the inclusion of additional UAV’s.

The computational expense for each scenario is listed in Table 5.12. The run time

is decreased by use of the ML method both with and without UAV measurements. In

addition, the use of UAV measurements does not add significant computational expense to

either routine.

Table 5.12: Time to simulate one second

Path Selection Without UAV With UAV
Routine Measurements Measurements
ML 0.3671 sec 0.3839 sec
IUF 0.4358 sec 0.4518 sec

Finally, the ML and IUF methods were compared by just using the large regional sensor

to locate the target. No UAV was simulated and no paths were planned. A comparison was

done to determine which region to poll based off of either the sum of the particle weights,

which is comparable to the maximum likelihood method, or which region would provide the

highest value of the Information Utility function. The work presented in previous chapters

polled the sensor in the region with the highest particle weight sum. The Information Utility

Function approach was implemented in the regional sensor framework for comparison. The

times to detect the target were compared. A perfect sensor was used and only the Traffic

Motion Model with 1000 particles was used in this study. The results give in Table 5.13 indi-

Table 5.13: Comparison of ML and IUF routine using only large regional sensor data

Time to
Routine Detect
Maximum Likelihood 47.31 sec
Information 49.96 sec
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cate that the maximum likelihood routine yields similar results to the maximum information

routine, with a significantly decreased computational expense.

The results presented above illustrate that the particle weight to be encountered along

a path is a sufficient and computationally efficient metric for path ranking. The particle

filter framework provides for this intuitive metric without the need to perform additional

calculations. Proper tuning of particle filter parameters such as sensor confidence and the

number of effective particles provide for improved target tracking, and is therefore necessary

when particle weight is to be used as the path selection metric.
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Chapter 6

Conclusion

The development of a particle filter based method of localizing, tracking, and inter-

cepting a mobile ground target in an urban scenario given nontraditional and inconsistent

measurement data was presented. The large regional sensor model was a significant chal-

lenge in this work. The target’s location could only be measured to be within the region of

the detection, and the time span between measurement reports reinforced the importance

of a sophisticated dynamic model. In the presence of a perfect sensor, the dynamic model

used to propagate the particle cloud in time plays a vital role in tracking performance. In

addition, the importance of particle spatial resolution must be taken in to consideration to

improve tracking performance and reduce detection time in the presence of the aforemen-

tioned measurement model.

In the presence of a sensor with a false report rate, the measurement update becomes

more important than the dynamic model update. The particle filter’s belief in the sensor’s

false report rate, coupled with the frequency at which the distribution is resampled must be

taken in to account in order to maintain proper spatial resolution of the particle cloud in the

presence of a sensor with a false report rate. Additionally, means must be taken to assess

when a measurement is possibly false. The flux of particle weight into or out of a region may

be used to assign a cost to accepting a measurement through the Bayesian risk assessment

framework. A risk assessment is necessary to provide proper tracking in the presence of false

measurements. A risk assessment and proper tuning of the number of effective particles and

sensor belief proved beneficial in maintaining proper spatial resolution in the presence of a

sensor with a false report rate.
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These conclusions proved vital in the navigation of a UAV to the target by providing

motivation for a new path selection metric. A metric for path selection in the particle filter

framework was developed based on the cumulative sum of particle weight to be encountered

on a path. This metric provides insight to future likelihood of target intercept while taking

advantage of the particle filter framework. A comparison was done to an existing method

where the new metric matched performance and required reduced computational expense.

This work will benefit the modern war fighter, in addition to researchers considering a particle

filter due to a non-differentiable measurement model.

Additionally, it is observed that given set computational capabilities, a tradeoff may be

made to give priority to the dynamic model or the path selection metric. The amount of

time to simulate one second with the Dispersion model and the Information Utility Function

is approximately equal to that of the use of the Traffic Motion Model and the Maximum

Likelihood method. Significantly improved tracking performance results from using the

Traffic Motion Model, while target intercept time is not as significantly delayed by use of

the Maximum Likelihood method. By developing a sophisticated dynamic model, a less

computationally intensive path selection metric is applicable and successful.

Further improvement to the work discussed herein would be achieved by a more robust

risk assessment routine to reject false measurements. Currently, if the risk is deemed unac-

ceptable, the measurement is still accepted but the particle distribution is not resampled.

Investigation into the practice of rejecting measurements given the current framework could

provide for improved tracking performance and false alarm rate reduction.

In addition, further study into the effect of various values of the coefficients R and Q

in the cost function could provide decreased intercept times. In the presented results, the

distance term in the cost function is the distance between the UAV and the expected value of

the particle cloud. This is an effective metric after the target has been found by the regional

binary sensor, but ineffective before that time of detection because the expected value tends

to be in the center of the city until the target is detected. An improvement to this would be
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to adjust Q to include the distance term only after the target is found, or to use the distance

between the UAV and the center of the region of highest weight until the target is found.

Future expansion of this problem could include the idea of particle interaction, which

may provide for improved tracking performance. Particles are statistically required to be

uncorrelated, and therefore may not necessarily be aware of what other particles are choosing

to do. However, real time traffic updates are often readily available, and would fit nicely into

the presented framework to allow for adaptive particle motion models, without violating the

statistical properties of the particle filter.

Finally, mobile sensor units could be introduced into the existing framework with min-

imal effort. This could provide more a more realistic sensor network structure. In addition,

the present framework permits the acceptance of multiple measurement reports at once or

at varying intervals. This would provide for the inclusion of measurements from additional

sources such as security cameras and satellite images.
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Appendix A

Expected Travel Time

A performance metric is desired for the estimated travel time between two random

points in a 1000 m x 1000 m urban environment. A UAV approaching a stationary target

at a constant speed is considered. Assuming travel is required in a grid-like fashion, travel

is only permitted in one direction at at time. This metric could be determined by dividing

the expected value of distance traveled between two random points in the environment by

the constant speed of travel. The following derivation of the expected value of the distance

between two random points is used in the comparison of the path planning metrics.

The expected value of a random variable is given by:

E(X) =

∫ ∞
−∞

xf(x)dx (A.1)

Equation (A.1) is to be used to determined the expected value of the distance between to

random points in a uniform distribution. Therefore, an expression for the probability density

function for the distance between two random points is required.

Consider two independent random numbers from the interval [0, d], X and Y , where

X represents the x-coordinate of the UAV starting position and Y represents the target’s

x-coordinate. The probability density functions of X and Y are given by:

fX(x) = fY (x) =


1 if 0 ≤ x ≤ d

0 if otherwise

(A.2)

The difference between X and Y is defined as Z = X−Y . Because X and Y are independent,

the density of their sum is the convolution of their densities [35]. Therefore, the density
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function of Z = X − Y is:

fZ(z) =

∫ ∞
−∞

fX(z + y)fY (y)dy (A.3)

Because fY (y) = 1 if 0 ≤ y ≤ d and 0 otherwise, fZ(z) reduces to

fZ(z) =

∫ d

0

fX(z + y)dy (A.4)

Now, the integrand is 0 unless 0 ≤ z+ y ≤ d (i.e., unless −z ≤ y ≤ d− z), where it is 1. So,

if 0 ≤ z ≤ d,

fZ(z) =

∫ 1−z

0

dy = d− z (A.5)

and if −d ≤ z ≤ 0,

fZ(z) =

∫ d

−z
dy = d+ z (A.6)

and fZ(z) = 0 otherwise.

The previous example was done in terms of a uniform distribution between 0 and an

unknown constant d that corresponds to the dimension of the space. Because distance is

always positive, the expected value of the absolute value of z is taken.

E(|z|) =

∫ ∞
−∞
|z|fZ(z)dz

=

∫ 0

−d
−z(d+ z)dz +

∫ d

0

z(d− z)dz

= d/3

The value of d in this study is 1000 m, therefore the expected value of the distance in

the x-direction between two points is ρx = 1000/3 = 333.33 m. The same would result in the

y-direction. The grid-like structure of the road network in this work requires travel in one

direction and then another. This results in a total expected value for the traveled distance
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between two points in the given 1000 m x 1000 m x-y plane (ρ) as:

ρ = ρx + ρy

= 333.33 m + 333.33 m

= 666.66 m

Given a constant speed of 20 m/s and assuming the target remained stationary, this would

result in an expected travel time of 33.33 sec.
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