
Application of the Level Set Method to Solid Rocket Motor Simulation

by

Kevin M. Albarado

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
August 4, 2012

Keywords: rocket propulsion, solid rocket, level set, discontinous Galerkin

Copyright 2012 by Kevin M. Albarado

Approved by

Roy Hartfield, Chair,Woltosz Professor of Aerospace Engineering
John Burkhalter, Professor Emeritus of Aerospace Engineering
Andrew Shelton, Assistant Professor of Aerospace Engineering

George Flowers, Professor of Mechanical Engineering, Dean of Graduate School

Abstract

The body of work encompassed in this thesis merges two advanced concepts for develop-

ing flow solutions with level sets to develop an accurate and efficient method for simulating

solid rocket motor grain regression. The level-set method has been implemented using the

discontinous Galerkin numerical method (DGM) to represent the burning surface area and

chamber volume as a function of time. The combination of DGM with geometrically arbi-

trary solid motors presents a unique and novel environment for solid rocket motor analysis,

giving the user more freedom for design and a more accurate result. This thesis provides a

complete background and introduction to both solid rocket motor research completed and

currently underway as well as an introduction to computational fluid dynamics and the level

set method. Development of the LSM/DGM approach to the grain regression problem in

two-dimensions is presented with complementary comparisons to analytical approaches. This

work represents the first known implementation of the discontinous Galerkin method with a

level set to solve the grain regression problem.

ii

Acknowledgments

I would first like to thank my committee for the opportunity and encouragement to

pursue this work. I would like thank Dr. Hartfield first and foremost for his knowledge

and expertise in the rocket propulsion field. He provided the foundation from which this

work developed. Dr. Shelton provided a unique perspective on how to approach this work,

and also helped tremendously in implementation of the approach developed in this thesis.

Without his input, the end product of this thesis would not have been realized. Finally, I

thank Dr. Burkhalter for advice on life decisions and continuous support and encouragement.

Without an open door policy from all three members of my committee, this work would not

have been completed. I would also like to thank my family and friends for their continued

support and encouragement as I make the transition from academic life to the “real world”.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vi

1 Introduction . 1

1.1 Performance Estimation . 3

1.2 Ignition Phenomena . 4

1.3 Chamber Aerodynamics . 5

1.3.1 Analytical Approaches . 6

1.3.2 Full Scale CFD . 7

1.4 Motor Stability Considerations . 7

1.5 Propellant Solid Mechanics . 7

1.6 Automated Grain Design and Performance Control 8

2 Existing Internal Ballistics Models . 9

2.1 Analytical Methods . 10

2.2 Face-Offsetting Method . 11

3 Eulerian Approaches to Surface Tracking . 13

4 First Order Grain Regression Program . 19

4.1 Development and Implementation . 19

4.2 Results . 22

5 Higher Order Grain Regression Program . 28

5.1 Development and Implementation . 28

5.1.1 Discontinuous Galerkin Method . 28

5.1.2 Stabilizing the Differential Equation 31

iv

5.1.3 Motor Case Implementation . 41

5.2 Results . 44

6 Capabilities and Further Development . 52

6.1 Conclusions . 52

6.2 Recommendations . 53

Bibliography . 55

A Analytical method for a star grain . 60

B Derivation for Discontinuous Galerkin Approach 63

C Comparison of First-Order Finite Element to Discontinuous Galerkin:A Classic

Fluid Dynamics Example . 72

D DG/LSM Fortran Source . 75

v

List of Figures

1.1 Generic SRM Schematic . 2

1.2 Typical pressure-time profile for a solid rocket motor 6

2.1 Star Grain Definition [27] . 10

2.2 Face-Offsetting Method: Advective Reconstruction vs. Wavefront Reconstruction 12

3.1 A Closed Propagating Curve . 13

3.2 Convex and Concave curvature with Lagrangian propagation (left) and actual

propagation (right) . 14

3.3 Volume of Fluid Representation . 15

3.4 A Discretized Curve and its Complementary Level Set 17

3.5 Winding Number Diagram . 17

4.1 Smearing functions for arbitrary φ near the zeroeth level set 22

4.2 A Neutral Burning Seven Pointed Star . 23

4.3 Neutral Burning Star Results . 23

4.4 Smeared Heaviside function for 7-pointed star at ignition 24

4.5 Motor Surface near the Case Boundary . 25

vi

4.6 Grid Sensitivity Results . 26

4.7 Offcenter Circular Perforated Grain Regression 27

4.8 Pressure Time Profile for an Off-Center Cylindrical Perforated Grain 27

5.1 Stencil Used to Develop DG Derivatives . 31

5.2 Level set for a circle of radius = 0.25 . 32

5.3 Level set propagation for a circle of radius = 0.25 33

5.4 Level set propagation for a circle of radius = 0.25 with source term 34

5.5 Five Pointed Star Level Set . 34

5.6 Normalized residual for five-pointed star using mesh of 10 × 10 with 9th order

polynomial . 36

5.7 Normalized residuals for five-pointed star for varying dissipation constants . . . 37

5.8 Level set propagation for a five pointed star with dissipation constant set to 0.006 38

5.9 Level set propagation for a five pointed star with dissipation constant set to 0.009 39

5.10 Level set propagation for a five pointed star at t = 0.2 40

5.11 Motor Surface near the Case Boundary . 41

5.12 Heaviside function for motor case . 42

5.13 Five pointed star burning into the case wall . 43

5.14 Comparison of polynomial order with error . 45

vii

5.15 Burn area versus burn distance comparison between analytical method and DG

schemes . 46

5.16 Comparison of polynomial order with error compiled using analytical area . . . 46

5.17 Five pointed star with grain cross with grain regression lines 47

5.18 Comparison of five pointed star simulated with DG versus analytical solution . 48

5.19 Propellant remaining for five pointed star at various burn distances for a circular

motor case . 49

5.20 Propellant remaining for five pointed star at various burn distances for a square

motor case . 50

5.21 Comparison of pressure profiles for star grain in a circular case and a square case 51

6.1 Example utilization of sparse matrices . 54

A.1 Star Grain Definition . 60

B.1 Stencil for 1-D example . 63

B.2 Modal versus Nodal Graphical Representation 66

B.3 Lobatto quadrature for varying degrees of freedom 69

C.1 Euler Solution to Isentropic Vortex using Finite Element 73

C.2 Euler Solution to Isentropic Vortex using Discontinuous Galerkin 74

viii

Chapter 1

Introduction

The roots of solid rocketry can be dated back to the 13th century, when the Chinese first

used gunpowder as a solid fuel propellant in warfare. The Arabs, Indians, and Mongolese

shortly followed the Chinese in developing some of the earliest rocket weaponry. The earliest

rockets were simple bamboo rods filled with gunpowder and carried incendiary material and

shrapnel. While history is filled with examples of rocketry use in warfare, solid rocket motor

design would go relatively unchanged for hundreds of years. During the American Revolution,

William Congreve developed rockets for use by the British military. The advancement made

by Congreve in these rockets were the cone-shaped cavity in the end of the propellant.

This cavity provided a higher burn area resulting in higher pressure and mass flow rate,

in turn producing much higher thrust levels. This was a significant advancement leading

engineers to begin experimenting with grain modification for performance enhancement. In

the late 1800’s, solid rockets saw improvement in propellants as Paul Vieille and Alfred

Nobel began experimenting with explosive components such as nitroglycerine. In the early

1900’s, most of the solid rocket motors produced were used in rockets for military use due

to the long shelf life of the propellant. Improvements in solid rocket motors were restricted

to mainly propellant development, led by John Parsons, Frank Malina, and Theodore von

Karman until the 1960’s. Parsons, Malina, and von Karman made significant advances in

development of composite solid fuels that enhanced the stability of the motors along with

advancing performance. During the 1960’s, the idea of a Space Shuttle had developed, and

the design of the two largest solid rockets in history began. Due to the unprecedented size

of these motors, known as the Solid Rocket Boosters (SRB), numerous advancements in

solid rocket science were required. During initial development of the SRBs, a simplified

1

treatment of the grain regression problem was given to the analysis. The programs used in

this analysis, while accurate, were somewhat tailored specifically to the exact problem at

hand. These same tools built during the development of the Shuttle booster program are still

in use today in industrial settings, such as Solid Performance Program [1]. SPP still remains

the industry standard solid rocket motor analysis tool. A solid rocket motor is simple enough

in design and implementation (which is what makes it advantageous over more complicated

rocket motors) as it is only composed of four main components: propellant, igniter, case,

and nozzle (see Figure 1.1).

Igniter

Propellant
Motor Case

Nozzle

Figure 1.1: Generic SRM Schematic

Despite its simplicity, many physical phenomena occur during a solid motor firing.

From ignition to burnout, engineers and scientists have made entire careers out of studying

just a handful of the myriad of topics present in solid rocket motor research such as: per-

formance estimation, ignition phenomena, grain regression simulation techniques, chamber

aerodynamics, motor stability considerations, propellant solid mechanics, propellant manu-

facturing, and automated grain design amongst many more.

While this body of work focuses solely on grain regression simulation, a brief discussion

of the remaining topics is necessary to fully understand the underlying physics in the unique

environment of a solid rocket motor.

2

1.1 Performance Estimation

In order to analyze a solid rocket motor, some estimation of performance must be

available. For a rocket motor, the performance parameters of interest are chamber pressure

and thrust. A simple derivation for chamber pressure and thrust can be developed using

lumped parameter analysis. The general thrust equation for any chemical propulsion system

is a manipulation of the momentum equation assuming steady, uniform flow at the intake

and exit planes of the motor nozzle:

T = ṁ (ue − ui) + Ae (pe − pa) (1.1)

For a rocket motor, there is no incoming jet of momentum, so this equation simplifies to just

T = ṁue + Ae (pe − pa) (1.2)

Analyzing Equation 1.2, it should be noted that the unknowns in this equation are ṁ, ue, and

pe, and as such are the variables to estimate with a rocket analysis program. These unknowns

are simply functions of burn area and propellant properties. The continuity equation requires

that the mass production rate of the propellant grain at an time must equal the mass egress

rate of the nozzle. This is represented mathematically as

Abrbρb =
poAt
c∗

(1.3)

Equation 1.3 assumes uniform, steady, and 1-D flow throughout both the combustion cham-

ber and the nozzle. For 2- and 3-D flows, mass weighted averages apply. The burn rate, rb,

is empirically defined to be a function of propellant properties

rb = apno (1.4)

3

Substituting Equation 1.4 into 1.3 and rearranging yields an equation for the total chamber

pressure.

po =

(
Ab
At
aρbc

∗
) 1

1−n

(1.5)

In this equation, it is assumed that the propellant burn rate constant, propellant density,

characteristic velocity, and burn rate exponent (a, ρb, c
∗, and n respectively) are knowns as

well as the throat area, At. This implies that chamber pressure is function of burn area only

for a given propellant choice. With total chamber pressure calculated, the mass flow rate is

calculated as

ṁ =
poAt
c∗

(1.6)

Using isentropic nozzle performance equations, the exit pressure can be calculated by solving

the Area Ratio-Mach number relation for Mach number, and using isentropic relations to

find the pressure ratio.

Ae
At

=
1

Me

[
2

γ + 1

(
1 +

γ − 1

2
M2

e

)] γ+1
2(γ−1)

(1.7)

po
pe

=

(
1 +

γ − 1

2
M2

e

) γ
γ−1

(1.8)

Equations 1.2, 1.5, 1.6, 1.7, and 1.8 provide the necessary conditions to calculate thrust for

a given burn area in a solid rocket motor. The primary work for this thesis is to determine

accurately the burn area as a function of time for any generic solid motor. For a more

in-depth derivation of the performance estimation see references [2, 3].

1.2 Ignition Phenomena

The ignition of a solid rocket motor has as much of an impact on overall performance as

grain design and manufacturing. To start a solid rocket motor, an igniter introduces (usually

at the head end) high temperature and high pressure gases or flames. These flames spread

4

throughout the motor gradually heating up the propellant surface. When the propellant

reaches the ignition temperature, the propellant burns, releasing large amounts of thermal

energy into the chamber. Typically at this point a phenomenon known as pressure overpeak

occurs (see Figure 1.2). The whole process takes place in only a few hundred milliseconds for

the largest motors such as the Space Shuttle booster and is much shorter in smaller motors,

but is significant in computing the total impulse for the motor.

This process has been studied extensively both experimentally and analytically. Refer-

ence [4] lists numerous characteristics of igniters including effects of temperature and pres-

sure on ignition time as well as types of igniters and performance characteristics. Foster and

Jenkins developed a computer model and performed validation experiments to determine

whether a single port igniter or multiport igniter would be more effective at igniting the

head end star on the Space Shuttle Redesigned Solid Rocket Motor [5]. Their work was a

collaborative effort between Auburn University and NASA’s Marshall Space Flight Center.

Cho and Baek [6], Bai et al. [7], and Johnston [8] all developed numerical simulations of the

internal aerodynamics during ignition in order to analyze ignition transients in an axisym-

metric motor. However, Cho and Baek took this work a step further by including radiation

effects to determine quantitatively what effect radiation has on ignition. They found that

radiation plays an important role in the heat flux to the propellant surface, and without

radiation a longer ignition delay is required.

1.3 Chamber Aerodynamics

Chamber aerodynamics can play a large roll in motor performance. While the local

velocity gradients and temperature gradients are not large compared to conditions in the

nozzle, they play a roll on local pressure as well as the local burn rate. If the burn rate

gradient along the surface is large enough, some areas of the motor will burn more rapidly

than others, leading to a divergence from predicted burn area. Aerodynamic predictions

have been performed in both analytical approaches and full scale CFD.

5

Time

P
re

ss
ur

e

Pressure
 Overpeak

Steady State
Operation

Tailoff
Ignition

Transient

Figure 1.2: Typical pressure-time profile for a solid rocket motor

1.3.1 Analytical Approaches

Numerous assumptions can reasonably be made for solid rocket motor chamber aero-

dynamics. The set of assumptions made specifically can be referred to as the Taylor-Culick

Profile. Taylor and Culick independently determined the conditions and assumptions for

solid rocket motors in the 1950’s and 60’s [9, 10]. The assumptions are that the flow

solution is incompressible, rotational, axisymmetric, and quasi-viscous. Majdalani et al.

[11, 12, 13, 14, 15] has produced a series of publications detailing the analytical Taylor-

Culick profile and its many applications. In [11], basic development of the Taylor-Culick

profile was examined to determine the time-dependent velocity field for a flow-field with

sidewall injection. Majdalani and Saad examined how an arbitrary headwall injection af-

fected the flowfield solution (this particular effect would be observed in a hybrid rocket

motor) [12]. Majdalani, Xu, Lin, and Liao used the Homotopy Analysis Method to exam-

ine the Taylor-Culick profile with regressing and injecting sidewalls [13]. This development

proved to be vital in development of an analytical aerodynamic model that closely resembles

a solid rocket motor.

6

1.3.2 Full Scale CFD

The use of Computational Fluid Dynamics (CFD) has been more sparse than its an-

alytical counterpart, but has been instrumental in solving unsteady aerodynamic problems

in solid rocket motors. Chedevergne, Casalis, and Majdalani [16] used Direct Numerical

Simulation (DNS) to investigate the validity of the Taylor-Culick profile. Apte and Yang

used Large Eddy Simulation (LES) to investigate the effects of turbulence in a rocket motor

with respect to chemical combustion rates [17].

1.4 Motor Stability Considerations

Pressure fluctuations within solid motors can lead to undesired and sometimes catas-

trophic effects on the motors performance. This phenomena has been studied extensively as

both a means to predict and a means to prevent. Vortex shedding has been shown to be a

direct cause to these pressure fluctuations [18, 19]. The developers of SPP [1] have worked

extensively to include modules in their program that would allow for motor stability analysis.

Coats and Dunn [20] linked SSP (an offshoot analytical approach utilizing the Taylor-Culick

profile) to SPP to automate stability predictions. This work was further developed by French

to investigate tangential mode instabilities in grains with even and odd numbers of slots [21].

1.5 Propellant Solid Mechanics

The study of propellant solid mechanics involves examining the effect of stress and strain

on the propellant block from both resting during pre-launch and accelerating during launch.

Slump is the term used to describe the displacement of the interior propellant as opposed to

the propellant bonded to the case wall from resting or accelerating during launch. This effect

has been known to alter motor performance. Fiedler et al. investigated this effect directly

via simulation by coupling a solid mechanics model to a solid motor grain regression model

[22]. Renganathan, Rao and Jana investigated effects of slump on segmented motors under

7

storage conditions using FEA and compared this analysis with experimental results [23].

Lajczok [24] performed an analysis on propellant properties during ignition. This study

determined an effective propellant modulus to accurately predict propellant deformation

under the immense pressure gradient prevalant shortly after ignition.

1.6 Automated Grain Design and Performance Control

Automated grain cross-section design and performance control has recently become a

hot topic in the SRM field with the advances in computing technology. The ”Achilles heel”

of solid rocket motors has always been a lack of variability in the thrust-time profile. One

primary reason for choosing a liquid rocket over a solid rocket motor is the added capability

of a liquid to throttle. Nunn and Chafin developed a method for throttling a solid by way

of a variable sized nozzle throat and gas injector in the combustion zone forward of the

nozzle but aft of the propellant grain [25]. Of course, the issue of throttling a solid motor

only becomes relevant when offdesign performance is required, and has been achieved in the

past using pintles. If a motor is designed properly (i.e. designed for a specific mission),

throttling can be avoided. Anderson first showed how this could be possible by linking a

fully encompassing missile analysis tool (i.e. complete with aerodynamics, propulsion, mass

properties, guidance and control, and 6-DOF) to a genetic algorithm [26]. This tool proved

effective for designing entire missile interceptor systems with as much detail as was desired

quickly and effectively. The idea for automated design using a genetic algorithm inspired

Jenkins [27] and Albarado [28] to develop optimization programs to design uniform cross

section solid motors for specific missions. Their work entailed development of a particle

swarm/pattern search hybrid optimization scheme similar to that of Woltosz [29].

8

Chapter 2

Existing Internal Ballistics Models

Many of the common techniques for modeling internal ballistics (grain regression) are

analytical in nature. As Barrere demonstrates[30], the grain cross section for a uniform solid

rocket motor can be decomposed into a handful of parameters that geometrically define the

motor. Using this predefined set of parameters, analytical equations can be developed to

describe the internal ballistics of the motor. SPP expanded on this idea to produce the

first method for analyzing motors that are nonuniform along the grain length (prominently

the Shuttle boosters). This method was modified heavily in order to accurately model

geometrically complex motors, and the true accuracy of the program was never fully realized.

Only as recently as 2005 was a new method developed for performing the grain regression

problem [31]. Willcox found that a concept known as a Signed Distance Function (SDF)

could locate a surface within a domain, and determine where a surface will be at some

prescribed burn distance later. Cavallini showed how an extension of the SDF called the Level

Set Method (LSM) could be utilized to include erosive burning and internal aerodynamics

with their programs Solid Propellant rocket motor Internal Ballistics (SPINBALL) and the

Grain REGression model (GREG) [32, 33, 34]. To date, these two programs collectively

represent one of the most accurate rocket motor analysis tools in literature and offers the

computationally most efficient method for solving the grain regression problem. The present

work aims to improve on their development of the grain regression problem by improving

the propagation routine developed in GREG using a higher order integration scheme known

as the Discontinous Galerkin Method.

9

2.1 Analytical Methods

Classically, solid rocket motor regression is performed via analytical techniques exploit-

ing the geometric method for definition. The limiting factor for almost all solid rocket motor

grain simulations exploiting this idea is their dependence on a specific method for defining

the grain cross-section. There is no standard for parametrically defining rocket motors (such

as wing span and chord length for aircraft wings), and thus these analytical techniques,

while accurate, fail to be robust. Nevertheless, these analytical approaches will provide so-

lutions for comparison to the LSM approach, and warrant further discussion. Barrere [30] is

credited with developing the first systematic analytical techniques for star and wagon wheel

configurations. The star grain, as defined by Barrere, is shown in the schematic below in

Figure 2.1. A complete description of the Barrere star grain analytical method is given in

Appendix A.

Figure 2.1: Star Grain Definition [27]

10

Using the same parameters, Hartfield et al. [35] review the analytical solution to the

long spoke wagon wheel originally found in [30] and describe the analytical solution for the

short spoke wagon wheel. Reference [36] gives an analytical description for how to solve grain

regression in a slotted grain solid rocket motor. Sforzini [37, 38] and Ricciardi [39] developed

expressions for performing grain regression in star grains and truncated star grains (slotted

tube grains).

Coats and Dunn [1] expanded on the analytical methods approach and developed ana-

lytical equations for simple 3-D shapes that would be found in a typical solid rocket motor.

These shapes are cone, cylinder, prism, sphere, and torus. From these shapes, designs such

as finocyls, tapered stars, and forward stars can be designed and analyzed using SPP. This

code has been expanded upon further to include the following advancements:

1. Motor stability and combustion stability predictions [20, 40, 41]

2. Advanced motor definition options including segmented motors, dual propellant mo-

tors, and case insulation [42]

3. Surface mesh generation [42]

4. Ignition transient calculations [42]

5. 3-D finite-volume gas-particle solver for internal aerodynamics [43]

2.2 Face-Offsetting Method

Another popular method for surface propagation is called the Face-Offsetting Method

(FOM). This method, formalized by Jiao [44] is of Lagrangian formulation, meaning that

the surface or curve of interest is explicitly propagated in a discrete manner. In order to

perform this method, each panel or facet is propagated outward. Then the vertices connect-

ing the faces are reconstructed using the method described by Jiao [44] with appropriate

logic to handle the intersections of faces. To improve mesh quality, the vertices are then

11

current
interface

new
interface

wavefront

advective

Figure 2.2: Face-Offsetting Method: Advective Reconstruction vs. Wavefront Reconstruc-
tion

redistributed along the new surface. The vertex reconstruction can be completed in one

of two manners: advective and wavefront motion. An illustration of each is shown below

in Figure 2.2. Advective reconstruction would be more suitable for concave surfaces while

wavefront reconstruction would be more suitable for convex surfaces. FOM was developed

further by researchers at the University of Illinois at Urbana-Champaign into a program

called Rocstar [45, 46, 47, 48, 49]. Rocstar was developed as an analysis tool to perform

everything from basic SRM performance analysis to off-design analysis that includes effects

such as muliphase core flow, propellant solid mechanics (slumping) and erosive burning. The

Rocstar software has been used to model propellant solid mechanics problems in the Space

Shuttle boosters [46], turbulent flow effects in the RSRM [48], and propellant slumping in

the Titan IV [49].

12

Chapter 3

Eulerian Approaches to Surface Tracking

In order to ensure that an SRM code can handle arbitrary motor geometries, i.e. the

analysis method has no dependence on geometric definition, a discrete surface tracking

method must be employed. There are two schools of thought to surface tracking that can be

employed for the grain regression problem: Lagrangian and Eulerian. A Lagrangian formula-

tion, like the face-offsetting method used in Rocstar, is fraught with numerical and stability

issues. Consider the closed curve given in Figure 3.1a.

s

s

s

s

n

n

n

n

n

(a) Closed Curve (b) Marker Particles

Figure 3.1: A Closed Propagating Curve

Using marker particles along the boundary (see Figure 3.1b), the Lagrangian formulation

of surface propagation would dictate that each particle move normal to the curvature of the

surface. For discretized treatments, this creates numerical issues in areas where particles

begin to cluster together or pass by each other. This formulation also creates accuracy

issues in areas where particles begin to spread out. Figure 3.2 demonstrates these numerical

issues in convex and concave surfaces, showing interpretation of the particles versus what

should physically occur. In order to alleviate these problems, subroutines must be developed

13

Original Surface

Propagated Surface
Original Surface

Propagated Surface

Convex Curvature Concave Curvature

Figure 3.2: Convex and Concave curvature with Lagrangian propagation (left) and actual
propagation (right)

to determine which surfaces are convex and which are concave. Appropriate logic to round

out convex curvature and create sharp points for concave curvature must also be employed.

In cases where the front velocity is a function of the curvature, concave surfaces will form

sharp edges, leading to singularities in the front velocity. When this occurs, a shock in the

solution forms and smoothing must be applied in order to continue with the solution. The

methodology used in [44, 45] has accounted for the issues associated with the marker-point

method; however, more elegant solutions to this problem are available.

Another popular surface tracking method is “volume of fluid” (VOF) method which is an

Eulerian formulation and uses a stationary mesh and tracks the motion of the interior region.

Each cell is assigned a value based on the percentage of the element volume that is occupied

by the surface or fluid of interest. This value is 0 in elements where the fluid is not present,

between 0 and 1 where the fluid or surface cuts through a cell, and 1 where the entire cell is

occupied (see Figure 3.3a). VOF handles the surface implicitly; however, because the only

information stored for each cell is the percentage volume occupied, information regarding the

curvature of the surface edge is not easily ascertainable. Figure 3.3b shows the interpretation

by the VOF method of the curve given in Figure 3.3a. From the Figure, it is readily apparent

how the initial curvature is lost in the VOF interpretation.

The Level Set Method (LSM) is an implicity method much like the VOF method to

studying the evolution of boundary between two regions. The method was formalized by

14

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.3

0.0 0.0 0.0 0.0 0.2 0.4 0.3 0.1

0.2 0.4 0.7 1.0 1.0 1.0 0.8

Solid

Fluid

(a) Numerical Representation

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.3

0.0 0.0 0.0 0.0 0.2 0.4 0.3 0.1

0.2 0.4 0.7 1.0 1.0 1.0 0.8

Solid

Fluid

(b) Advection Front

Figure 3.3: Volume of Fluid Representation

Osher and Sethian in 1979 [50, 51]. The primary difference between LSM and VOF is the

information stored within the domain. In VOF, the percentage of the cell occupied by a

fluid or region of interest is stored. For a level set, the minimum distance to a closed surface

within some domain is stored along with a sign indicating interior or exterior to the surface.

By storing the distance do the surface rather than just the volume of the cell occupied by a

region, more information regarding the evolution of the initial surface can be inferred. The

level set method has been proven useful in numerous areas of engineering including graphics,

computational fluid dynamics, material sciences, and other fields. Rather than explicitly

tracking surface propagation, the signed distance function, simply referred to as the level

set, is propagated which in turn implicitly propagates the surface. Propagation of the level

set is handled using a transport equation of the form

∂u

∂t
+ λ

∂u

∂x
= 0 (3.1)

where λ is the characteristic wave speed for the posed problem. This approach offers

a convenient and inexpensive alternative to the Lagrangian formulations which can become

15

cumbersome with the logic and subroutines necessary to handle convex and concave curva-

ture. The level set equation has some properties that can be taken advantage of to develop a

stable scheme for integration. For one, the magnitude of the gradient of the signed distance

function is equal to one everywhere in a general sense. In 2-D, if a uniform velocity field is

assumed, the level set will simply convect in the direction of the z-axis with no shape changes.

However, if a non-uniform velocity field is desired, there are relatively straightforward and

inexpensive methods for implementing them (see [52, 53]).

The LSM approach propagates a function representing the distance to a curve in dis-

cretized space as opposed to propagating a discretized curve. It is this characteristic which

gives the level set method an advantage over Lagrangian approaches. LSM handles convex

and concave surface implicitly, eliminating the need for logic and subroutines to handle each

case. The level set of a curve describes the surface as a function of distance from the original

curve. At each time step, the zeroeth level set becomes the curve itself. To initialize the

level set for a curve, begin with a discretized curve and overlay a discretized mesh on top

of it. The level set is then initialized by finding the signed minimum distance (SDF) from

each point in discretized space to the curve. Figure 3.4 represents a discretized curve and

its complementary level set function at initialization.

Determining the minimum distance from each grid point to the initial surface is simple

enough, using the distance formula:

DFi,j = min

[√
(xi,j − x̄k)2 + (yi,j − ȳk)2

]
∀ x̄, ȳ (3.2)

Of course, using Equation 3.2 will always yield a positive value, but for grid points located

inside of the surface, the desired outcome is a negative value. In order to make this deter-

mination, the winding number of the point with respect to the curve is calculated [54]. The

winding number is calculated by summing the angles subtended by each of edges as seen

by the point of interest. The summation is always either 0 or nπ. If the sum is nπ then

16

+k

+i

+j

(a) Curve in Discretized Space

00 0 1 20001
-1-1 0 0 1-1-101
-2-2 -1 0 0-2-101
-2-2 -1 -1 0-2-101
0-1 0 0 1-1001
10 1 1 20012
21 2 2 31123

11 1 2 31112

(b) Signed Minimum Distance

Figure 3.4: A Discretized Curve and its Complementary Level Set

the point lies within the curve, and if the sum is 0, the point lies outside the boundaries of

the surface. A graphic representation of this is shown in Figure 3.5, where A has a winding

number of 1, and B has a winding number of 0. This method for determining the signed

minimum distance function is performed the same regardless of whether the problem is 2-D

or 3-D in nature. The signed minimum distance is what allows LSM to handle convex and

concave curves implicitly, in that the gradient of the level set will determine whether surfaces

develop into sharp points (concave) or round valleys (convex).

Δα
Δα

ΣΔα=360
Surrounded

ΣΔα=0
Not Surrounded

A

B

Figure 3.5: Winding Number Diagram

17

According to Osher and Sethian [50, 51], the Level Set equation can be written as

 φt + rb (~x, t)
∣∣∣~∇φ∣∣∣ = 0

φ (~x, t = 0) = 0, ∀~x ∈ Γ
(3.3)

Differentiating Equation 3.3 with respect to time yields

∂φ

∂t
+
∑

φxi
∂xi
∂t

= 0 (3.4)

∂φ

∂t
+ ~V · ~∇φ = 0 (3.5)

Here it is important to observe that the front propagation is related only to the normal

component of the velocity field because the gradient, ~∇φ, at each point in ~x is defined normal

to the level set. In fact, as Cavallini [32] shows, when writing the velocity vector in terms

of its normal and tangential components, and substituting into Equation 3.5, Equation 3.6

can be arrived at, which is equivalent to the level set equation as described by Osher and

Sethian above.

∂φ

∂t
+ Vn

∣∣∣~∇φ∣∣∣ = 0 (3.6)

The level set equation, Equation 3.6 is a partial differential equation that falls into a

class of equations known as Hamilton-Jacobi equations, where

φt + V
∣∣∣~∇φ∣∣∣ = 0 → φt +H(φx, φy, φz) = 0 (3.7)

where H is the Hamiltonian defined for Equation 3.6 as

H(x, y, z, φx, φy, φz, t) = V
∣∣∣~∇φ∣∣∣ (3.8)

18

Chapter 4

First Order Grain Regression Program

4.1 Development and Implementation

The first order two dimensional burn regression program was developed as a test bed

for the level set method. This program was developed using a similar setup to that found

in references [32, 33]. From a mathematical sense, the approach taken to solid rocket motor

simulation is the same approach taken in the studies of fluid dynamics except that the

equations of motion are different.

Equation 3.3 must to be rewritten into a scheme that can be easily integrated. For the

first order code, it was written of the form

φn+1
j,k = φnj,k −∆tnrb|nj,k

[
max

(
max

(
D−xφnj,k, 0

)2
,min

(
D+xφnj,k, 0

)2
)

+

max
(

max
(
D−yφnj,k, 0

)2
,min

(
D+yφnj,k, 0

)2
)] 1

2

(4.1)

where

D−xφnj,k =
φnj,k − φnj−1,k

∆x
; D+xφnj,k =

φnj+1,k − φnj,k
∆x

D−yφnj,k =
φnj,k − φnj,k−1

∆y
; D+yφnj,k =

φnj,k+1 − φnj,k
∆y

This scheme is first order in space and time. To enhance the order for the time integration,

back and error compensation was utilized as described by Dupont and Liu[55]. To perform

back and forth error compensation, the initial level set is propagated forward in time one

time step through normal operation. The result of this initial propagation is then propagated

backwards in time, yielding a new level set at the same time step as the initial level set. The

19

difference in the original level set and the new level set is then used to correct the original level

set. The next time step is finally calculated using this corrected level set. Mathematically

this appears as:

φ̂n+1 = f (φn,+rnb) (4.2)

φ̂n = f
(
φ̂n+1,−rnb

)
(4.3)

φ̄n = φn +
φn − φ̂n

2
(4.4)

φn+1 = f
(
φ̄,+rnb

)
(4.5)

While this method works for propagating the propellant surface, what is of importance

to rocket motor simulation is the surface area and chamber volume evaluation at each time

step, as this determines chamber pressure and propellant weight. The volume and area can

be calculated simply as:

V =

∫
Ω

h (φ (x)) dx (4.6)

A =

∫
Ω

δ (φ (x))
∣∣∣~∇φ∣∣∣ dx (4.7)

where h is the Heaviside step function

h(φ) =

0 φ ≤ 0

1 φ > 0
(4.8)

and δ(φ) is the Dirac delta

δ(φ) =
dh(φ)

dφ
(4.9)

20

Because Equation 4.8 is a step function, Equation 4.9 cannot be evaluated easily in

a numerical scheme. Furthermore, these evaluations, while sound mathematically, do not

translate well to numerical schemes as theorized. To handle this problem, some smearing

was applied to h and consequently δ as follows.

h(φ) =


0 φ < −ε

1
2

+ φ
2ε

+ 1
2π

sin
(
πφ
ε

)
|φ| ≤ ε

1 φ > ε

(4.10)

δ(φ) =


1
2ε

+ 1
2ε

cos
(
πφ
ε

)
|φ| ≤ ε

0 φ > ε
(4.11)

In Equations 4.10 and 4.11, ε is a tuning parameter defined by some grid spacing char-

acteristic length. Figure 4.1 demonstrates the smearing function for the Heaviside function

and Dirac delta. Contributions for both surface area and chamber volume are made only by

those cells contained within the boundary of the case.

21

Figure 4.1: Smearing functions for arbitrary φ near the zeroeth level set

4.2 Results

The 2-D first-order accurate program (henceforth referred to as AUBurnSim2D) was

developed to demonstrate the effectiveness of LSM at accurately capturing the burn re-

gression physics. The following results serve as a justification for moving forward with the

development of a higher order scheme.

Neutral Burning Star

According to the Barrere model [30], it is possible to analytically design a motor which

exhibits a neutral burning profile for phase I burning. Using this approach, a neutral burning

motor was designed and the analytical result was comparied with the result from AUBurn-

sim2D for validation. Motor performance was simplified to lumped parameter analysis and

local burn rates, erosive burning, and chamber aerodynamics were ignored in order to test

22

geometric competence of the level set approach. The motor tested was a 7-pointed star,

shown in Figure 4.2. Figure 4.2b was generated using a mesh size of 200× 200.

(a) Motor Surface and Case (b) Signed Minimum Distance

Figure 4.2: A Neutral Burning Seven Pointed Star

(a) Burn Area vs Burn Distance (b) Pressure vs Time

Figure 4.3: Neutral Burning Star Results

The results of this simulation are shown in Figure 4.3. From the Figure, it is apparent

that LSM performs well at predicting burn area (and therefore pressure) over time. However,

there are a few key problems to note about Figure 4.3. While LSM was able to accurately

23

trend the motor (neutral burn at the beginning followed by a progressive burn; burn time is

correct), there was an underprediction in total pressure throughout burn of approximately 15

psia. Secondly, near burnout a dip in pressure is observed when using LSM, which disagrees

with the analytical solution. Both of these effects can be attributed to the smearing required

when calculating area and chamber volume. Shown in Figure 4.4 is a contour of the smeared

Heaviside function for the 7-pointed star at ignition. From Equation 4.10, the function of

the Heaviside equation is to step from a value of 0 to a value of 1 at the boundary, but in a

smooth manner. This causes an apparent bandwidth at the boundary of approximately 2ε

(dark region dividing the lighter sections in Figure 4.4).

Figure 4.4: Smeared Heaviside function for 7-pointed star at ignition

A closer look at this bandwidth when interacting with the motor case reveals the source

of the issue with the dip in pressure near burnout. Figure 4.5 is a schematical representation

of what is occurring at the case wall. The actual motor surface is still completely within

the boundary, and as such should be completely contributing to the surface area. However,

because the surface must be represented numerically as this bandwidth, we see that part of

the numerical surface is outside the case boundary. As such, areas of the numerical that

should be contributing to the burn area have been neglected. The obvious fix to this issue is

24

to slim down the bandwidth as much as possible with a finer mesh, which will in turn drive

up memory useage and wall clock time.

Case

Actual Surface

Numerical
 Surface

Neglected
Surfaces

Contributing
Surface

Figure 4.5: Motor Surface near the Case Boundary

A grid sensitivity study was performed using this neutral 7-pointed star to show how a

finer mesh will in fact reduce error but will drive up memory usage and wall clock time. The

mesh sizes studied varied between 50× 50 and 200× 200. The results of this grid study are

shown below in Figure 4.6. The grid study showed that the RMS error decreased with finer

and finer meshing. In fact, it should expected that a finer mesh will in fact produce a more

accurate result. But also as was expected, the total runtime increased with a finer mesh size.

From Figure 4.6, the lowest RMS error achievable is quickly realized by increasing mesh size,

but the lowest RMS achievable was still around only 10%. It can be concluded from this

study that attempts to resolve the grid further are not warranted as the gain in RMS error

will be unattractively low with increasing memory useage and wall clock time.

25

0 50 100 150 200 250 300 350
10

11

12

13

14

15

16

17

18

19

20

Memory Useage (kB)

R
M

S
 e

rr
o
r

%

(a) Memory Useage vs RMS Error

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

Memory Useage (kB)

W
a
ll

C
lo

c
k
 T

im
e
 (

s
)

(b) Memory Useage vs Wall Clock

Figure 4.6: Grid Sensitivity Results

Offcenter Right Circular Perforated Grain

This second case using AUBurnSim2D is an offcenter right CP grain to demonstrate the

robustness of LSM at handling more complex grains. The initial surface is simple enough,

but the burning of the surface poses a problem for analytical methods when a small portion

of the surface burns into the motor case before the rest of the surface. This case represents

a common problem when manufacturing these motors: perfectly centering the bore in the

grain. The case presented here represents an exaggerated version of this problem. Shown

in Figure 4.7 is the time evolution of the offcenter CP grain. From the Figure, the surface

initially burns into the motor case around at time of t = 5.0 seconds. A CP grain should have

a progressive burn profile until the surface burns into motor case, at which point the burn

becomes regressive. From Figure 4.8, the result is exactly that. At time t = 5.0 seconds, the

pressure changes from progressive to regressive.

26

(a) t = 0 s (b) t = 5 s

(c) t = 8.5 s (d) t = 12 s

Figure 4.7: Offcenter Circular Perforated Grain Regression

Figure 4.8: Pressure Time Profile for an Off-Center Cylindrical Perforated Grain

27

Chapter 5

Higher Order Grain Regression Program

5.1 Development and Implementation

The following sections detail the methods used to develop the higher order grain regres-

sion program. A discussion of the discontinuous Galerkin method is provided along with

a detailed discussion of how to implement DG with Hamilton-Jacobi equation, as will be

needed for the level set method. The next section discusses some of the modifications that

were needed in order to stabilize the differential equation for integration. The final sec-

tion of development and implementation discusses the method in which the motor case was

incorporated into the level set area calculation.

5.1.1 Discontinuous Galerkin Method

The discontinuous Galerkin method (DGM) combines flavors of finite difference, finite

element, and finite volume methods. Finite difference schemes approximate the solution

locally with 1-D polynomials and satisfy the differential equation in a pointwise fashion.

This makes finite differencing schemes simple to implement and still allow for high-order

implementation. However, implementing high-order schemes cannot be implemented with

geometric variance. Finite volume schemes also approximate the solution locally, using a cell

average as opposed to polynomials. Finite volume schemes are robust and fast just as the

finite differencing schemes due to local solution approximation. But, finite volume schemes

cannot be modified to be higher order in general. Lastly, finite element methods define the

solution in a non-local manner, satisfying the equation across the entire domain which make

them suitable for high-order. However, they are implicit in time. The desired formulation

would be to have local high-order approximation that can work with complex geometries.

28

Hesthaven [56] provides much of the technical background required to get started with DG.

A comprehensive synopsis on development of DG can be found in Appendix B. Much of the

discussion found in Appendix B emenates from a variety of sources, primarily [56] but also

[57, 58, 59, 60]. Appendix C gives an example comparison of DG to a conventional finite

volume method for solving the classical isentropic vortex problem. The basic transport

equation

∂u

∂t
+
∂f(u)

∂x
= 0 (5.1)

in a DG sense becomes

∫
Dk
bki
∂ukh
∂t

dx−
∫
Dk

∂bki
∂k

fkhdx+

∮
∂Dk

bki f
∗
(
uk,−h , uk,+h ;nk,−x

)
ds = 0 (5.2)

In matrix vector form, this can be rewritten as

J kM
dũk

dt
− ST f̃k + Laf̃ ∗a

k
+ Lbf̃ ∗b

k
= 0 (5.3)

Since we want to determine the time derivative term for each cell, the final form of the

algebraic equation becomes

dũk

dt
= J kMST f̃k − J kM

(
Laf̃ ∗a

k
+ Lbf̃ ∗b

k
)

(5.4)

Equation 5.4 is useful when the exact flux and numerical flux is straightforward to calculate,

such as the case with the Euler equations.

For states such as the level set equation, determining the gradient is more difficult and

relies on the auxiliary variable approach like the first order LSM. However, from Equation 5.4,

the tools needed to calculate the derivative of the level set equation are already available.

Looking at Equation 5.5 ∫
b
∂u

∂t
dx+

∫
b
∂F

∂x
dx = 0 (5.5)

29

In order to use with the level set, DG must be successfully implemented using a Hamiltonian.

Cheng and Shu [61] discuss how to incorporate the basic Hamiltonian into DG schemes.

Yan and Osher [62] describe how this Hamiltonian term can be replaced with a modified

Hamiltonian term to incorporate artificial viscosity.

∫
b
du

dt
dx+

∫
bĤ(ux)dx = 0 (5.6)

where

Ĥ(p1, p2, q1, q2) = H

(
p1 + p2

2
,
q1 + q2

2

)
− 1

2
α(p1 − p2)− 1

2
α(q1 − q2) (5.7)

This is just one of many ways to represent the modified Hamiltonian term. The Gudonov

scheme in Equation 4.1 is also of Hamilton-Jacobi form where Ĥ takes on the form of

Ĥ(p1, p2, q1, q2) = −∆tnrb|nj,k
[

max
(
max (p1, 0)2 ,min (p2, 0)2)+

max
(
max (q1, 0)2 ,min (q2, 0)2)] 1

2

(5.8)

where p represents the x-derivative of φ using data from either the left or the right (1 and

2) and q represents the y-derivative of φ. Development of the derivatives in the x- and y-

directions can be developed using the same operators used in Equation 5.4. In integral form,

the derivatives in the x-direction would take the form

[∫
Dk
bki
∂ukh
∂x

]
left

= −
∫
Dk

∂bki
∂x

ukhdx+

∮
bki f

∗
(
uk,−h , uk+1,−

h ;nk,−x

)
ds (5.9)[∫

Dk
bki
∂ukh
∂x

]
right

= −
∫
Dk

∂bki
∂x

ukhdx+

∮
bki f

∗
(
uk+1,+
h , uk,+h ;nk,−x

)
ds (5.10)

and in matrix vector form are expressed as

30

p1 = −J kSTui + J kLxrightui+1left − J kLxleftuileft (5.11)

p2 = −J kSTui + J kLxrightuiright − J kLxleftui−1right (5.12)

i-1 i+1i

Right Data
Left Cell

Left Data
Right Cell

Left Data
Current Cell

Right Data
Current Cell

Figure 5.1: Stencil Used to Develop DG Derivatives

Using Figure 5.1 as a reference, Equation 5.11 can be interpreted as the derivative is

equivalent to taking the derivative of the basis function for the cell plus lifted data from

the left edge of the cell to the right minus lifted data from the left edge of the current

cell. Similarly, Equation 5.12 can be interpreted as being equivalent to taking the derivative

of the basis function for the cell plus lifted data from the right edge of the current cell

minus lifted data from the right edge of the cell to the left. Derivatives in the y-direction are

performed in exactly the same manner by replacing the stiffness matrices and lifting matrices

appropriately and using data from upper and lower surfaces of cells above and below the

current cell. The idea of using data from the left or data from the right is analogous to

upwinding used for conservation laws.

5.1.2 Stabilizing the Differential Equation

To properly couple discontinuous Galerkin with the level set equation, additional mea-

sures must be taken to ensure that the numerical scheme is stable and accurate. Using a

31

circle as an example, shown in Figure 5.2, sharp gradients occur in the level set when points

in the domain are equidistant to multiple locations on the surface (such as the center of the

circle). With any high order scheme, sharp gradients will cause numerical instabilities if not

treated properly. In the case of the level set, a sharp gradient at the center of the circle will

continue to grow sharper, corrupting the solution.

(a) Isometric View (b) Side View

Figure 5.2: Level set for a circle of radius = 0.25

Another issue that it is difficult to avoid is a case where the gradient is zero. In the

example of the circle, this will happen if the center point, where the sharp gradient occurs,

is located within a cell, rather than at the boundary of a cell. In that case, the sharp point

will be smoothed out, effectively changing the state at that point from a sharp gradient to

a gradient of zero. Using the basic time evolution scheme described in Chapter 5.1.1 for

discontinuous Galerkin schemes, zero gradients (such as shown in the center of the circle

shown in Figure 5.3, will develop incorrectly.

From the Figure, the zero gradient at the center effectively propagates outward toward

the domain edges, steadily flattening the level set. Remember, the level set should simply

convect in the z-direction for some constant wave speed. Thus, the result in Figure 5.3b does

not make physical sense.

Osher and Fedkiw [52] provide a number of corrections for this, one being a method

known as reinitialization. Reinitialization is a process performed periodically to “reset”

32

(a) Initial Surface (b) Propagated with basic ODE

Figure 5.3: Level set propagation for a circle of radius = 0.25

the gradient of the level set to its original shape (or close to it). The principal behind

reinitialization is that only behavior at or near the zeroeth level set need to be conserved,

and that behavior elsewhere can be reset without issue. The basic equation for reinitialization

is the standard differential equation with constraint added, mathematically represented as:

h(x) = sign(φ) (|∇φ| − 1) (5.13)

This constraint essentially takes advantage of the fact that the magnitude of the gradient

of the level set should be equal to 1 everywhere. The downside to reinitialization is that it is

costly due to the fact that it is an iterative process that is separate from the time evolution.

However, it stands to reason that if the constraint were added to the original differential

equation to be solved, smaller corrections to the level set would occur simultaneously with

time evolution, and reduce the cost associated with reinitialization. The equation of motion

thus becomes

∂φ

∂t
+ |∇φ| = sign(φ) (|∇φ| − 1) (5.14)

The same circle that was propagated without this correction in Figure 5.3 is given below

in Figure 5.4. From the Figure, the level set was correctly propagated from state 5.4a to 5.4b.

33

(a) Initial Surface (b) Propagated Surface

Figure 5.4: Level set propagation for a circle of radius = 0.25 with source term

At this point, Equation 5.14 represents a robust equation for propagating simple, well

behaved level sets, such as that for the circle. However, for more complex grains, such as

a five pointed star shown below in Figure 5.5, more work must be done on the differential

equation. Specifically, convex regions of the star (areas where the zeroeth contour will remain

sharp) will cause numerical issues as time evolves.

(a) Top Down View (b) Isometric View

Figure 5.5: Five Pointed Star Level Set

34

To demonstrate the numerical instability, the normalized residual was tracked during

time evolution. It is worth noting here that the normalized residual at every time step should

be 1. This is due to the special property of the level set which states that the gradient must

be equal to one everywhere at all times. Since the 2-D level set is essentially being convected

in the z-direction, the residual should be the same at every time step. The normalized

residual for discontinuous Galerkin is calculated as

Rn =

√∑
i

∑
k rhs

2
i,kwk

R1
(5.15)

By tracking this quantity over time, a sense of stability can be measured. To determine

the proper time step, the Courant-Friedrichs-Lewy (CFL) condition was satisfied as follows

CFL = λ∆t
d2

∆x
(5.16)

where λ is the maximum wavespeed for the problem at hand. The traditional CFL condition

essentially states that information at one point should not travel farther in a single time step

than the adjacent cell. For DG, this definition is expanded to include the total degrees of

freedom for a cell (d2) [56]. The desired simulation time for this was set to a pseudo-time

of 0.5, meaning that the level set values at simulation end should be exactly φ0 + 0.5. The

residual for this simulation is shown below in Figure 5.6.

From the Figure, the simulation grew unstable very quickly, since the simulation only

reached a psuedo-time of 0.03 out of 1.0. To relieve this effect, an explicit artificial viscos-

ity term was added to the differential equation as discussed by [63] and [64], resulting in

Equation 5.17.

∂φ

∂t
+ |∇φ| = sign(φ) (|∇φ| − 1) + νx∇ · (∇φ) (5.17)

35

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Psuedo−Time

R
es
id
ua
l

Figure 5.6: Normalized residual for five-pointed star using mesh of 10 × 10 with 9th order
polynomial

In Equation 5.17, νx is the diffusion constant which is directly controlled by the user.

Artificial viscosity, implicit or explicit, reduces the gradients in the state, effectively smooth-

ing the state. Whether this is physical or not, it helps keep the solution stable. For the

level set equation, it is desirable to keep the sharp ridges in the state as well maintained

as possible; however sharp gradients tend to cause numerical instability. For this reason,

the diffusion term was only used when |∇φ| was excessively large (|∇φ| >> 1) or nearly

0. When either of these conditions were met, the tuning parameter was set to the desired

value, otherwise the diffusion term was not added to Equation 5.17. In order to tune the

dissipation constant and the following steps were taken.

� Set the CFL number to a sufficiently low number to drive the timestep down. A typical

value is around 0.2.

� Begin with a low dissipation constant, and track the residual. ν set to 0 will give some

insight into how much dissipation will be required.

36

� Slowly raise the dissipation constant until the residual remains approximately 1 or

slightly less than 1.

� Drive the CFL number back up as high as possible while remaining stable

The results of this process for the five pointed star in Figure 5.5 are shown below in Figure 5.7.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Pseudo−Time

N
or

m
al

iz
ed

 R
es

id
ua

l

ν
x

= 0.000

ν
x

= 0.006

ν
x

= 0.009

Figure 5.7: Normalized residuals for five-pointed star for varying dissipation constants

As a comparison demonstrating why it is necessary to keep the residual close to 1, the

evolution of νx = 0.006 was compared to νx = 0.009 in Figures 5.8 and 5.9 respectively.

From Figure 5.8b, small wrinkles start to form which directly lead to the rise in the

residual observed in Figure 5.7. This is where tracking the residual and fine tuning the

dissipation constant becomes important. Although the simulation in Figure 5.8 continued

to run without excessive rises in the residual, the simulation had already been corrupted,

leading to a poor solution. From Figure 5.9,the level set simply convects in the z-direction,

maintaining its original shape. While a few wrinkles do develop, there is enough dissipation

to keep them from growing and compromising the solution. Figure 5.10 shows the zeroeth

level set for each case at an approximate time of 0.2 after start. Clearly from Figure 5.10a,

the zeroeth level set, the area that is most important in the domain, was corrupted without

37

(a) t=0.022 (b) t=0.110

(c) t=0.200 (d) t=0.285

(e) t=0.373 (f) t=0.460

Figure 5.8: Level set propagation for a five pointed star with dissipation constant set to
0.006

38

(a) t=0.022 (b) t=0.110

(c) t=0.200 (d) t=0.285

(e) t=0.373 (f) t=0.460

Figure 5.9: Level set propagation for a five pointed star with dissipation constant set to
0.009

39

sufficient artificial dissipation. When sufficient artificial dissipation is provided, the solution

remains well behaved, and the zeroeth level set evolves correctly.

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) ν = 0.006

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) ν = 0.009

Figure 5.10: Level set propagation for a five pointed star at t = 0.2

40

5.1.3 Motor Case Implementation

While it is important to evolve the level set correctly over time, it is equally important

to accurately determine burn area (in 2-D, perimeter) at each time step for a rocket motor

simulation program. There are issues associated with determining area accurately, particu-

larly when it comes to determining area as the surface interferes with the motor case wall as

was discussed in Section 4.2. Revisiting an explicitly defined case, shown in Figure 5.11, the

bandwidth associated with smoothing the Dirac delta function, used to determine where the

surface is, causes an unfavorable drop in calculated area near the boundary if grid spacing

is relatively large.

Case

Actual Surface

Numerical
 Surface

Neglected
Surfaces

Contributing
Surface

Figure 5.11: Motor Surface near the Case Boundary

This effect could be further exaggerated in DG grid where nodes are based on Lobatto

quadrature as shown in Figure B.3 of Appendix B, and can be sparse in some areas and

more densely populate other areas of a cell. Recall the equation for burn area:

A =

∫
Ω

δ (φ (x))
∣∣∣~∇φ∣∣∣ dx (5.18)

41

This equation can be modified to account for an arbitrarily defined case simply by

defining a a step function defining locations inside and outside of the case. This new step

function is incorporated into the burn area calculation as follows.

A =

∫
Ω

hcase (φcase) δ (φ (x))
∣∣∣~∇φ∣∣∣ dx (5.19)

In this instance, hcase is defined as

hcase =


1 φcase > 0

1
2

(
1 + cos

(
πφ
ε

))
−ε < φcase < 0

0 φcase < 0

(5.20)

where a negative signed distance function defines the region exterior to the case, and the

positive signed distance function defines the region interior to the case. By implicitly defining

the case boundary, two advantages are gained: 1) the smeared surface is allowed to exceed

the explicit boundary and continue to contribute to the area calculation, and 2) arbitrary

case geometries can be implemented. An example of a 2-D cylindrical case and square case

are given in Figure 5.12.

(a) Cylindrical Case (b) Square Case

Figure 5.12: Heaviside function for motor case

42

To demonstrate, the same five-pointed star given above was simulated with a circular

case of radius equal 1 as well as with a square case with side length of 2. Figure 5.13

demonstrates the star as it burns into the two different case walls. In Figure 5.13, the raised

surface represents the remaining propellant in the case.

(a) Cylindrical Case (b) Square Case

Figure 5.13: Five pointed star burning into the case wall

43

5.2 Results

The discussion in Chapter 3 and Section 5.1.1 has led to the development of a robust

and efficient approach to solving the grain regression problem. Two example cases were

tested with this modified DG approach in order to confirm both robustness and accuracy.

The first case is a circular grain cross section in a circular case, and was tested with varying

number of cells using varying degree polynomials. A comparison was made between these

higher order results and the first order program developed in Chapter 4. This comparison

was made for a circular grain cross section of radius 0.7 with a outer case diameter of 2. The

number of cells were varied from 9 to 625 in higher order schemes and from 81 to 10,000 in

the first order scheme. A true comparison of the schemes looks not at the number of cells

but rather the degrees of freedom per cell. Since first order cells contain only one degree of

freedom, the number of cells is equivalent to the degrees of freedom. However, for higher

order cells, the degrees of freedom can be calculated using Equation 5.21, and the total work

required scales with degrees of freedom.

DOF = (d+ 1)2 ·Ncells (5.21)

The higher order schemes varied from degree 3 polynomial up to degree 9 polynomial,

giving total degrees of freedom ranging from 144 up to 10,000, which is more on par for the

degrees of freedom for the first order scheme. The results for the simulation are shown below

in Figure 5.14. It should be noted that the error was a root-mean-square based error term

between the simulation and the analytical solution for the entire level set at time t. In other

words, Figure 5.14 gives a measure of a particular schemes ability to propagate the level set

correctly. This comparison will only serve as a validation for using DG over conventional first

order schemes, and does not speak to the accuracy of the scheme’s to correctly determine

area as a function of time.

44

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of Cells

E
rr

or

P =1
P =4
P =6
P =10

(a) Error vs Number of Cells

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Degrees of Freedom

E
rr

or

P =1
P =4
P =6
P =10

(b) Error vs Degrees of Freedom

Figure 5.14: Comparison of polynomial order with error

From Figures 5.14a and 5.14b, it is clearly cheaper to use higher order integration

schemes over conventional first order methods from the standpoint of number of cells and

total degrees of freedom. For higher order polynomials, the reqiured number of cells is lower

to achieve the same error at lower orders. The same trend is observed for error versus degrees

of freedom. The second judgement for accuracy of the scheme is ability to determine area as

a function of time. Figure 5.15 gives various burn area profiles for different configurations

of number of cells and polynomial orders.

From Figure 5.15, two of the configuration have no issues propagating the level set;

however, some issues arise when calculating area as the surface approaches the case boundary.

In every case, a tail-off begins to form near the boundary around a distance of 0.3 due to

case radius of 1 and inner radius of 0.7. Where this tail-off begins depends on the number of

cells as well as the polynomial order. However, combining both high order and high number

cells is not necessarily cheaper anymore. In Figure 5.16, error was compiled by comparing

the analytical solution for burn area to the higher order schemes. From the Figure, the

total degrees of freedom apparently dictate the error in area. This is directly related to the

smoothed Heaviside function bandwidth problem previously discussed. The bandwidth is

45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
4

4.5

5

5.5

6

6.5

Burn Distance

B
ur

n
A

re
a

Analytical Solution
I = 9, P = 4
I = 81, P = 6
I = 225, P = 10

Figure 5.15: Burn area versus burn distance comparison between analytical method and DG
schemes

proportional to characteristic length and inversely proportional to order polynomial. This

is a situation where solution adaptivity could be useful. Modifying the mesh to use smaller

cells or higher order polynomials near the case, and large cells/lower order polynomials away

far from the case could alleviate this issue without penalty in computational cost.

10
0

10
1

10
2

10
3

0

0.02

0.04

0.06

0.08

0.1

0.12

Ncells

E
rr
or

P=4
P=6
P=10

(a) Error vs Number of Cells

10
2

10
3

10
4

10
5

0

0.02

0.04

0.06

0.08

0.1

0.12

Degrees of Freedom

E
rr

or

P=4
P=6
P=10

(b) Error vs Degrees of Freedom

Figure 5.16: Comparison of polynomial order with error compiled using analytical area

The second test case is a more customary example of a star grain that would be found

in typical rockets. It is a five pointed star with a maximum inner radius of 7 inches, a

46

minimum inner radius of 5 inches, a case diameter of 20 inches, and a grain length of 24

inches. The fuel type was assumed to be PBAN/AP/AL. Shown in Figure 5.17 is the grain

cross section (red), the motor case (blue), and the successive grain regression lines (black)

effectively representing the level set function.

Figure 5.17: Five pointed star with grain cross with grain regression lines

This motor was tested using 81 total cells with a 9th order polynomial. Sufficient

domain space was established to ensure that the zeroeth level set could not occupy areas

both within the motor case and outside the global domain simultaneously. This helps to

establish confidence that the calculation for area does not conflict with the domain boundary

and corrupt the calculation for area. Figure 5.18 shows the burn area as a function of

burn distance and the chamber pressure as a function of time. From Figure 5.18a, there is

an underprediction in burn area of about 30 square inches throughout the burn distance.

Likewise there is an underprediction in pressure versus time as well. This underprediction

in area should be expected according to [52] due to the first order nature of the smeared

heaviside and dirac delta functions. These two equations are first order accurate no matter

47

the integration method. Therefore, there is a current limitation as to how accurate an area

calculation can be using the level set method.

0 1 2 3 4 5
200

400

600

800

1000

1200

1400

1600

Burn Distance (in)

B
ur

n
A

re
a

(in
2)

Analytical
Predicted

(a) Burn area versus burn distance

0 2 4 6 8 10
0

50

100

150

200

250

300

350

400

450

500

Time (s)
P

re
ss

ur
e

(p
si

)

Analytical
Predicted

(b) Pressure versus time

Figure 5.18: Comparison of five pointed star simulated with DG versus analytical solution

Despite the limitations on the area calculation, there are some positives that can be

noted on these results. One key observation to make is the ability of this approach to

correctly account for the circular case. For this test case, the analytical solution should (and

does) end at a burn distance of 3 inches where phase 2 burning ends and phase 3 burning

begins. In most analytical schemes, phase 3 burning is neglected. The DG scheme should

also burn out or at least begin tailing off at the same burn distance of 3 inches. And indeed,

from Figure 5.18a the tailoff begins to occur at 3 inches. Also, it would be expected that the

final burnout would occur at a burn distance of 5 inches because the minimum inner radius of

the grain started 5 inches from the motor case. Figure 5.19 shows the remaining propellant

in the motor case at various burn distances. At a burn distance of 3 inches (Figure 5.19d),

part of the propellant has reached the case wall and will no longer contribute to the burn

area, as evidenced previously in Figure 5.18a.

To demonstrate the generality of this SRM code, the same star grain was tested in a

square case with a side length of 20 inches. The grain evolution for this test case can be

48

(a) Burn Distance = 0 in. (b) Burn Distance = 1 in.

(c) Burn Distance = 2 in. (d) Burn Distance = 3 in.

(e) Burn Distance = 4 in. (f) Burn Distance = 5 in.

Figure 5.19: Propellant remaining for five pointed star at various burn distances for a circular
motor case

49

(a) Burn Distance = 0 in. (b) Burn Distance = 1 in.

(c) Burn Distance = 2 in. (d) Burn Distance = 3 in.

(e) Burn Distance = 4 in. (f) Burn Distance = 5 in.

Figure 5.20: Propellant remaining for five pointed star at various burn distances for a square
motor case

50

seen in Figure 5.20. From the Figure, it is apparent that geometric generality is conserved.

For the circular case, at a burn distance of 3 inches, every star point reached the case wall.

However, for a square case at the same burn distance, only one star point reached the case

wall. In fact, after a burn distance of 5 inches, a relatively large amount of propellant still

remains as was expected. Knowing the propellant regression, it should be expected that

the burn area as a function of burn distance should be identical to that of the circular case

for the first 3 inches. Shown in Figure 5.21 is a plot comparing the burn area and pressure

profiles for the circular case to the profiles for the square case.

0 1 2 3 4 5
200

400

600

800

1000

1200

1400

1600

Burn Distance (in)

B
ur

n
A

re
a

(in
2)

Circular Case
Square Case

(a) Burn area versus burn distance

0 2 4 6 8 10
0

50

100

150

200

250

300

350

400

450

500

Time (s)

P
re

ss
ur

e
(p

si
)

Circular Case
Square Case

(b) Pressure versus time

Figure 5.21: Comparison of pressure profiles for star grain in a circular case and a square
case

As was expected, the profiles are identical until the surface reaches the motor case. At

the motor case, the burn area continues to increase until more star points reach the case

wall thus causing the burn area to decrease. This result is useful from the standpoint that

this approach can handle completely arbitrary propellant shapes, both interior or exterior.

51

Chapter 6

Capabilities and Further Development

6.1 Conclusions

This thesis developed a high fidelity motor simulation approach that is robust and

arbitrary, as opposed to analytical techniques that require derivation of the solution for each

type of grain cross-section. The methodology used combined previous work in the fields of

surface tracking and propagation with higher order integration schemes to develop a fast

and computationally efficient approach to grain surface evolution. Problems inherent to

propagation of the signed distance function were identified, and successfully eliminated. The

level set method had already proven to be an arbitrary approach to the grain regression

problem, and the addition of the discontinuous Galerkin method to the level set approach

developed into the robust and computationally efficient method discussed. The end product

was a solid foundation for an approach to SRM simulation that has the potential to be the

cheapest and most robust method available. The following remarks are concluded from the

work performed in this thesis:

� The discontinuous Galerkin approach to surface evolution proved to be more efficient

than traditional first order schemes that have previously been coupled with the level

set method.

� The marriage between DG and LSM did require some modification of the level set

differential equation. Inclusion of the slope correction source term and the explicit

artificial source term did introduce complexity to the approach, but proved to be

vital in properly evolving the level set over time. The source term should always be

52

incorporated into finite volume type schemes. Explicit artificial viscosity is required

for high order methods due to oscillations.

� While it was shown that surface tracking is more accurate and efficient with both

decreasing number of cells and higher order polynomial, the limiting factor on error in

area calculation proved to be total degrees of freedom.

� An approach to incorporating arbitrary motor case boundaries was developed and

proved to be more robust and as accurate as previous work involving discretized meth-

ods.

� The method for calculating burn area is only first order accurate, and as such was

limited in accuracy to total degrees of freedom and problem complexity. This issue is

should be addressed regardless of scheme used for integration.

6.2 Recommendations

While a solid framework for an accurate solid rocket motor grain regression tool was

developed, several key topics should be pursued for further improvement. A more accurate

method for calculating area must be developed in order to move away from the first order

limitation currently implemented. However, a higher order scheme for developing the area

calculation will increase computational efficiency in both work and wallclock. It was not

discussed in this work, but a decrease in wallclock time can be achieved for higher order

schemes by taking advantage of sparse matrix multiplication. In its current implementation,

any manipulation of the stiffness matrix (for example) requires N2 calculations. But the

stiffness matrix is sparse (see Figure 6.1), and would allow sparse multiplication of the large

matrices that are used at higher order.

If sparse muliplication can be taken advantage of, the time required to complete a

simulation can be further reduced. This savings in time can be utilized in one of two ways.

The first utilization of time savings can trivially be taken at face value as time savings. The

53

0 5 10 15 20 25

0

5

10

15

20

25

non−zero = 110

(a) Non-zero entries for stiffness ma-
trix of order 5

First Order Higher Order
0

1

N
or

m
al

iz
ed

 W
al

lc
lo

ck

Available
Wallclock

(b) Sample wallclock savings

Figure 6.1: Example utilization of sparse matrices

second utilization of time savings could be used to develop a more accurate calculation of

area, include second order effects, or any other flavor of improvements to the simulation,

while still remaining as cheap as first order schemes. Solution adaptivity could also be taken

advantage of to provide more accuracy.

Moving forward, the current implementation of DG/LSM should be extended from

two dimensions to three dimensions. Development of variable (non-uniform) wavespeed

should be implemented to make inclusion of second order propellant burning effects such

as multi-phase flow and erosive burning possible. It would also be desirable to test the

three-dimensional code against real world motors as opposed to simpler analytical solutions.

Some final improvements to the program would be to include the following: ignition and

burnout transients, chamber aerodynamics, and propellant solid mechanics. A successful

achievement of these recommendations would produce an end product believed to be the

most robust and accurate simulation tool available.

54

Bibliography

[1] Dunn, S. and Coats, D., “3-D Grain Design and Ballistic Analysis Using the SPP97
Code,” AIAA paper 1997-3340, 1997.

[2] Mattingly, J., Elements of Propulsion: Gas Turbines and Rockets , AIAA Education
Series, 2006.

[3] Sutton, G. and Biblarz, O., Rocket Propulsion Elements , Wiley & Sons, 2001.

[4] “Solid Rocket Motor Igniters,” NASA SP-8051, 1971.

[5] Foster, W. and Jenkins, R., “Analysis of Advanced Solid Rocket Motor Ignition Phe-
nomena,” NASA CR-199427, 1995.

[6] Cho, I. H. and Baek, S. W., “Numerical Simulation fo Axisymmetric Solid Rocket Motor
Ignition Transient with Radiation Effect,” Journal of Propulsion and Power , Vol. 16,
No. 4, 1999, pp. 725–728.

[7] Bai, S., Han, S., and Pardue, B., “Two-Dimensional Axisymmetric Analysis of SRM
Ignition Transient,” AIAA paper 1993-2311, 1993.

[8] Johnston, W., “Solid Rocket Motor Internal Flow During Ignition,” Journal of Propul-
sion and Power , Vol. 11, No. 3, 1995, pp. 489–496.

[9] Taylor, G., “Fluid Flow in Regions Bounded by Porous Surfaces,” Proceedings of the
Royal Society, London, Series A, Vol. 234, No. 1199, 1956, pp. 456–475.

[10] Culick, F., “Rotational Axisymmetric Mean Flow and Damping of Acoustic Waves in a
Solid Propellant Rocket,” AIAA Journal , Vol. 4, No. 8, 1966, pp. 1462–1464.

[11] Majdalani, J. and Moorhem, W. V., “Improved Time-Dependent Flowfield Solution for
Solid Rocket Motors,” AIAA Journal , Vol. 36, No. 2, 1998.

[12] Majdalani, J. and Saad, T., “Energy Steepened States of the Taylor-Culick Profile,”
AIAA paper 2007-5797, 2007.

[13] Majdalani, J., Xu, H., Lin, Z.-L., and Liao, S.-J., “Exact HAM Solutions for the Viscous
Rotational Flowfield in Channels with Regressing and Injecting Sidewalls,” AIAA paper
2010-7079, 2010.

[14] Maicke, B. A. and Majdalani, J., “On the Compressible Hart-McClure Mean Flow
Motion in Simulated Rocket Motors,” AIAA paper 2010-7077, 2010.

55

[15] Akiki, M. and Majdalani, J., “Quasi-Analytical Approximation of the Compressible
Flow in a Planar Rocket Configuration,” AIAA paper 2010-7080, 2010.

[16] Chedevergne, F., Casalis, G., and Majdalani, J., “DNS Investigation of the Taylor-
Culick Flow Stability,” AIAA paper 2007-5796, 2007.

[17] Apte, S. and Yang, V., “Unsteady Flow Evolution and Combustion Dynamics of Homo-
geneous Solid Propellant in a Rocket Motor,” Combustion and Flame, Elsevier Science
Inc., 2002.

[18] Dotson, K., Koshigoe, S., and Pace, K., “Vortex Shedding in a Large Solid Rocket
Motor Without Inhibitors at the Segment Interfaces,” Journal of Propulsion and Power ,
Vol. 13, No. 2, 1997.

[19] Lupoglazoff, N. and Vuillot, F., “Parietal vortex shedding as a cause of instability for a
long solid propellant motors – Numerical simulations and comparisons with firing tests,”
AIAA paper 1996-0761, 1996.

[20] Coats, D. and Dunn, S., “Improved Motor Stability Predictions for 3-D Grains Using
the SPP Code,” AIAA paper 1997-3251, 1997.

[21] French, J., “Tangential Mode Instability of SRMs with Even and Odd Numbers of
Slots,” AIAA paper 2002-3612, 2002.

[22] Fiedler, R., Jiao, X., Haselbacher, A., Geubelle, P., Guoy, D., and Brandyberry, M.,
“Simulations of Slumping Propellant and Flexing Inhibitors in Solid Rocket Motors,”
AIAA paper 2002-4341, 2002.

[23] Renganathan, K., Rao, B., and Jana, M., “Slump Estimation of Cylindrical Segment
Grains of a Typical Rocket Motor under Vertical Storage Condition,” Trends in Applied
Research, Vol. 1, No. 1, 2006, pp. 97–104.

[24] Lajczok, M., “Effective Propellant Modulus Approach For Solid Rocket Motor Ignition
Structural Analysis,” Computers and Structures , Vol. 56, No. 1, 1995, pp. 101–104.

[25] Nunn, R. and Chafin, L. C., “Method and Means for Controlling the Thrust in a Solid
Propellant Rocket Motor,” 1971.

[26] Anderson, M., Burkhalter, J., and Jenkins, R., “Design of an Air to Air Interceptor
Using Genetic Algorithms,” AIAA paper 1999-408, 1999.

[27] Jenkins, R. and Hartfield, R., “Hybrid Particle Swarm-Pattern Search Optimizer for
Aerospace Applications,” AIAA paper 2010-7078, 2010.

[28] Albarado, K., Hartfield, R., Hurston, B., and Jenkins, R., “Solid Rocket Motor Per-
formance Matching Using Pattern Search/Particle Swarm Optimization,” AIAA paper
2011-5798, 2011.

[29] Woltosz, W., The Application of Numerical Optimization Techniques to Solid-Propellant
Rocket Motor Design, Master’s thesis, Auburn University, 1977.

56

[30] Barrere, M., Jaumotte, A., de Veubeke, B. F., and Vandenkerckhove, J., Rocket Propul-
sion, Elsevier Publishing Company, 1960.

[31] Willcox, M., Brewster, M. Q., Tang, K., Stewart, D. S., and Kuznetsov, I., “Solid
Rocket Motor Internal Ballistics Simulation Using Three-Dimensional Grain Burnback,”
Journal of Propulsion and Power , Vol. 23, No. 3, 2007.

[32] Cavallini, E., Modeling and Numerical Simulation of Solid Rocket Motors Internal Bal-
listics , Ph.D. thesis, Sapienze Universita di Roma, Rome, Italy, 2009.

[33] Favini, B., Cavallini, E., and Giacinto, M. D., “An Ignition-to-Burn Out Analysis of
SRM Internal Ballistic and Performances,” AIAA paper 2008-5141, 2008.

[34] Cavallini, E., Favini, B., Giacinto, M. D., and Serraglia, F., “SRM Internal Ballistic
Numerical Simulation by SPINBALL Model,” AIAA paper 2009-5512, 2009.

[35] Hartfield, R., Jenkins, R., Burkhalter, J., and Foster, W., “A Review of Analytical
Methods for Predicting Grain Regression in Tactical Solid Rocket Motors,” Journal of
Spacecraft and Rockets , Vol. 41, No. 4, 2004, pp. 689–693.

[36] Hartfield, R., Burkhalter, J., Jenkins, R., Anderson, M., and Witt, J., “Analytical
Development of a Slotted Grain Solid Rocket Motor,” AIAA paper 2002-4298, 2002.

[37] Sforzini, R., “An Automated Approach to Design of Solid Rockets Utilizing a Special
Internal Ballistics Model,” AIAA paper 80-1135, 1980.

[38] Sforzini, R., “Design and Performance Analysis of Solid-Propellant Rocket Motors Using
a Simplified Computer Program,” NASA CR-129025.

[39] Ricciardi, A., “Generalized Geometric Analysis of Right Circular Cylindrical Star Per-
forated and Tapered Grains,” AIAA Journal of Propulsion and Power , Vol. 8, No. 1,
992, pp. 51–58.

[40] French, J., “Three Dimensional Combustion Stability Modeling for Solid Rocket Mo-
tors,” AIAA paper 1998-3702, 1998.

[41] French, J. and Coats, D., “Automated 3-D Solid Rocket Combustion Stability Analysis,”
AIAA paper 1999-2797, 1999.

[42] Coats, D., Dunn, S., and Berker, D., “Improvements to the Solid Performance Program,”
AIAA paper 2003-4504, 2003.

[43] French, J. and Tullos, J., “Solid Rocket Motor Grid Generation and CFD for Internal
Ballistcs Analysis,” AIAA paper 2005-4162, 2005.

[44] Jiao, X., “Face offsetting: A unified approach for explicit moving interfaces,” Journal
of Computational Physics , 2006.

[45] Fiedler, R., Rocstar 3 User’s Guide, University of Illinois at Urbana-Champaign, 2008.

57

[46] Dick, W., Fiedler, R., and Heath, M., “Building Rocstar: Simulation Science for Solid
Propellant Rocket Motors,” AIAA paper 2006-4590, 2006.

[47] Jiao, X., Zheng, G., Lawlor, O., Alexander, P., Campbell, M., Heath, M., and Fiedler,
R., “An Integration Framework for Simulations of Solid Rocket Motors,” AIAA paper
2005-3991.

[48] Fiedler, R., Wasistho, B., and Brandyberry, M., “Full 3-D Simulation of Turbulent Flow
in the RSRM,” AIAA paper 2006-4587, 2006.

[49] Fiedler, R., Namazifard, A., Campbell, M., Xu, F., Aravas, N., , and Sofronis, P.,
“Detailed Simulations of Propellant Slumping in the Titan IV SRMU PQM-1,” AIAA
paper 2006-4592, 2006.

[50] Osher, S. and Sethian, J., “Fronts Propagating with Curvature Dependent Speed: Al-
gorithms Based on Hamilton-Jacobi Formulations,” Journal of Computational Physics ,
Vol. 79, No. 2, 1988, pp. 12– 49.

[51] Sethian, J., “Curvature and the Evolution of Fronts,” Communication of Mathematical
Physics , Vol. 101, No. 4, 1985.

[52] Osher, S. and Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces , Texts in
Applied Mathematics, Springer, 2003.

[53] Adalsteinsson, D. and Sethian, J., “The Fast Construction of Extension Velocities in
Level Set Methods,” Journal of Computational Physics , Vol. 148, pp. 2–22.

[54] Sutherland, I. E., Sproull, R. F., and Schumacker, R. A., “A Characterization of Ten
Hidden-Surface Algorithms,” ACM Comput. Surv., Vol. 6, No. 1, 1974, pp. 1–55.

[55] Dupont, T. and Liu, Y., “Back and forth error compensation and correction methods
for removing errors induced by uneven gradients of the level set function,” Journal of
Computational Physics , Vol. 190, 2003, pp. 311–324.

[56] Hesthaven, J. and Warburton, T., Nodal Discontinuous Galerkin Methods , Texts in
Applied Mathematics, Springer, 2008.

[57] Cockburn, B. and Shu, C., “The Runge-Kutte discontinuous Galerkin method for
convection-dominated problems,” Journal of Scientific Computing , Vol. 16, No. 3, 2001,
pp. 173–261.

[58] Karniadakis, G. and Sherwin, S., Spectral/hp Element Methods for CFD , Oxford Uni-
versity Press, 1999.

[59] Gautschi, W., Orthogonal Polynomials: Computation and Approximation, Oxford Uni-
versity Press, 2004.

[60] Golub, G. and van Loan, C., Matrix Computations , John Hopkins University Press,
1996.

58

[61] Cheng, Y. and Shu, C.-W., “A discontinuous Galerkin finite element method for directly
solving the Hamilton-Jacobi equations,” Journal of Computational Physics , Vol. 223,
2007, pp. 398–415.

[62] Yan, J. and Osher, S., “A local discontinuous Galerkin method for directly solving
Hamilton-Jacobi equations,” Journal of Computational Physics , Vol. 230, 2011, pp. 232–
244.

[63] Klöckner, A., Warburton, T., and Hesthaven, J., “Viscous Shock Capturing in a
Time-Explicit Discontinuous Galerkin Method,” Mathematical Modeling of Natural Phe-
nomenon, Vol. 10, No. 10, 2010, pp. 1–42.

[64] Persson, P. and Peraire, J., “Sub-Cell Shock Capturing for Discontinuous Galerkin
Methods,” AIAA paper 2006-112, 2006.

59

Appendix A

Analytical method for a star grain

Beginning with Figure A.1, the star grain is defined with the following parameters:

� Rp – maximum inner radius with no fillet

� Ri – minimum inner radius

� N – number of star points

� f – fillet radius

� ε – fraction of the angle allowed for a single star point taken up by the structure of
the star point (angular fraction)

Figure A.1: Star Grain Definition

An analytical expression for the grain regression for Phase I burning can be determined
from these 5 parameters (from the Figure, Phase I burning ends when the star point burns
into the lower boundary. From Figure A.1, the height to the origin of the fillet radius is

H1 = Rp sin
(πε
N

)
(A.1)

60

The star point half angle is defined as

θ

2
= tan−1

(
H1 tan

(
πε
N

)
H1 −Ri tan

(
πε
N

)) (A.2)

The three burn perimeters (S1, S2, and S3) can be calculated as follows.

S1 =
H1

sin
(
θ
2

) − (y + f) cot

(
θ

2

)
(A.3)

S2 = (y + f)

(
π

2
− θ

2
+
πε

N

)
(A.4)

S3 = (Rp + y + f)
(π
N
− πε

N

)
(A.5)

The total burn perimeter is then calculated as

S = 2N (S1 + S2 + S3) (A.6)

The port area is calculated as

Ap1 =
1

2
H1

[
Rp cos

(πε
N

)
+H1 tan

(
θ

2

)]
− 1

2
S2

1 tan

(
θ

2

)
(A.7)

Ap2 =
1

2
(y + f)2

(
π

2
− θ

2
+
πε

N

)
(A.8)

Ap3 =
1

2
(Rp + y + f)2

(π
N
− πε

N

)
(A.9)

Ap = 2N (Ap1 + Ap2 + Ap3) (A.10)

As previously mentioned, this set of equations defines phase I burn. Phase II burning
begins with the following condition.

y + f =
H1

cos
(
θ
2

) (A.11)

Phase II burn perimeter can be calculated with the following set of equations.

β =

(
π

2
− θ

2
+
πε

N

)
(A.12)

γ = tan−1

(√
(y + f)2 −H2

1

H1

)
− θ

2
(A.13)

S2 = (Y + f)(β − γ) (A.14)

61

S3 = (Rp + y + f)
(π
N
− πε

N

)
(A.15)

S = 2N (S2 + S3) (A.16)

It should be noted that the first burn perimeter, S1, is not present in phase II because
the star point has burned to the boundary, making S1 equal to zero. Phase II port area is
calculated as follows.

Ap1 =
1

2
H1

[
Rp cos

(πε
N

)
+
√

(y + f)2 −H2
1

]
(A.17)

Ap2 =
1

2
(y + f)2(β − γ) (A.18)

Ap3 =
1

2
(Rp + y + f)2

(π
N
− πε

N

)
(A.19)

A = 2N (Ap1 + Ap2 + Ap3) (A.20)

The end of phase II burning occurs when the burn distance is equal to the web thickness
which can be calculated as

Web = Ro − (Rp + f) (A.21)

62

Appendix B

Derivation for Discontinuous Galerkin Approach

Consider the linear scalar transport equation

∂u

∂t
+
∂f(x)

∂x
= 0, x ∈ [L,R] = Ω (B.1)

f(u) = au (B.2)

Initial conditions are defined as
u(x, 0) = u0(x) (B.3)

and boundary conditions are given as an inflow boundary

u(L, t) = g(t) if a ≥ 0

u(R, t) = g(t) if a ≤ 0

To continue, the domain, Ω, is approximated in K (1-D) non-overlapping elements, demon-
strated as a stencil in Figure B.1, and the global state is approximated in a piecewise con-
tinuous.

x ∈ Dk :: u(x, t) ' uh(x, t) =
K⊕
k=1

ukh(x, t) (B.4)

xl
1=L xr

K=R

Dk-1 Dk Dk+1

xr
k-1=xl

k xr
k=xl

k-1

Figure B.1: Stencil for 1-D example

From Equation B.4, the local state is defined using a higher-order local basis function:

ukh(x, t) =
N∑
j=0

ũkj (t)b
k
j (x) (B.5)

Here, each ũkj is the modal coefficient for the expansion, and bkj is the basis function a function
space PN . The local residual for the approximate solution is calculated as

Rk
h(x, t) =

∂ukh
∂t

+
∂fkh
∂x

(B.6)

63

The residual is required to vanish in a Galerkin sense, so the residual becomes∫
Dk
bkiR

k
hdx =

∫
Dk
bki
∂ukk
∂t

dx+

∫
Dk
bki
∂fkh
∂x

dx = 0, i = 0, ..., N (B.7)

Thus the solutions on each element are not required to be continuous at element inter-
faces (hence the name discontinuous Galerkin). Using the divergence theorem to integrate
Equation B.7 results in∫

Dk
bki
∂ukh
∂t

dx+

∫
Dk

∂

∂x

(
bki f

k
h

)
dx−

∫
Dk

∂bki
∂x

fki dx = 0 (B.8)∫
Dk
bki
∂ukh
∂t

dx+

∮
∂Dk

bki f
k
hn

k
xds−

∫
Dk

∂bki
∂x

fki dx = 0 (B.9)

Because the state was approximated to be piecewise continuous, special care must be given
to the second term in Equation B.9. As is performed in finite element methods, a numerical
flux function will replace the flux at the interface between adjacent cells.

x ∈ ∂Dk :: fkhn
k
x → f ∗

(
uk,−h , uk,+h ;nk,−x

)
(B.10)

Defining the interface flux in this manner allows for the following:

� Boundary conditions set using uk,+h

� Numerical flux egressing from the right edge is the negative of the flux egressing from

the left edge of adjacent cell → f ∗
(
uk,−h , uk,+h ;nk,−x

)
= −f ∗

(
uk,+h , uk,−h ;nk,+x

)
� Numerical flux of two identical states is simply the flux → f ∗ (u, u;nx) ≡ f(u)nx

This leaves the final equation as∫
Dk
bki
∂ukh
∂t

dx+

∮
∂Dk

bki f
∗
(
uk,−h , uk,+h ;nk,−x

)
ds−

∫
Dk

∂bki
∂x

fki dx = 0 (B.11)

A large part of DG is determining exactly what to use as the bases function, bki (x).
These will typically be some sort of polynomial: linear connections, cubics, Taylor series
expansion, etc. For a more comprehensive listing of polynomials and the theory behind
them, see [59].

Consider a single cell k in Dk. Using a standard interval of x → ξ ∈ (−1, 1) yields
access to a class of functions known as recursion polynomials, where polynomial of degree
N relies on the solution to polynomial degree (N − 1). The state space for this standard
interval is of the form

uh(ξ) ∈ PN (B.12)

The polynomial function space is restricted to the given domain and vanishes outside of this
domain. We now need to define the polynomial formula to fit our space. Expanding the

64

state, we arrive at two possible choices: modal vs. nodal.

uh(ξ) =
N∑
m=0

ũmπm(ξ) =
N∑
n=0

ûnln(ξ) (B.13)

In Equation B.13, the first representation is modal (bi → πi) and the second representation is
nodal (bi → li). Each representation is mathematically equivalent, but there are advantages
and disadvantages to both. Graphically, these two representations look entirely different (see
Figure B.2 for an example of P5).

From Figure B.2a, there are a total of six characteristic curves (a constant line plus one
for each of the 5 polynomials) that combine in a modal sense to form the state for the cell.
Figure B.2b gives the same P5 represented with 6 nodes (circles). In the nodal sense, when
the basis is queried at a node, a curve is generated yielding a value of 1 at that node, and 0
at every other node.

Re-examining the modal representation,

uh(ξ) =
N∑
m=0

ũmπm(ξ) (B.14)

it is apparent that we can determine the modal coefficients using an L2 projection.∫ 1

−1

πi(ξ)u(ξ)dξ =

∫ 1

−1

πi(ξ)uh(ξ)dξ

=

∫ 1

−1

π(ξ)

(
N∑
m=0

ũmπm(ξ)

)
dξ

=
N∑
m=0

(∫ 1

−1

πi(ξ)πm(ξ)dξ

)
ũm

=
N∑
m=0

Mimũm (B.15)

where Mim is the mass matrix. Because a solution will require inversion of the mass ma-
trix, an ill-conditioned matrix will lead to numerical inaccuracy or possibly even instability.
Therefore, it is important to intelligently choose the basis function to represent the state.
Simply choosing any polynomial basis, say monomials, will lead to poorly conditioned ma-
trix, leading to losses in accuracy with higher-order polynomials. Using instead something
like an orthonormal basis (three-term recursion relation) will lead to a more well-conditioned
matrix.

The three-term recurrence relation is expressed as√
βm+1πm+1(ξ) = (ξ − αm)πm(ξ)−

√
βm−1πm−1(ξ) (B.16)

65

−1 −0.5 0 0.5 1

−2

−1

0

1

2

π
0

−1 −0.5 0 0.5 1

−2

−1

0

1

2

π
1

−1 −0.5 0 0.5 1

−2

−1

0

1

2

π
2

−1 −0.5 0 0.5 1

−2

−1

0

1

2

π
3

−1 −0.5 0 0.5 1

−2

−1

0

1

2

π
4

−1 −0.5 0 0.5 1

−2

−1

0

1

2

π
5

(a) Modal Basis

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

|
0

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

|
1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

|
2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

|
3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

|
4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

|
5

(b) Nodal Basis

Figure B.2: Modal versus Nodal Graphical Representation

66

where m = 0, ..., N − 1, and

π−1
.
= 0, π0

.
=

1√
β0

In these recurrence relations, α and β provide special subclasses of recurrence polynomials
such as Chebychev and Legendre. For Legendre polynomials these coefficients are

αm = 0, βm =

{
2 if m = 0

1/(4−m−2) if m ≥ 1
(B.17)

Looking at the nodal representation of Equation B.13,

uh(ξ) =
N∑
n=0

ûnln(ξ) (B.18)

we can use Lagrange interpolating polynomials through a given set of nodal locations, ξi.

ln(ξ) =
N∏
i=0
i 6=n

ξ − ξi
ξn − ξi

(B.19)

Evaluating the Legendre polynomials at the same nodal locations that we set for these
Lagrange polynomials yields the Vandermonde matrix, which, as will be shown, forms the
foundation for the operators required for use in DG. The use of Lagrange polynomials and
Legendre polynomials offer some powerful properties. Lagrange interpolating polynomials
are non-heirarchical, meaning that each polynomial is of degree N . This leads to the property
demonstrated in Figure B.2b. On the other hand, Legendre polynomials are heirarchical,
where each polynomial is of 1 degree higher than the previous polynomial degree, shown
in Figure B.2a. Lagrange polynomials are convenient for boundary data extraction while
Legendre polynomials provide an accurate way to perform integration.

Vij
.
= πj(ξi) (B.20)

The Vandermonde matrix also offers a convenient way to switch back and forth between
modal and nodal representation. However, one important observation to make from Equa-
tion B.21 is that the Vandermonde matrix must well conditioned enough to be invertible
without penalty. Because we have chosen to use orthonormal basis, the conditioning of the
Vandermonde matrix is entirely dependent on nodal locations. This leads into a discussion
on quadrature.

~uh
.
= uh(~ξ) = V ũ = û (B.21)

Quadrature is a weighted sum of function values at predetermined points within a
standard domain. Numerous quadrature rules exist for approximating the exact integral of

67

a function. In general, this approximation would look like∫ 1

−1

f(ξ)dξ '
Np∑
j=1

ωjf(ξj) (B.22)

where ω is the quadrature weights, and ξ is the quadrature nodal locations. For Gaussian
quadrature, nodal locations will fall in f ∈ P2Np−1 with −1 < ξ1→Np < 1. This quadrature
rule, while well conditioned, exlcudes the endpoints of the standard interval, so we choose
instead to use Gauss-Lobatto quadrature, nodal locations will fall in f ∈ P2Np−3 with ξ1 = −1
and ξNp+1 = 1. Mathematically, this is expressed as Equation B.23. A sample of Gauss-
Lobatto quadrature cells are shown in Figure B.3 for varying degree polynomials.∫ 1

−1

f(ξ)dξ = ω0f(ξ0) +

Np∑
i=1

ωif(ξi) + ωNp+1f(ξNp+1) (B.23)

Looking back now at the original problem to solve,

∂u

∂t
+
∂f(u)

∂x
= 0 (B.24)

and rewriting in descretized form, we find∫
Dk
bki
∂ukh
∂t

dx−
∫
Dk

∂bki
∂k

fkhdx+

∮
∂Dk

bki f
∗
(
uk,−h , uk,+h ;nk,−x

)
ds = 0 (B.25)

In this form, it is apparent that discontinuous Galerkin is a local weighted residual statement
for each element based on the standard element. In order for this form to be useful, a
transformation from the standard element to the physical element is required. This can be
achieved using the following set of equations.

x ∈ Dk :: x =Mk(ξ) (B.26)

Mk(ξ) = xka +
1 + ξ

2

(
xkb − xka

)
(B.27)

x ∈ Dk :: dx = J kdξ, J k =
xkb − xka

2
(B.28)

where J k is the Jacobian of the transformation. Using the coordinate transformation, the
state decomposition can be rewritten as

ukh(x) = uh
(
Mk(ξ)

)
=

N∑
j=0

ũkj (t)bj(ξ) (B.29)

68

(a) d = 2 (b) d = 3

(c) d = 4 (d) d = 5

(e) d = 6 (f) d = 7

Figure B.3: Lobatto quadrature for varying degrees of freedom

69

It is also assumed that the flux can be decomposed in the same manner. Now, re-examining
Equation B.25, the time derivative term can be rewritten as∫

Dk
bki
∂ukn
∂t

dx =

∫
Dk
bki (x)

∂

∂t

(
N∑
j=0

ũkj (t)b
k
j (x)

)
dx

=
N∑
j=0

(∫
Dk
bki (x)bkj (x)dx

)
dũkj
dt

=
N∑
j=0

(∫ 1

−1

bi(ξ)bj(ξ)J kdξ

)
dũkj
dt

= J k

N∑
j=0

Mij

dũkj
dt

(B.30)

The mass matrix, Mij, is an operator that can determined before time evolution begins
rather than at each iteration. Following a similar process as the time derivative, the spatial
derivative term can be rewritten as∫

Dk

dbki
dx

=
N∑
j=0

(
ST
)
ij
f̃kj (B.31)

where ST is the stiffness matrix and is defined as

Sij
.
=

∫ 1

−1

bi(ξ)
dbj(ξ)

dξ
dξ (B.32)

The numerical flux term in Equation B.25 must be handled significantly different. Because
the setup thus far has allowed for discontinuities at the boundaries of cells, some numerical
flux function must be used in order to interpret jumps at the boundaries. Writing this flux
as an expansion

f ∗(s) = f ∗
(
uk,−h , uk,+h ;nk,−x

)
s

=
N∑
j=0

f̃ ∗s
k

j bj(s) (B.33)

It can be shown that using this expansion, the cell boundary term can be written as∮
∂Dk

bki f
∗
(
uk,−h , uk,+h ;nk,−x

)
ds =

N∑
m=0

(La)im f̃
∗
a

k

m

N∑
n=0

(Lb)im f̃
∗
b

k

n (B.34)

where La and Lb are lifting matrices. The lifting matrices are called so because they lift
lower dimensional boundary information to higher dimensional element data. So in matrix
vector form, Equation B.25 can be written as

J kM
dũk

dt
− ST f̃k + Laf̃ ∗a

k
+ Lbf̃ ∗b

k
= 0 (B.35)

70

The matrix vector form (element operator form) given above is the useful form of DG.
For more information regarding formulation of the operator matrices and time evolution
using DG, refer to [57, 56, 58, 59, 60].

71

Appendix C

Comparison of First-Order Finite Element to Discontinuous Galerkin:

A Classic Fluid Dynamics Example

The two-dimensional isentropic vortex problem is often posed in comparing numerical
methods because it is well behaved and smooth and the exact solution is known. The
isentropic vortex is created by introducing perturbations to the velocity and temperature
in a uniform flow field. The exact solution to the convection of a vortex is such that the
vortex strength will be maintained but will move with a bulk velocity. The given freestream
conditions for this problem are as follows:

u∞ = M∞ cosα (C.1)

v∞ = M∞ sinα (C.2)

p∞ =
1

γ
(C.3)

T∞ =
1

γ
(C.4)

For the problem given here, the freestream Mach number was set to 0.5 and the specific heat
ratio was set to 1.4. This results in a freestream density of 1 and an acoustic speed of 1. The
perturbations to develop the initial vortex are proportional (in a way) to the distance from
the vortex origin (set at the domain origin for simplicity). Perturbations are then calculated
as follows:

δu = δyf (C.5)

δv = +δxf (C.6)

δT = −γ − 1

2γ
f 2 (C.7)

where
(δx, δy) = (x− xo, y − yo) (C.8)

f =
b

2π
exp

[
a(1− r2)

]
(C.9)

r2 = δx2 + δy2 (C.10)

72

The vortex strength parameters were set as a = 0.5, b = 5. The computational mesh set on
the domain (x, y) ∈ (−5, 5)× (−5, 5). Using finite element method, the mesh size was set to
50× 50, while for DG, the mesh size requirement was only 4× 4.

The vortex was set to convect, and the boundary conditions were set as periodic so that
as the vortex leaves the domain on say the left boundary, it re-enters the domain on the
right boundary. With the domain and Mach number set as specified, and a time span of 20
seconds, the final location of the center of the vortex should be exactly the initial location.
Results for the finite element method are shown in Figure C.1.

−6
−4

−2
0

2
4

6

−6

−4

−2

0

2

4

6

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Initial Density
−6

−4
−2

0
2

4
6

−6

−4

−2

0

2

4

6
0.5

0.6

0.7

0.8

0.9

1

(b) Final Density

(c) Initial Velocity Field (d) Final Velocity Field

Figure C.1: Euler Solution to Isentropic Vortex using Finite Element

From Figures C.1a and C.1b, it is apparent that the first order scheme for time evolution
was unable to fully resolve the vortex after 20 seconds. Looking at the scale on the z-axis, the
vortex has dissipated (non-physical) and there appear to be slight wrinkles in the solution
for the density. From the velocity fields (Figures C.1c and C.1d), it appears as though some

73

of the velocity has also dissipated. Looking ahead at the results for DG, it is apparent that
the features of the flow were maintained accurately with little to no dissipation (Figure C.2).
It should be noted that in both Figures C.2c and C.2d, the solution appears different from
those in Figure C.1. The artifacts present are a function of plotting only. The important
note to take away from the results is the similarities between the initial and final states.

−5

0

5

−5

0

5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(a) Initial Density
−5

0

5

−5

0

5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

(b) Final Density

(c) Initial Velocity Field (d) Final Velocity Field

Figure C.2: Euler Solution to Isentropic Vortex using Discontinuous Galerkin

74

Appendix D

DG/LSM Fortran Source

Main Evolution Source

program main

INTEGER : : NI , NJ , d ,Np, Np2 , steps , kk , i , j , k , itmax , kchek , i s low , output , n s tage
INTEGER,ALLOCATABLE,DIMENSION(:) : : East , West , North , South
INTEGER,ALLOCATABLE,DIMENSION(:) : : Ekx ,Wkx, Nky , Sky
INTEGER,ALLOCATABLE,DIMENSION(: , :) : : Kx,KY
REAL : : ep s i l on , s ta r ing , ending , s t a r t t ime , end time , pi , burnstop , res sum , res1 , lambda
REAL : : CFL, dx , dy , ex , ey ,Hmax, Hmin , Jx , Jy , Jk , dstep , y , xmax , xmin , ymax , ymin , l r e f , gamma, alpha (3 , 3)
REAL,ALLOCATABLE,DIMENSION(:) : : ww,www, p1 , p2 , q1 , q2 , de l ta , umode , Hmode , ypos , area , rhs , res , cmode
REAL,ALLOCATABLE,DIMENSION(: , :) : : Sx , Sy ,V,Bnm
REAL,ALLOCATABLE,DIMENSION(: , : , :) : : Lx , Ly , phx , phy ,Ham, Hea , ca s eheav i
REAL,ALLOCATABLE,DIMENSION(: , : , :) : : u , uold
CHARACTER*20 : : DIRNAME, fname

i f (i s l ow . eq . 1) ca l l system (’ c l e a n s e ’) ! c l ean output f o l d e r

! read in input s e t t i n g s
open(unit=11, f i l e=’ i n p u t s e t t i n g s . txt ’)
read (11 ,*) NI , NJ
read (11 ,*) d
read (11 ,*) e p s i l o n
read (11 ,*)CFL
read (11 ,*) xmin , ymin
read (11 ,*)xmax , ymax
read (11 ,*) ex , ey
read (11 ,*)Hmax, Hmin
read (11 ,*) l r e f , gamma
read (11 ,*) burnstop , itmax
read (11 ,*) i s low , output
close (11)

! determine necessary domain s e t t i n g s
dx = (xmax−xmin)/NI
dy = (ymax−ymin)/NJ
l r e f=l r e f *min(dx , dy)/d**2 .0
Np = d+1;
Np2 = 4*Np−2;

Jx = 0.5*dy ;
Jy = 0.5*dx ;
Jk = .25*dx*dy ;
lambda=1.0+gamma
dstep = CFL/(lambda*d**2 ./ min (dx , dy))
e p s i l o n=e p s i l o n *min (dx , dy)/ (d+1)

s t ep s = i n t (min (dx*NI , dy*NJ)/ dstep)
p i=acos (−1 .0) ;

! **
! ALLOCATE MEMORY FOR MATRICES

75

ALLOCATE(ypos (s t ep s)) ; ypos =0;
ALLOCATE(area (s t ep s)) ; area =0;
ALLOCATE(r e s (s t ep s)) ; r e s =0;
ALLOCATE(Sx (Np**2 ,Np**2)) ; Sx=0;
ALLOCATE(Sy (Np**2 ,Np**2)) ; Sy=0;
ALLOCATE(Kx(Np , 2)) ; Kx=0;
ALLOCATE(Ky(Np , 2)) ; Ky=0;
ALLOCATE(Lx(Np**2 ,Np , 2)) ; Lx=0;
ALLOCATE(Ly(Np**2 ,Np , 2)) ; Ly=0;
ALLOCATE(Bnm(Np2**2 ,Np**2)) ;Bnm=0;
ALLOCATE(ww(Np2**2)) ;ww=0;
ALLOCATE(www(Np**2)) ;www=0;
ALLOCATE(u(Np**2 ,NI , NJ)) ; u=0;
ALLOCATE(uold (Np**2 ,NI , NJ)) ; uold=u ;
ALLOCATE(ca s eheav i (Np**2 ,NI , NJ)) ; ca s eheav i =0;
ALLOCATE(umode(Np2**2)) ; umode=0;
ALLOCATE(Hmode(Np2**2)) ;Hmode=0;
ALLOCATE(cmode (Np2**2)) ; cmode=0;
ALLOCATE(d e l t a (Np2**2)) ; d e l t a =0;
ALLOCATE(East (NI)) ; East =0;
ALLOCATE(West (NI)) ; West=0;
ALLOCATE(North (NJ)) ; North=0;
ALLOCATE(South (NJ)) ; South=0;
ALLOCATE(Ekx(NI)) ; Ekx=1;
ALLOCATE(Wkx(NI)) ;Wkx=2;
ALLOCATE(Nky(NJ)) ; Nky=1;
ALLOCATE(Sky (NJ)) ; Sky=2;
ALLOCATE(p1 (Np**2)) ; p1=0;
ALLOCATE(p2 (Np**2)) ; p2=0;
ALLOCATE(q1 (Np**2)) ; q1=0;
ALLOCATE(q2 (Np**2)) ; q2=0;
ALLOCATE(phx (Np**2 ,NI , NJ)) ; phx=0;
ALLOCATE(phy (Np**2 ,NI , NJ)) ; phy=0;
ALLOCATE(Ham(Np**2 ,NI , NJ)) ;Ham=0;
ALLOCATE(Hea(Np**2 ,NI , NJ)) ; Hea=0;
ALLOCATE(rhs (Np**2)) ; rhs =0;

! **

i f (Np . l t . 1 0) write (DIRNAME, 9 1) ’DG ’ ,Np
i f (Np . ge . 1 0) write (DIRNAME, 9 2) ’DG ’ ,Np
ca l l chd i r (DIRNAME)

! read in s t i f f n e s s matrix
open(unit=22, f i l e=’ S t i f f n e s s . dat ’)
do i =1,Np**2

read (2 2 ,*) (Sx (i , j) , j =1,Np**2)
enddo
Sx=Jx/Jk*Sx

do i =1,Np**2
read (2 2 ,*) (Sy (i , j) , j =1,Np**2)

enddo
close (22)
Sy=Jy/Jk*Sy

! read in L i f t i n g Matrices
open(unit=23, f i l e=’ Li f t ingX . dat ’)
do k=1,2

do i =1,Np**2
read (2 3 ,*) (Lx(i , j , k) , j =1,Np)

enddo
enddo
close (23)
Lx=Jx/Jk*Lx

76

open(unit=24, f i l e=’ Li f t ingY . dat ’)
do k=1,2

do i =1,Np**2
read (2 4 ,*) (Ly(i , j , k) , j =1,Np)

enddo
enddo
close (24)
Ly=Jy/Jk*Ly

! read in t a l l vandermonde matrix
open(unit=25, f i l e=’ TallVandermonde . dat ’)
do i =1,Np2**2

read (2 5 ,*) (Bnm(i , j) , j =1,Np**2)
enddo
close (25)

! read in we igh t s f o r t a l l vandermonde matrix
open(unit=26, f i l e=’ TallWeights . dat ’)
do i =1,Np2**2

read (26 ,*)ww(i)
enddo
close (26)

! read in we igh t s f o r r e gu l a r l o b a t t o po in t s
open(unit=26, f i l e=’ LobWeights . dat ’)
do i =1,Np**2

read (26 ,*)www(i)
enddo
close (26)

! read in i n i t i a l s t a t e matrix
ca l l chd i r (’ . . ’)
open(unit=27, f i l e=’ i n i t i a l s t a t e . dat ’)
do i =1,NI

do j =1,NJ
read (2 7 ,*) (u(k , i , j) , k=1,Np**2)

enddo
enddo
close (27)

open(unit=28, f i l e=’ c a s e h e a v i . dat ’)
do i =1,NI

do j =1,NJ
read (2 8 ,*) (ca s eheav i (k , i , j) , k=1,Np**2)

enddo
enddo
close (28)

! Setup north , south , east , and west boundaries and nodes
do i =1,Np

Kx(i ,1)=1+(i −1)*Np;
Kx(i ,2)=(i −1)*Np+Np;
Ky(i ,1)= i ;
Ky(i ,2)=Np**2−(Np−i)

enddo
do i =1,NI

East (i)= i+1
West (i)=i−1

enddo
do j =1,NJ

North (j)= j+1

77

South (j)=j−1
enddo
East (NI)=NI ;
West(1)=1
North (NJ)=NJ
South (1)=1
Ekx(NI)=2;
Wkx(1)=1;
Nky(NJ)=2;
Sky (1)=1;
uold=u ;

! s e t up alpha fo r s t a g ing RK−TVD
n s tage =3;
alpha (1 , :)=(/ 1 .0 , 0 .75 , 1 . 0 / 3 . 0 /)
alpha (2 , :)=(/ 0 .0 , 0 .25 , 2 . 0 / 3 . 0 /)
alpha (3 , :)=(/ 1 .0 , 0 .25 , 2 . 0 / 3 . 0 /)
ca l l cpu time (s t a r t t i m e) ! w a l l c l o c k
y=0;
kk=1;
kchek =10;
! beg in time evo l u t i on
do while (dstep *kk . l e . burnstop)

res sum =0;
! beg in s tage i n t e g r a t i on
do i j k =1, n s tage

! perform s i n g l e time evo l u t i on here
do j =1,NJ

do i =1,NI
! f i r s t d e r i v a t i v e s
p1=−matmul (Sx , u (: , i , j))+matmul (Lx (: , : , 2) , u (Kx(: , Ekx(i)) , East (i) , j))&

& −matmul (Lx (: , : , 1) , u (Kx(: , 1) , i , j)) ;
p2=−matmul (Sx , u (: , i , j))+matmul (Lx (: , : , 2) , u (Kx(: , 2) , i , j))&

& −matmul (Lx (: , : , 1) , u (Kx(: ,Wkx(i)) , West (i) , j)) ;

q1=−matmul (Sy , u (: , i , j))+matmul (Ly (: , : , 2) , u (Ky(: , Nky(j)) , i , North (j)))&
& −matmul (Ly (: , : , 1) , u (Ky(: , 1) , i , j)) ;

q2=−matmul (Sy , u (: , i , j))+matmul (Ly (: , : , 2) , u (Ky(: , 2) , i , j))&
& −matmul (Ly (: , : , 1) , u (Ky(: , Sky (j)) , i , South (j))) ;

p1=p1 ; p2=p2
q1=q1 ; q2=q2

phx (: , i , j)=0.5*(p1+p2) ;
phy (: , i , j)=0.5*(q1+q2) ;

! form Hamiltonian
Ham(: , i , j)=(phx (: , i , j)**2.+phy (: , i , j) * * 2 .) * * 0 . 5 ;
Ham(: , i , j)=Ham(: , i , j)+gamma*u (: , i , j)/ s q r t (u (: , i , j)**2.+ l r e f **2 .)* (Ham(: , i , j) −1 .) ;
Ham(: , i , j)=Ham(: , i , j)−0.5*(p1−p2)−0.5*(q1−q2) ;
! c a l c u l a t e area
i f (i j k . eq . 1) then

umode=matmul (Bnm, u (: , i , j)) ;
Hmode=matmul (Bnm,Ham(: , i , j)) ;
cmode=matmul (Bnm, ca seheav i (: , i , j)) ;

d e l t a =0;
do k=1,Np2**2

i f (abs (umode(k)) . l e . e p s i l o n) d e l t a (k)=0.5/ e p s i l o n +0.5/ e p s i l o n&
&*cos (p i *umode(k)/ e p s i l o n) ;

enddo
area (kk)=area (kk)+Jk*sum(cmode*Hmode* d e l t a *ww)

endif

78

enddo
enddo

do j =1,NJ
do i =1,NI

! second d e r i v a t i v e s
rhs=−Ham(: , i , j)
i f (any (abs (phx (: , i , j)) . gt .Hmax)) then

p1=matmul (Lx (: , : , 2) , 0 . 5 * (phx (Kx(: , Ekx(i)) , East (i) , j)+phx (Kx(: , 2) , i , j)))&
& −matmul (Lx (: , : , 1) , 0 . 5 * (phx (Kx(: , 1) , i , j)+phx (Kx(: ,Wkx(i)) , West (i) , j))) ;
p1=(p1−matmul (Sx , phx (: , i , j))) ;
rhs=rhs+ex*p1 ;

e l s e i f (any (abs (phx (: , i , j)) . l t . Hmin)) then
p1=matmul (Lx (: , : , 2) , 0 . 5 * (phx (Kx(: , Ekx(i)) , East (i) , j)+phx (Kx(: , 2) , i , j)))&
& −matmul (Lx (: , : , 1) , 0 . 5 * (phx (Kx(: , 1) , i , j)+phx (Kx(: ,Wkx(i)) , West (i) , j))) ;
p1=(p1−matmul (Sx , phx (: , i , j))) ;
rhs=rhs+ex*p1 ;

endif

i f (any (abs (phy (: , i , j)) . gt .Hmax)) then
q1=matmul (Ly (: , : , 2) , 0 . 5 * (phy (Ky(: , Nky(j)) , i , North (j))+phy (Ky(: , 2) , i , j)))&
& −matmul (Ly (: , : , 1) , 0 . 5 * (phy (Ky(: , 1) , i , j)+phy (Ky(: , Sky (j)) , i , South (j)))) ;
q1=(q1−matmul (Sy , phy (: , i , j))) ;
rhs=rhs+ey*q1

e l s e i f (any (abs (phy (: , i , j)) . l t . Hmin)) then
q1=matmul (Ly (: , : , 2) , 0 . 5 * (phy (Ky(: , Nky(j)) , i , North (j))+phy (Ky(: , 2) , i , j)))&
& −matmul (Ly (: , : , 1) , 0 . 5 * (phy (Ky(: , 1) , i , j)+phy (Ky(: , Sky (j)) , i , South (j)))) ;
q1=(q1−matmul (Sy , phy (: , i , j))) ;
rhs=rhs+ey*q1

endif
! c a l c u l a t e r e s i d ua l
i f (i j k . eq . 3) res sum=s q r t (res sum**2+sum(rhs *www* rhs)) ;
u (: , i , j)=alpha (1 , i j k)* uold (: , i , j)+alpha (2 , i j k)*u (: , i , j)+alpha (3 , i j k)* dstep * rhs

enddo
enddo

enddo
ca l l cpu time (end time)

! end s i n g l e time evo lu t ion , perform checks , wr i t e output i f necessary
i f (i s l ow . eq . 1) then

i f (mod(kk , output) . eq . 0) then
ca l l chd i r (’ output ’)
write (fname , 9 4) ’ g ra in output ’ , kk , ’ . dat ’

94 format (a12 , i4 , a4)
open(unit=41, f i l e=fname)
write (41 ,*) NI , NJ , d
write (41 ,*) xmin , xmax , ymin , ymax
do j =1,NJ

do i =1,NI
write (4 1 ,*) (uold (k , i , j) , k=1,Np**2)

enddo
enddo
close (41)
ca l l chd i r (’ . . ’)

endif
endif
i f (kk . eq . 1) then

r e s1=res sum
endif
r e s (kk)=res sum / re s1 ;
ypos (kk)=kk*dstep ;
i f (kk . eq . kchek)then

write (* ,*) kk , ypos (kk) , r e s (kk)

79

kchek=kchek +50;
endif
i f (r e s (kk) . gt . 2) goto 51
kk=kk+1;
uold=u ;

enddo
51 write (* ,*) ’Number o f Steps : ’ , kk−1
write (* ,*) ’ Burn Distance : ’ , ypos (kk−1)
write (* ,*) ’ Burn Area : ’ , area (kk−1)
write (* ,*) ’ Res idua l : ’ , r e s (kk−1)

open(unit=81, f i l e=’ r e s i d u a l . dat ’)
write (81 ,*) ’ Var i ab l e s = ” t ” ,” r e s i d u a l ” ,” area ” ’
do i =1,kk−1

write (81 ,*) ypos (i) , r e s (i) , area (i)
enddo
close (81)

write (* , 93) ’Run Time = ’ , end time−s t a r t t ime , ’ seconds ’

! wr i t e out f i n a l s t a t e matrix

open(unit=31, f i l e=’ f i n a l s t a t e . dat ’)
do i =1,NI

do j =1,NJ
write (3 1 ,*) (u(k , i , j) , k=1,Np**2)

enddo
enddo
close (31)
open(unit=31, f i l e=’ p o s t p r o c e s s s p e c s . dat ’)
write (31 ,*) NI , NJ , d , xmin , xmax , ymin , ymax
close (31)

91 FORMAT(a3 , i 1)
92 FORMAT(a3 , i 2)
93 FORMAT(a11 , 1 x , f14 . 8 , 1 x , a8)
99 FORMAT(e16 . 8 , 2 x , e16 . 8 , 2 x , e16 . 8)
END

Initialization Source

program s h e l l
! s h e l l program used fo r s e t t i n g up and running l e v e l s e t propagat ion program

INTEGER : : NI , NJ , d ,Np, Np2 , i , j , k , Ns
REAL : : e p s i l o n c a s e , xmin , xmax , ymin , ymax , dump, xs , ys , dx , dy , ro , r i , lambda
REAL : : beta , pi , f i l l e t , eps ang
REAL,ALLOCATABLE,DIMENSION(:) : : qx , qy , px , py , xi , y i
REAL,ALLOCATABLE,DIMENSION(: , :) : : xdomain , ydomain
REAL,ALLOCATABLE,DIMENSION(: , : , :) : : phi , heavi , c i
CHARACTER*20 : : gtype , ctype

! phi i s f o r the gra in
! heav i i s f o r the case

CHARACTER*20 : : DIRNAME

interface
function s e t u p g r a i n (xs , ys , dx , dy , l i s t x , l i s t y ,Np, Ns , gtype , xc , yc , c i)&

80

result (d i s t)
real , dimension (Np* * 2) : : l i s t x , l i s t y , d i s t
real , dimension (Ns , 2 , 4) : : c i
real : : xs , ys , dx , dy , xc (Ns*6+1) , yc (Ns*6+1)
integer : : Np, Ns
character*20 : : gtype

end function s e t u p g r a i n
end interface
interface

function s e tup ca s e (xs , ys , dx , dy , l i s t x , l i s t y ,Np, ro , ctype , eps)&
result (heav)

real , dimension (Np**2) : : l i s t x , l i s t y , heav
real : : xs , ys , dx , dy , x , y , ro , eps
character*20 : : ctype

end function s e tup ca s e
end interface

open(unit=11, f i l e=’ i n p u t s e t t i n g s . txt ’)
read (11 ,*) NI , NJ
read (11 ,*) d
read (11 ,*)dump, e p s i l o n c a s e
read (11 ,*)dump
read (11 ,*) xmin , ymin
read (11 ,*)xmax , ymax
close (11)

open(unit=12, f i l e=’ des ign . txt ’)
read (12 ,*) ro
read (12 ,*) rp
read (12 ,*) r i
read (12 ,*) lambda
read (12 ,*) Ns
read (12 ,*) f i l l e t
read (12 ,*) eps ang
read (12 ,*) gtype
read (12 ,*) ctype

dx=(xmax−xmin)/NI
dy=(ymax−ymin)/NJ
Np=d+1
Np2=2*Np−2
e p s i l o n c a s e=e p s i l o n c a s e *min(dx , dy)/ (d+1.0)
p i=acos (−1.0)

!ALLOCATE MEMORY FOR STATE AND CASE MATRICES

ALLOCATE(xdomain (NI+1,NJ+1)) ; xdomain=0;
ALLOCATE(ydomain (NI+1,NJ+1)) ; ydomain=0;
ALLOCATE(phi (Np**2 ,NI , NJ)) ; phi =0;
ALLOCATE(heavi (Np**2 ,NI , NJ)) ; heavi =0;
ALLOCATE(qx (Np**2)) ; qx=0;
ALLOCATE(qy (Np**2)) ; qy=0;
ALLOCATE(x i (Ns*6+1)) ; x i =0;
ALLOCATE(y i (Ns*6+1)) ; y i =0;
ALLOCATE(c i (Ns , 2 , 4)) ; c i =0;
!ALLOCATE(px (Np2**2)) ; px=0;
!ALLOCATE(py (Np2**2)) ; py=0;

i f (Np . l t . 1 0) write (DIRNAME, 9 1) ’DG ’ ,Np
i f (Np . ge . 1 0) write (DIRNAME, 9 2) ’DG ’ ,Np
ca l l chd i r (DIRNAME)

open(unit=12, f i l e=’ LobattoPoints . dat ’)
do i =1,Np**2

read (12 ,*) qx (i) , qy (i)
enddo
close (12)

81

! open (un i t =13, f i l e =’GaussPoints . dat ’)
! do i =1,Np2**2
! read (13 ,*) px (i) , py (i)
! enddo
! c l o s e (13)

ca l l chd i r (’ . . ’)

! s e t i n i t i a l cond i t i on
do j =1,NJ+1

do i =1,NI+1
xdomain (i , j)=xmin+(i −1)*dx
ydomain (i , j)=ymin+(j −1)*dy

enddo
enddo

! se tup i n i t i a l d i s c r e t i z e d sur face
i f (gtype . eq . ’ ba r r e r e ’)then

ca l l bar r e r e (rp , r i , f i l l e t , eps ang , Ns , xi , yi , c i)
e l s e i f (gtype . eq . ’ s s t a r ’)then

ca l l hard s ta r (rp , r i , Ns , xi , y i)
e l s e i f (gtype . eq . ’ h e l l f i r e ’) then

x i (1)= ro ;
y i (1)=lambda ;

endif

! se tup i n i t i a l s t a t e
open(unit=21, f i l e=’ i n i t i a l s t a t e . dat ’)
open(unit=22, f i l e=’ c a s e h e a v i . dat ’)
do i =1,NI

do j =1,NJ
xs=xdomain (i , j)
ys=ydomain (i , j)
phi (: , i , j)= s e t u p g r a i n (xs , ys , dx , dy , qx , qy ,Np, Ns , gtype , xi , yi , c i) ;
heavi (: , i , j)= se tup ca s e (xs , ys , dx , dy , qx , qy ,Np, ro , ctype , e p s i l o n c a s e) ;
write (2 1 ,*) (phi (k , i , j) , k=1,Np**2)
write (2 2 ,*) (heavi (k , i , j) , k=1,Np**2)

enddo
enddo
close (21)
close (22)

91 FORMAT(a3 , i 1)
92 FORMAT(a3 , i 2)
ENDPROGRAM

subroutine bar r e r e (rp , r i , f , eps , Ns , xi , yi , c i)
real : : rp , r i , f , eps , x i (6*Ns+1) , y i (6*Ns+1) ,H1 , theta2
integer : : Ns , i , j , k , i i , j j , kk
real : : x1 (4 , 2) , c1 (2) , c2 (2) , c3 (2) , c4 (2)
real : : x (6) , y (6) , xr (6) , yr (6) , c i (Ns , 2 , 4) , ang , p i
p i=acos (−1.0)
H1=rp* s i n (p i * eps /Ns)
theta2=atan (H1* tan (p i * eps /Ns)/ (H1−r i * tan (p i * eps /Ns)))
x1 (1 ,1)=(rp+f)* cos (p i /Ns) ;
x1 (1 ,2)=−(rp+f)* s i n (p i /Ns) ;
x1 (2 ,1)=(rp+f)* cos (p i * eps /Ns) ;
x1 (2 ,2)=−(rp+f)* s i n (p i * eps /Ns) ;
x1 (3 ,1)= rp* cos (p i * eps /Ns)+ f * cos(−pi/2+theta2) ;
x1 (3 ,2)=−(rp* s i n (p i * eps /Ns)+ f * s i n (−pi/2+theta2)) ;
x1 (4 ,1)= r i+f * cos (theta2) ;
x1 (4 ,2)=0;
c1 =(/0 ,0/)
c2=(/rp* cos (p i * eps /Ns) ,− rp* s i n (p i * eps /Ns)/)
c3=(/c2 (1) ,− c2 (2)/)
c4=(/c1 (1) ,− c1 (2)/)
k=1;
do j =1,4

82

x (k)=x1 (j , 1) ;
y (k)=x1 (j , 2) ;
k=k+1

enddo
do j =3,2,−1

x (k)=x1 (j , 1)
y (k)=−x1 (j , 2)
k=k+1

enddo
k=1
do i i =1,Ns

ang = (i i −1.0)*2.0* pi /Ns
xr=x* cos (ang)−y* s i n (ang)
yr=x* s i n (ang)+y* cos (ang)
c i (i i ,1 ,1)= c1 (1)* cos (ang)−c1 (2)* s i n (ang)
c i (i i ,2 ,1)= c1 (1)* s i n (ang)+c1 (2)* cos (ang)
c i (i i ,1 ,2)= c2 (1)* cos (ang)−c2 (2)* s i n (ang)
c i (i i ,2 ,2)= c2 (1)* s i n (ang)+c2 (2)* cos (ang)
c i (i i ,1 ,3)= c3 (1)* cos (ang)−c3 (2)* s i n (ang)
c i (i i ,2 ,3)= c3 (1)* s i n (ang)+c3 (2)* cos (ang)
c i (i i ,1 ,4)= c4 (1)* cos (ang)−c4 (2)* s i n (ang)
c i (i i ,2 ,4)= c4 (1)* s i n (ang)+c4 (2)* cos (ang)
do j j =1,6

x i (k)=xr (j j)
y i (k)=yr (j j)
k=k+1;

enddo
enddo
x i (k)=x (1)
y i (k)=y (1)
return
end subroutine

subroutine hard s ta r (rp , r i , Ns , xi , y i)
real : : rp , r i , x i (6*Ns+1) , y i (6*Ns+1) , beta , dbeta
integer : : Ns , i , j , k
p i=acos (−1.0)
x i (1)= rp ; y i (1)=0
k=2;
beta =0;
dbeta=pi /Ns
do i =1,Ns

beta=beta+dbeta

x i (k)= r i * cos (beta) ; y i (k)= r i * s i n (beta)
k=k+1

beta=beta+dbeta

x i (k)=rp* cos (beta) ; y i (k)=rp* s i n (beta)
k=k+1

enddo
return
end subroutine

function s e t u p g r a i n (xs , ys , dx , dy , l i s t x , l i s t y ,Np, Ns , gtype , xc , yc , c i)&
result (d i s t)

real , dimension (Np**2) : : l i s t x , l i s t y , d i s t
real , dimension (Ns , 2 , 4) : : c i
real : : xs , ys , dx , dy , x , y , ro , r i , lambda , xc (Ns*6+1) , yc (Ns*6+1)
integer : : Np, Ns
integer : : i , j , k
character*20 : : gtype
interface

function s t r a i g h t s t a r (x , y , Ns , xc , yc) result (phi)

83

real : : x , y , phi , xc (300) , yc (300)
integer : : Ns

end function s t r a i g h t s t a r
end interface

do i =1,Np**2
x=xs +0.5*(l i s t x (i)+1.0)*dx
y=ys +0.5*(l i s t y (i)+1.0)*dy
i f (gtype . eq . ’ s s t a r ’) then

d i s t (i)= s t r a i g h t s t a r (x , y , Ns , xc , yc)
e l s e i f (gtype . eq . ’ ba r r e r e ’) then

d i s t (i)= d i s t t o b a r r e r e (x , y , Ns , xc , yc , c i)
e l s e i f (gtype . eq . ’ h e l l f i r e ’) then

d i s t (i)= d i s t t o h e l l f i r e (x , y , xc (1) , yc (1))
endif

enddo

return
end function

function d i s t t o h e l l f i r e (x , y , ro , lambda) result (phi)
integer i , j , k
real : : x , y , ro , lambda , r

r=s q r t (x**2.0+y **2 .0)

i f (r . gt . 0 . 5 * ro)then
phi=r−0.5* ro−0.5* lambda

else
phi=(1−r)−0.5* ro−0.5* lambda

endif

end function

function d i s t t o b a r r e r e (x , y , Ns , xc , yc , c i) result (phi)
integer : : Ns , i , j , k
real : : x , y , phi , xc (Ns*6+1) , yc (Ns*6+1) , c i (Ns , 2 , 4)
real : : p0 (2) , p1 (2) , p2 (2) , p (2) , c (2) , d (Ns*6) , s (Ns*6) , dmin , s i g

p=(/x , y /)
k=1
do i =1,Ns

p0=(/ c i (i , 1 , 1) , c i (i , 2 , 1) /)
p1=(/xc (k) , yc (k)/)
p2=(/xc (k+1) , yc (k+1)/)
ca l l d i s t t o a r c (p , p0 , p1 , p2 , d(k) , s (k))
k=k+1

p0=(/ c i (i , 1 , 2) , c i (i , 2 , 2) /)
p1=(/xc (k) , yc (k)/)
p2=(/xc (k+1) , yc (k+1)/)
ca l l d i s t t o a r c (p , p0 , p1 , p2 , d(k) , s (k))
k=k+1

p1=(/xc (k) , yc (k)/)
p2=(/xc (k+1) , yc (k+1)/)
ca l l d i s t t o s e g (p , p1 , p2 , d(k) , s (k))
k=k+1

p1=(/xc (k) , yc (k)/)
p2=(/xc (k+1) , yc (k+1)/)
ca l l d i s t t o s e g (p , p1 , p2 , d(k) , s (k))
k=k+1

p0=(/ c i (i , 1 , 3) , c i (i , 2 , 3) /)
p1=(/xc (k) , yc (k)/)

84

p2=(/xc (k+1) , yc (k+1)/)
ca l l d i s t t o a r c (p , p0 , p1 , p2 , d(k) , s (k))
k=k+1

p0=(/ c i (i , 1 , 4) , c i (i , 2 , 4) /)
p1=(/xc (k) , yc (k)/)
p2=(/xc (k+1) , yc (k+1)/)
ca l l d i s t t o a r c (p , p0 , p1 , p2 , d(k) , s (k))
k=k+1

enddo

dmin=minval (d) ;
where(d /= dmin)

s =0.0
end where
s i g=sum(s)
phi=dmin* sgn (s i g)

end function

function s t r a i g h t s t a r (x , y , Ns , xc , yc) result (phi)
integer : : Ns
real : : x , y , phi , ro , r i , lambda , xc (300) , yc (300)
integer : : i , j , k
real : : x0 (2) , x1 (2) , x2 (2) , d(2*Ns) , s (2*Ns) , dmin
! i n t e r f a c e
! subrou t ine d i s t t o s e g (p , p0 , p1 , d , s)
! rea l , i n t en t (in) : : p (2) , p0 (2) , p1 (2)
! rea l , i n t en t (out) : : d , s
! end subrou t ine
! end i n t e r f a c e

x0=(/x , y /)
do i =1 ,2*Ns

x1=(/xc (i) , yc (i) /)
x2=(/xc (i +1) , yc (i +1)/)
ca l l d i s t t o s e g (x0 , x1 , x2 , d(i) , s (i))

enddo
dmin=minval (d) ;
where(d /= dmin)

s =0.0
end where
s i g=sum(s)
phi=dmin* sgn (s i g)

return
end function

!−−−

function s e tup ca s e (xs , ys , dx , dy , l i s t x , l i s t y ,Np, ro , ctype , eps)&
result (heav)

real , dimension (Np**2) : : l i s t x , l i s t y , heav
real : : xs , ys , dx , dy , x , y , ro , eps
integer : : Np
integer : : i , j , k
character*20 : : ctype
interface

function c i r c l e (x , y , ro , eps) result (heav)
real : : x , y , heav , ro , eps

end function c i r c l e
end interface
interface

function square (x , y , ro , eps) result (heav)
real : : x , y , heav , ro , eps

end function square

85

end interface

do i =1,Np**2
x=xs +0.5*(l i s t x (i)+1.0)*dx
y=ys +0.5*(l i s t y (i)+1.0)*dy
i f (ctype . eq . ’ c i r c l e ’) then

heav (i)= c i r c l e (x , y , ro , eps)
e l s e i f (ctype . eq . ’ square ’)then

heav (i)=square (x , y , ro , eps)
else

write (* ,*) ’ Check case type : ’ , ctype
endif

enddo

return
end function

function c i r c l e (x , y , ro , eps) result (heav)

real : : x , y , heav , ro , phi , eps , p i
p i=acos (−1.0)
phi=−(s q r t (x**2.0+y**2.0)− ro)
i f (phi . gt . 0 . 0) then

heav =1.0
e l s e i f (phi . gt .− eps)then

heav =0.5*(1+ cos (phi * pi / eps))
else

heav =0.0;
endif
return
end function

function square (x , y , ro , eps) result (heav)
real : : x , y , ro , eps , x1 (5) , x2 (5) , p (2) , p1 (2) , p2 (2)
integer : : i , j , k
real : : d (4) , s (4) , pi , s i g , phi , dmin
p i=acos (−1.0)
x1=(/−1, 1 , 1 , −1, −1/)* ro
x2=(/−1, −1, 1 , 1 , −1/)* ro
p=(/x , y /)
do i =1,4

p1=(/x1 (i) , x2 (i) /)
p2=(/x1 (i +1) , x2 (i +1)/)
ca l l d i s t t o s e g (p , p1 , p2 , d(i) , s (i))

enddo

dmin=minval (d) ;
where(d /= dmin)

s =0.0
end where
s i g=sum(s)
phi=−dmin* sgn (s i g)

i f (phi . gt . 0 . 0) then
heav =1.0

e l s e i f (phi . gt .− eps)then
heav=(1+cos (phi * pi / eps))

else
heav =0.0;

endif

return
end function

86

!−−−
subroutine d i s t t o a r c (p , p0 , p1 , p2 , d , s)
real , intent (in) : : p (2) , p0 (2) , p1 (2) , p2 (2)
real , intent (out) : : d , s
real , dimension (2) : : u1 , u2 , v , w1 , w2
real : : pi , d1 , d2 , s1 , s2 , q1 , q2 , q
p i=acos (−1.0)
u1=p1−p0
u2=p2−p0
v=p−p0

q1=a n g l e o n c i r c l e (u1) ;
q2=a n g l e o n c i r c l e (u2) ;
q=a n g l e o n c i r c l e (v) ;

i f (q2 . l t . q1) q2=2*pi+q2
i f (q . l t . 0 . and . q . l t . q1) q=2.0* pi+q

i f (q . gt . q1 . and . q . l t . q2) then
d = s q r t (v (1)**2.+ v (2)**2.)− s q r t (u1 (1)**2.+ u1 (2) * * 2 .)
s = s i gn (1 . 0 , d)
d = abs (d)

else
w1 = (/−u1 (2) , u1 (1)/)/ s q r t (u1 (1)**2.+ u1 (2) * * 2 .)
d1 = s q r t ((p(1)−p1 (1))**2 .+(p(2)−p1 (2)) * * 2 .)
s1 = s i gn (1 . 0 , c ro s s2d (p−p1 , w1))
w2 = (/−u2 (2) , u2 (1)/)/ s q r t (u2 (1)**2.+ u2 (2) * * 2 .)
d2 = s q r t ((p(1)−p2 (1))**2 .+(p(2)−p2 (2)) * * 2 .)
s2 = s i gn (1 . 0 , c ro s s2d (p−p2 , w2))
i f (d1 . l t . d2) then

d = d1
s = s1

else
d=d2
s=s2

endif
endif

end subroutine

function a n g l e o n c i r c l e (v) result (theta)
real : : v (2) , u (2) , theta , q

u=(/1 ,0/)

q = dot product (v , u)
i f (q . ne . 0) then

q = q /(s q r t (v (1)**2.+ v (2)**2 .)* s q r t (u (1)**2.+u (2) * * 2 .))
endif

theta = sgn (c ros s2d (u , v))* acos (q)

end function

subroutine d i s t t o s e g (p , p0 , p1 , d , s)
real , intent (in) : : p (2) , p0 (2) , p1 (2)
real , intent (out) : : d , s
real , dimension (2) : : u , v0 , v1 , pb , vb
real : : c1 , c2 , b
u=p1−p0
v0=p−p0
v1=p−p1

c1=dot product (v0 , u)
c2=dot product (u , u)

87

i f (c1 . l e . 0 . 0) then
d=s q r t (v0 (1)**2.+ v0 (2) * * 2 .)
s=s i gn (1 . 0 , c ro s s2d (v0 , u))

e l s e i f (c2 . l e . c1) then
d=s q r t (v1 (1)**2.0+ v1 (2)**2 . 0)
s=s i gn (1 . 0 , c ro s s2d (v1 , u))

else
b=c1/c2
pb=p0+b*u
vb=p−pb
d=s q r t (vb (1)**2.0+ vb (2)**2 . 0)
s=s i gn (1 . 0 , c ro s s2d (vb , u))

endif

end subroutine

function sgn (a) result (b)
real : : a , b
b=s ign (1 . 0 , a)
i f (b . ge . 0) b=1.0

end function

function c ro s s2d (u , v) result (c)
real , dimension (2) : : u , v
real : : c

c=u (1)* v(2)−u (2)* v (1)

end function

88

	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Performance Estimation
	Ignition Phenomena
	Chamber Aerodynamics
	Analytical Approaches
	Full Scale CFD

	Motor Stability Considerations
	Propellant Solid Mechanics
	Automated Grain Design and Performance Control

	Existing Internal Ballistics Models
	Analytical Methods
	Face-Offsetting Method

	Eulerian Approaches to Surface Tracking
	First Order Grain Regression Program
	Development and Implementation
	Results

	Higher Order Grain Regression Program
	Development and Implementation
	Discontinuous Galerkin Method
	Stabilizing the Differential Equation
	Motor Case Implementation

	Results

	Capabilities and Further Development
	Conclusions
	Recommendations

	Bibliography
	Analytical method for a star grain
	Derivation for Discontinuous Galerkin Approach
	Comparison of First-Order Finite Element to Discontinuous Galerkin:A Classic Fluid Dynamics Example
	DG/LSM Fortran Source

