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Abstract 

 

 

 This study compares contemporary design optimization algorithms for use in missile 

design applications. The engineering design problem for this study is the development of a 

desired single stage solid propellant missile system. The methods are used independently to 

match a prescribed set of parameters defining the missile’s geometry and propellant 

characteristics. For this development, three different design optimization techniques are 

considered: a real-coded genetic algorithm (GA), a binary GA, and a Repulsive Particle Swarm 

Optimizer (RPSO). Since there is not nearly as much known about how the RPSO operates 

compared to the GA’s, an extensive effort was invested in the study of how changing RPSO 

controlling parameters would affect its operation. Also, a new hybrid optimizer has been 

developed for this study involving a separate Particle Swarm imbedded within the standard 

RPSO. The algorithms are compared based on their speed and effectiveness in solving the design 

problem, with the figure of merit being a factor based on the desired performance goals for the 

missile.  
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1 INTRODUCTION 

Engineering design problems can generally be reduced to a set of crucial design variables 

that ultimately determine the effectiveness of a design. It is not a trivial matter to determine what 

values of these design parameters are required to match performance predicted by the objective 

function defining the effectiveness of a complex system. Manually varying all of these 

parameters can be an intractable task. Alternatively, optimization algorithms can be very 

effective in addressing a large class of these complex design problems. Using various 

mathematical schemas, optimization algorithms search the design space far more effectively and 

efficiently for solutions which meet the required design goals. The development of optimizers 

has become an ongoing area of research as their need and use has become more widespread. As 

optimizers are developed, it is important that they be tested on various problems and compared to 

other optimizers that have already been tested extensively and proven their merit. That is the 

motivation for this work: improving, developing, and testing optimizers for use in engineering 

applications. 

In order to effectively evaluate optimization algorithms, a somewhat difficult, yet 

ultimately achievable goal must be set. The goal must not be too simple so as to allow any basic 

algorithm to reach a solution in a relatively short period of time, and yet not so complex as to 

require extended computational times or clusters of processors in order to evaluate the objective 

function. The design of a single stage solid propellant missile by manipulating key parameters 

required for full system performance modeling satisfies these requirements and is of current 

interest
1
.   
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The modern collection of optimizers has grown to include algorithms based on 

evolutionary and social behavior models. Genetic Algorithms (GA’s) have been used 

successfully in aerospace engineering applications for the optimization of spacecraft controls
2,3

, 

turbines
4
, helicopter controls

5
, flight trajectories

6
, wings and airfoils

7,8
,  missiles 

1,9,10,11
, 

rockets
12

, propellers
13

 and inlets
14

 . Particle Swarm Optimizers (PSO’s) have also been used for a 

variety of applications and research areas, including some engineering applications
15

. In some 

cases, real-coded GA’s have been shown to outperform their binary coded counterparts
16,17,18

. 

These comparisons and subsequent results are the key motivators for the current effort.  

Increasing computing power has led to the development of increasingly more complex 

optimizers that are able to proficiently solve increasingly more complex design problems.   

Genetic Algorithm’s were originally developed from theories outlined by Professor John 

Holland. In his book “Adaptation in Natural and Artificial Systems”
19

, Holland prescribed 

schemes for using population based adaptive optimizers. The key principle driving Holland’s 

methodology is survival of the fittest. This is achieved by first creating a population of members 

representing candidate solutions. The performances of these members are then analyzed and 

compared to one another. The weaker (worse) solutions are killed off and the stronger (better) 

ones are left to “reproduce” and “mutate” to produce superior offspring. Subsequent populations 

are created using a variety of strategies, including the tournament style of evolution.  

The Particle Swarm Optimization method is based on the application of the philosophy of 

bounded rationality and decentralized decision-making
20

. PSO works on the principles of social 

behavior observed in natural groups such as a swarm of birds or a school of fish
21

. The 

understanding of how members in these groups move and communicate with each other is 

essential to the operation of this optimizer. The members, or particles, in these swarms 
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communicate with each other in order to see which ones have better solutions. Those with worse 

solutions will attempt to “move” towards those better solutions. Throughout this process, each 

particle will continue to search within its own area for a better solution. 

The search for more efficient optimizers for use in aerospace and many other applications 

continues. Prolonged run times and the inability of some optimizers to sufficiently converge have 

led to the use of a diversified group of optimization algorithms. The application of multiple 

optimizers may also result in the development of completely different but nearly equally optimal 

solutions. 

 This study compares results for various optimization algorithms used for designing solid 

motor rockets. The study involves the use of Genetic Algorithms, a Repulsive Particle Swarm 

Optimizer, and a newly developed staged Repulsive Particle Swarm Optimizer. The algorithms 

are compared on their overall optimization result and on the speed of convergence to this result. 
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2 GENETIC ALGORITHM METHODOLOGY 

There are two Genetic Algorithms used in this study that the Particle Swarm will be 

compared against. These two GA’s, a real-coded GA and the binary GA IMPROVE
22

, were 

used in a previous study
23 

that will provide the foundation for the optimizer development done in 

this body of work. The GA’s will allow for a direct comparison to be drawn between their 

solutions and the Particle Swarm results. 

Both the real-coded GA and the binary GA IMPROVE


 function on the same basic 

premise. The evolution of the populations is driven by tournaments between the existing 

members. Each discrete population is composed of information sets called individuals, with each 

individual possessing a fitness and a chromosome.  These individuals are representatives of 

potential solutions to the current problem.  The chromosomes are composed of genes which are 

the GA variables specified in an input file. These GA’s use the tournament style selection 

process by selecting certain members, or parents, according to their fitness and using them to 

create offspring for the next population.   

The real-coded GA compares randomly selected pairs of parents in the current population 

with the member having the better fitness surviving for use in reproduction.  Two of the 

surviving parents are then mated using the crossover and mutation routines that mix and 

transform their genes to create new offspring
23

.  

The crossover and mutation processes ultimately determine how the parameter evolution 

process occurs. The crossover routines determine how individual genes are selected from the 

parents and mixed to create the offspring. Multiple crossover routines may be performed 

including Uniform, Single-point, and Blend X. Uniform crossover works by randomly selecting 
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a gene, or design parameter value, from either parent 1 or parent 2. Therefore, the offspring may 

be composed of any combination of the parents’ genes. Single-point crossover uses a random 

number (Rnd#) between 0 and 1 to define what percentage of the first parent’s genes will be 

given to the offspring. For example, if there are 10 design parameters and the random number is 

chosen as 0.4, then genes 1-4 of the first parent and genes 6-10 of the second parent will belong 

to the offspring. The genes selected from the first parent always starts at parameter #1 and 

continues until the random percentage of parameters is satisfied, at which point, the rest of the 

parameters are chosen from the second parent. Blend X
24

 operates by multiplying the absolute 

value of the difference between the parameters of parent 1 and parent 2 by a random number 

(Rnd#) between 0 and 1 and adding it to the smaller of the two values. That is, if the parameter 

values of parents 1 and 2 are 10.0 and 5.0, respectively, then the offspring’s parameter value will 

be (10.0 – 5.0)*Rnd# + 5.0. Unlike the Uniform and Single-point routines, Blend X produces 

offspring completely unique from their parents. 

Because none of these crossover routines can create an offspring with parameter values 

that are outside the range of its parents’, genetic mutation is necessary for solution diversity. 

Thus, a Gaussian mutation routine that is controlled by two factors, mutation rate and mutation 

amount, is used to transform the offspring members after they are created. The number of genes 

mutated by the routine is determined by the mutation rate, µ. This term can be set between 0.0 

and 1.0, with 1.0 resulting in a mutation of every gene. The mutation amount, σ, controls how 

much each gene is mutated and usually ranges from 0.005 (very little mutation) to 0.5 (high 

mutation). To fully mutate the offspring’s genes, a Gaussian distributed random number with a 

zero mean and unit variance is used in conjunction with the value of σ as shown below. 
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For i = 1 to number of genes: 

Offspring(i) =σ ∗[xmax(i) − xmin(i)]* gaussian _ random_ number + Offspring(i) (1) 

xmax(i) and xmin(i) represent the maximum and minimum values for the gene variables 

specified by the user on input. If the mutation of any of the genes results in a value that falls 

below the specified minimum or above the specified maximum, then that value is automatically 

set to that minimum or maximum. 

 The binary GA uses a generational approach, while the real-coded GA uses a steady state 

operational mode. The differentiating characteristic for these two modes is the number of 

members from a generation which must be evaluated for performance.  The binary GA evaluates 

all of the members from the current population and determines their fitness. Each member of the 

population is then replaced by the tournament system through the crossover and mutation 

routines. The objective function is then used to evaluate all of the new members and the entire 

process is repeated until the maximum number of generations is reached.  

By operating in steady state, the real-coded GA is only required to replace one member of 

the population through the tournament system and crossover and mutation routines once the 

initial population is evaluated. The objective function is used to evaluate only the new member, 

which is then used to replace the worst performer of the previous generation. This process is 

repeated until the maximum number of iterations is reached. The new member immediately 

enters the genetic pool, resulting in an immediate move toward the optimal solution. This may 

result in very fast and accurate convergence for single goal problems
25

 but may suffer from a 

lack of diversity since the steady state operation does not allow for as many random guesses as 

the generational approach. The real-coded GA must rely more heavily on the mutation and 

crossover routines, which was why it was essential to include the Blend X option.  
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3 REPULSIVE PARTICLE SWARM METHODOLOGY 

 The Repulsive Particle Swarm Optimizer (RPSO) developed by Mishra
20

 has been 

modified for use in this undertaking. Members of the RPSO mimic the social behavior of a 

swarm of individuals. The individual particles are composed of the variables specified in the 

code input file. The individuals exist in a multidimensional space, each acting as a particle with a 

position and a velocity. The individual particles travel through the solution space all the while 

remembering their overall best position. The swarm members relay information about desirable 

positions to each other and modify their own positions and velocities accordingly. The swarm 

members can communicate by either doing “swarm best”, in which the best position ever seen by 

any one member is known to all of the other members or by doing “local bests”, in which the 

best position seen by a particle in a specific neighborhood is known to the members of that 

neighborhood. The following equations show how the particle positions and velocities are 

updated with each iteration.  

For i = 1 to number of iterations: 

   igiiiii xxrcxxrcvv 
ˆˆ

22111 
    (2) 

11   iii vxx
      (3) 

The individual particles have position, x, and velocity, v. The inertial constant is represented by 

ω. Successful choices for ω tend to be slightly less than unity. The constants c1 and c2 control 

how much the particles will be aimed towards the good positions. Both usually have values 

around unity. r1 and r2 are random numbers ranging from 0.0 to 1.0. The overall best position 
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that a particle has seen is represented by    and the global best seen by the swarm is represented 

by    . If local bests are used,     is replaced by    .  

In this study, a variant of the general PSO known as the Repulsive Particle Swarm 

(RPSO) is used. This method tends to be more effective in finding the global optimum in a 

complex solution space. However, the RPSO may take longer to find solutions to certain 

problems. The previous equations for particle position and velocity are modified slightly. 

For i = 1 to number of iterations: 

    zrxxrxxrvv ihiiiii 3211
ˆˆ      (4) 

11   iii vxx
      (5) 

As before, r1, r2, and r3 are random number between 0.0 and 1.0. In this case, the inertial 

weight, ω, will range from 0.01 to 0.7. The position of a randomly chosen other particle is 

represented by    , and z is a randomly chosen velocity vector. α, β, and γ are all constants. In 

instances when the routine gets stuck in local optimum, a chaotic perturbation may be introduced 

to both the position and velocity of some particles. 

The RPSO used in this effort has been modified from Mishra’s RPSO to allow the 

particles to have a wider local search ability. Each particle travels around in its immediate 

surroundings searching for a better solution. A parameter called nstep controls the local area in 

which the particle is allowed to search. This parameter makes the particles act in a way that more 

resembles the real life behavior of swarms.  



9 
 

 

               Fully Connected                        Random                  Ring 

                  (Global Best)                             (Local Best) 

 

The particles are allowed to learn from the other members of the swarm. In the extreme 

case, every particle will learn from the overall best member. This, however, is not always 

practical or realistic. Hence, in the practical algorithm, a particle is only allowed to learn from a 

select few of its neighbors. The communication structure that the particles exist in, or the way in 

which the particles learn from their neighbors, is known as the topology. Topologies used here 

include random, ring and random, and ring. Figure 1 contains simple illustrations of how the 

particles might be connected through the various topologies in the solution space.  

 

Since a particle searches around within its own immediate area by itself, it may not learn much 

from interacting with only its closest neighbors. However, this RPSO may also be set so that a 

particle can learn from a predetermined number of randomly chosen members of the swarm. This 

method is seen to more closely reflect human social learning patterns. In this fashion, desirable 

characteristics filter through the population because there is a path to all of the population from 

any given member. 

Further changes were made to the RPSO in order for it to work effectively with the solid 

motor missile systems code. Originally, the swarm was initialized with completely random 

positions and velocities. This caused problems with the missile code due to the fact that the 

Figure 1. Particle Swarm Solution Space Topology
26 
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problem is substantially constrained. Many of the initial members would be created with non-

viable solutions (e.g. motor geometry conflicts, insufficient thrust for liftoff), which severely 

limited the swarms initial search ability and consequently, its overall search ability. To 

compensate for this, the RPSO was modified so that the initial population is created using only 

viable members. The optimizer runs through a prescribed number of iterations creating random 

parameter values for each member. Once the member has been evaluated, if it is determined to 

have a viable solution, it is kept and placed in the initial population. If not, the member is 

discarded and the iterations continue until the population is filled with the prescribed number of 

members or the number of iterations is completed. If the population is unable to be completely 

filled with viable solutions after the set number of iterations, then the rest of the members are  

created using random values, viable or not. 

The implicit searching method of the particles and their somewhat chaotic movement 

within the solution space also caused problems for the constraints on the design space. The 

inherent nature of the RPSO causes many of the particles to “fly” outside of the prescribed 

parameter bounds. In some cases, particles will completely diverge from the swarm and the 

defined boundary of the solution space. Therefore, extensive effort was invested in “fencing in” 

the particles and preventing them from going outside of the parameter bounds. If the calculated 

particle velocity causes a parameter value to drop below the allowable minimum or go above 

allowable the maximum, a new velocity is calculated by multiplying the minimum or maximum 

allowable velocity, respectively, by a random number between 0.0 or 1.0. That is, the parameter 

value will be allowed to move in the same direction, but by only a fraction of the total distance to 

the boundary value. 
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One additional change was made to the existing RPSO to make it a more effective search 

tool. Previously, the particles would search in their local space at set intervals looking for better 

values. It was determined that it would be more reasonable, and eventually, more effective if the 

particles would search at random intervals while performing the nstep function in their local 

space. The source code for the modified RPSO can be found in Appendix D. 
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4 SOLID MOTOR SOUNDING ROCKET SYSTEM DESCRIPTIONS 

 A previous study was conducted in which the three optimizers were compared on their 

effectiveness to match a desired thrust versus time curve for a solid rocket motor
27

. The initial 

part of this study goes one step further and compares the optimizers based on their ability to 

design a desired sounding rocket with specific performance goals. The code creates preliminary 

design level simulations with complete geometry and burn characteristics for solid rocket 

motors. The code also calculates the weight of the structure used to encase the motor including 

the case, end cap, joints, and conical nozzle. The weight of the structure is then added to the 

propellant weight, igniter weight, and payload to determine the total weight of the system. The 

code uses a simple set of dynamic equations, including a set of empirical equations for drag, to 

fly the rocket on a vertical trajectory over the length of the motor burn
28

. When considering an 

object moving in the vertical plane, the sum of forces equations reduce to 

      
 

 
 
  

  
      (6) 

where T is thrust, D is drag, W is weight, g is gravity, and 
  

  
 is the incremental change in 

velocity per change in unit time. By using small time steps, dt, the thrust can be considered to be 

approximately constant over the time step. The drag is defined as 

  
 

 
             (7) 

with the drag coefficient, CD, calculated in terms of the current Mach number of the object. The 

weight is taken as the average weight over the time increment and is calculated as follows. 

   
     

 
    

       

 
    (8) 
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Ab, ρp, and r are all characteristics of the solid propellant, while Wo is the initial weight of the 

rocket. By letting 

             (9) 

and 

    
 

 
            (10) 

the sum of forces can now be written as  

 

  
   

  

            (11) 

When the above equation is integrated over the interval [Vo, Vf] for the case of T >     , the 

equation becomes 

         

  
     

          

          
  

          

          
        (12) 

and is further simplified by letting 

   
          

          
     

          

          
     (13) 

From these equations, the final velocity can be calculated as follows. 

   
        

           
     (14) 

Once the final velocity is calculated, the average velocity can be determined and then multiplied 

by the time increment to determine the change in altitude over the time step.  

For the case of T <     , C1 is negative, and the force equation then becomes 

   

  
 

 

 
       

  
     (15) 

where 

              (16) 

When integrated over the interval [Vo, Vf], the equation becomes 



14 
 

    
    

  
  

          

  
       

         (17) 

The final velocity is now defined as  

   
    

       

          
     (18) 

and the change in altitude of the vehicle calculated as stated previously. 

The code is composed of 11 critical design variables that describe the geometry of the 

motor and nozzle
29

. The various optimizers are used to evaluate these solid motor parameters in 

order to match desired performance goals for the missile. The optimizers can be used to match 

any combination of three separate goals: burnout altitude, burnout velocity, and takeoff weight. 

The first task of the program is to read in an input file containing mathematical constants, 

grain parameters, and goal parameters. Once the initial files are read, the optimizer’s input file 

containing the variables to be optimized is read. For each new member of a population in the 

case of the GA’s, or for each particle move in the case of the RPSO, a new missile grain design 

is constructed using data from the initial constants input file and parameters generated by the 

optimizer. The program then designs and burns the motor using a series of subroutines that 

determine geometry and burn characteristics. The program then uses the propellant parameters to 

determine the thrust of the motor as a function of time at sea level conditions. The specified grain 

geometry governs the part of the thrust equation that is independent of atmospheric pressure. The 

thrust and the calculated weights are then used with the dynamic equations to determine the 

overall performance of the missile. Figure 2 contains the general flow chart for the sounding 

rocket code. 
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Begin Code 

Setup 

Mass 

Properties 

Propulsion Performance 

Read Optimizer Input File 

Yes 

Optimizer 

(Particle Swarm or GA) 

Has Max Generations 

been reached? 

Fuels 

Read in Initial Constants  

No 

Figure 2. Sounding Rocket Design Code Program Flow 
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There are 11 design variables that the sounding rocket code uses to produce a physical 

model of the system. The variables are described in Table 1.   

Figure 3 has been adapted from Reference 30 to illustrate how these variables are used by 

the optimizer in conjunction with the initial constants to generate the solid propellant grain. For 

the solid motor system, circularly perforated grains, star grains and wagon wheel grains are 

possible with this geometric combination.    

 

 

 

 

 

Table 1. Solid Motor Variable Definitions 

Description Variables 

Propellant fuel type kfuel 

Propellant outer radius ratio Rpvar=(Rp+f)/Rbody 

Propellant inner radius ratio Rivar=Ri/Rp 

Number of star points Nsp 

Fillet radius ratio fvar=f/Rp 

Epsilon - star width eps 

Star point angle ptang 

Grain length gl 

Outer radius of grain Rbi 

Nozzle Throat Diameter diath 

Nozzle Expansion Ratio  ratio 
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Figure 3. Solid Propellant Grain Cross-Section Schematic 
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5 PARTICLE SWARM INPUT PARAMETER TESTING 

5.1 Particle Swarm Control Parameter Optimization 

 With the previous particle swarm optimization studies, there were no real guidelines 

regarding what the values of the input parameters controlling the optimizer should be. For the 

Repulsive Particle Swarm, this includes values for population size, neighborhood size, nstep, α, 

β, γ, and ω. For the optimization study focused around matching thrust versus time curves, 

arbitrary values were chosen for α, β, γ, and ω, while a limited amount of effort was put forth to 

find values for population size, neighborhood size, and nstep that seemed to produce the most 

efficient optimization results.  

 In order to fully evaluate the optimization potential of the Repulsive Particle Swarm 

Optimizer, it was necessary to study the RPSO’s controlling parameters. It was not immediately 

clear what effect changing these parameters would have on the overall behavior of the optimizer, 

so a parametric study was performed using varying values of the particle velocity control 

parameters α, β, γ, and ω. A variable matrix was set up using these four parameters in which they 

were all allowed to vary between nine different values, thus creating a matrix of size    or 6561 

total combinations. The allowable values of α, β, and γ were set to 0.05, 0.125, 0.25, 0.375, 0.50, 

0.625, 0.75, 0.875, and 0.95, while the allowable values for ω were 0.02, 0.105, 0.19, 0.275, 

0.36, 0.445, 0.53, 0.615, and 0.70. These quantities approximate an even distribution across the 

total range of allowable values for the parameters. 

 For the input parameter sets to be accurately compared, a penalty function had to be 

introduced into the optimizer routine. The intrinsic properties of the particle swarm cause many 
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of the particles to tend to fly outside of the parameter bounds defined by the problem. When this 

happens, the particle is artificially reined in by the program and allowed to only move a 

randomly selected distance within the parameter bounds. Since certain combinations of the input 

parameters α, β, γ, and ω may tend to cause more particles to try to escape the bounds of the 

program, these sets may benefit purely on the basis of the random placement of the particles 

from the boundary control system. To prevent this, when a particle attempts to overstep the 

bounds of the program, it is still moved to a random place within the parameter bounds, but it is 

assessed a penalty in the form of a very high fitness value and not allowed to search locally after 

it has been moved. 

 For these RPSO tests, the solid motor sounding rocket code was used to carry a payload 

of 70lb to a burnout altitude of 50,000ft and a burnout velocity of 1,000ft/sec with a minimum 

total takeoff weight. Each test run was allowed to perform 250,000 function evaluations. The 

sounding rocket code was used for this study because it is complex enough to fully test the 

optimizer’s ability, yet simple enough to provide solvable problems that did not require extended 

run times that would make it impractical for the number of runs needed to evaluate the input 

parameters. The fitness for each of the optimizer runs was calculated as follows: 

                                                                       
      

    
     (19) 

The results of the RPSO input parameter grid search are shown in Figure 4.  
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The matrix of variable parameter inputs for the RPSO produced a wide range of final fitness 

values for the optimization goal. Interestingly, the majority of the input sets produced fitness 

answers that fell below the red line, which represents the fitness achieved from using the original 

values of α, β, γ, and ω used in the prior study. It appears that there is a negative trend between 

the fitness values and the increasing run number. This might directly reflect the trend of 

increasing the first term of the parameter matrix, α. The best, or lowest, fitness value came from 

run number 5639. The values of the input variables and resulting fitness for the best performer of 

the grid search and the original set are shown in Table 2. 

 

 

Figure 4. RPSO Sounding Rocket Parameter Testing Results 
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Table 2. Sounding Rocket RPSO Input Parameter Optimization Results 

 
Original Values New Best Values 

α 0.25 0.875 

β 0.25 0.75 

γ 0.50 0.625 

ω 0.25 0.36 

Fitness 9578 2300 

 

 

 

 

 

 

 

 

All of the parameter values for the best performer of the grid search are different from those of 

the original settings. More specifically, the new values place a higher importance on α, or the 

best the particle has ever seen. The optimizer also performed better by increasing the effect of β, 

or the best value any neighbor particle has seen. The term γ, which adds more randomization into 

the particle movement, proved to work better with a higher value and ω, a repulsive term, 

seemed to work better with a slightly larger value. With the new values for the particle velocity 

parameters, the optimizer was able to decrease the previous fitness value by over 75%. This 

represents a significant improvement in fitness value for this goal set and hopefully, overall 

optimizer effectiveness. 

 Since the optimizer performed better with higher values for each of the four particle 

velocity parameters, it was deemed important to see what effect changing the values of the 

neighborhood sample size, nn, and the local search parameter, nstep, would have on the RPSO 

performance. With the total population containing 30 particles, nn and nstep were allowed to 

vary in increments of 5 from 5 to 30 and 5 to 15, respectively. Once again, all test runs were to 

perform 250,000 function evaluations. Table 3 contains the resulting input matrix for the values 

of nn and nstep and the corresponding fitnesses returned from the sounding rocket program.  
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Table 3. Secondary RPSO Input Parameter Optimization Results 

               nstep 

      nn 
5 10 15 

5 6707.40 7870.98 6351.36 

10 2300.14 8852.32 6928.61 

15 7402.22 6132.84 7586.63 

20 9179.19 5913.00 7228.87 

25 6704.24 5002.58 6505.95 

30 8999.98 7734.87 6525.35 
 

 

 

 

 

 

 

 

 

The best fitness resulted from using an nstep of 5 and an nn of 10, which happened to be 

the default values used during the previous studies. The next closest fitness value was over twice 

as large, however. Interestingly, having a value of 5 for nstep generally produced worse fitness 

values than for nstep equal to 10 or 15, except when paired with the value of 10 for nn. 

Conversely, there was no value of nn that generally produced either a better or worse fitness for 

all values of nstep. These characteristics might have resulted from having already optimized the 

values of α, β, γ, and ω with this pairing of nstep and nn as part of the input settings, or this 

pairing might actually be the best overall combination for the sounding rocket program. To fully 

address this question, further testing is required in which a complete input parameter matrix is 

examined with all possible combinations of α, β, γ, ω, nstep, and nn. Using the parameter values 

in this study, that would require 118,098 total optimizer runs, which would be extremely time 

consuming and not entirely practical. A more sensible approach would be to use another 

optimizer, either one of the GA’s or a gradient optimizer such as the Pattern Search, to 

manipulate all of the RPSO control parameters in order to obtain the set that most efficiently uses 

the optimization algorithm.  
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5.2 Sounding Rocket Optimizer Comparison 

Even though a significant improvement was made in the overall performance of the 

RPSO in the context of the sounding rocket problem, it does not necessarily mean that the RPSO 

is an effective optimizer. In order to fully evaluate its efficiency, it must be compared to the 

binary and the real-coded Genetic Algorithms, which are well established optimizers for this 

class of problems. Parameter tests were not performed on the two GA’s in this study. Parameters 

that have been found to be successful in previous studies were used in these tests and held 

constant throughout. These parameters can be seen in Appendix A for the binary GA and 

Appendix B for the real-coded GA. Figure 5 shows a comparison of the convergence histories 

for the RPSO with its original input parameters, the RPSO with its newly optimized input 

parameters, and both GA’s for the same three goal sounding rocket problem.  

 

 

Figure 5. Sounding Rocket 3 Goal Convergence History 
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It is obvious that both of the GA’s completely outperformed the RPSO with the binary GA being 

the top performer. Not only did the GA’s develop solutions with much better fitness values, but 

they were also able to achieve this with a relatively small number of objective function calls. 

Although the improved RPSO surpasses the original RPSO very quickly, it does not make a 

significant improvement in fitness value until after around 200,000 function evaluations, at 

which point the fitness improves by over 75%. If allowed to run a bit longer, the RPSO might 

make another significant step towards an optimal solution that would rival those of the GA’s, but 

this only shows how much less efficient it is for this particular problem. 

 The final motor design parameters and goal results are shown in Table 4 while the 

corresponding missile grain cross sections are shown in Figure 6. It is apparent that the two GA’s 

and the two RPSO’s all converged on very different motor designs, with the design from the 

original set of RPSO inputs being the most unlike the others, which would be expected. Looking 

at the motor cross section images, the RPSO appears to be approaching a design that is very 

similar to that of the binary GA, however, upon closer inspection, most of the parameter values 

are much different. If allowed to run for a greater number of function evaluations, the RPSO 

might produce a design completely different yet near equally optimal solution when compared to 

the GA’s. 
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Table 4. Sounding Rocket Converged Design Parameters 

PARAMETER RPSO BEST 
RPSO 

ORIGINAL 
BINARY GA REAL GA 

propellant type 7 7  8  8  

propellant RPVAR: 

(Rp+f)/(body radius) 
0.52232459 0.53092006 0.53503937 0.75481233 

propellant RIVAR: 

Ri/Rp 
0.01010000 0.93402695 0.22137256 0.01000000 

number of star 

points 
8 13  11  17  

fillet FVAR: f/Rp 0.06356675 0.18598332 0.04064516 0.01470821 

epsilon star width 0.47259510 0.88108498 0.68666667 0.34154324 

star point angle 1.27535397 6.47795456 5.67716550 8.90955565 

grain length 239.78698141 271.08171369 301.36987000 241.53865028 

outer radius of grain 23.76000000 23.76000000 22.95238100 19.06190103 

throat diameter 19.80000000 19.80000000 12.86399300 19.49394728 

nozzle expansion 

ratio 
1.91562031 3.37402866 3.84251950 3.24619152 

Altitude @BO 47760.86 40958.55  50004.55  49999.98  

Velocity @BO 960.67 600.84  997.71  968.22  

Initial Weight 21672.41 22759.92  26505.14  10339.07  

Total Fitness 2300.14 9463.37  33.34  42.14  
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                RPSO Best                        RPSO Original 

                 

         Binary GA         Real GA 

Figure 6. Sounding Rocket Final Grain Cross Sections 
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When comparing the designs based on the individual goals, the best performing RPSO made vast 

improvements in matching the desired burnout altitude and velocity while still making a modest 

improvement in decreasing the takeoff weight. The large fitness value for the RPSO is due 

mostly to it missing the desired burnout altitude by over 2,200ft, but this is only a difference of a 

little less than 5 percent.  

The main goal of this study was to see if the performance of the Particle Swarm 

Optimizer could be improved by manipulating the control parameters of the algorithm. 
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Significant improvement was made in the optimizer’s performance by just using a course grid to 

evaluate different combinations of the input parameters.  

Even though the RPSO did not perform as well as the GA’s for this problem, it still 

showed potential to serve as a viable optimization tool. It might be useful to use the RPSO in 

conjunction with the GA’s to provide solution diversity when multiple nearly optimal solutions 

are needed. It is also important to note that the optimizers were only evaluated on one problem 

and goal set. The RPSO may perform just as well or even better than the GA’s if it were only 

trying to match one goal, a different set of performance goals, or even used to solve different 

engineering problems. However, different types of problems may not yield as good of results 

with the current set of input parameters and may require their own optimized parameter sets. 

Other studies have shown that the RPSO, or a derivative thereof, has performed better than the 

GA on matching a curve to data
31

.  
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6 COMPOUND REPULSIVE PARTICLE SWARM DEVELOPMENT 

6.1 Hybrid Optimizer Methodology 

 It is apparent from the previous studies that the Particle Swarm generally converges much 

slower than the Genetic Algorithms for solid rocket motor preliminary design level trade studies. 

The development of this hybrid optimizer was pursued in an attempt to improve the RPSO’s 

ability to converge quickly to a good solution and possibly improve the overall fitness of the 

solution for this class of design problems. Hybrid optimizers incorporate the combination of two 

or more optimizers, usually of different types. A previous study combined the RPSO with the 

Pattern Search gradient optimizer and produced very promising results
31

. This study involves the 

integration of one RPSO into another, creating a compound RPSO.  

 The RPSO’s slow convergence may be due to the large solution space and the way the 

search mechanisms of the algorithm work. The particles cannot effectively search within a small 

area of the solution space even though they communicate with each other and perform individual 

local searches. The attachment of a second RPSO is used to more effectively search within an 

area around the current global best using a “mini” swarm. 

 The traditional RPSO can be thought of as a transport system for the mini-swarms. If the 

overall swarm best has improved after a generation, the mini-swarm search is initialized. This 

imbedded RPSO functions in the same way as the single-phase RPSO except that it is much 

more constrained. Similar to the parent swarm, the mini-swarm is initialized with a prescribed 

number of individuals with viable solutions. However, an overpopulation scheme has been 

implemented to help the performance of the mini-swarm. In this scheme, an oversized random 
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population is created with the number of members being much larger than what will eventually 

be used in the mini-swarm. The members’ fitnesses are compared and only a select number of 

members with the lowest fitnesses are chosen to continue in the mini-swarm. This scheme was 

implemented to help the members of the mini-swarm start closer to the optimal value, while not 

requiring a significant number of extra function evaluations. 

The overall number of particles used in the mini-swarm is significantly less than that of 

the parent swarm, and they are only allowed to search within a small percentage of the solution 

space centered around the current best position. The global best used in the mini-swarm velocity 

equations is initialized with the current overall best and remains set as such until one of the mini-

swarm members finds a better solution. The mini-swarm continues searching until the specified 

number of iterations is met, which is also significantly less than the large swarm. The input file 

for the mini-swarm can be seen in Appendix E. 

A second modification has been made to the RPSO to help speed up convergence and 

improve the obtained solution. Since the RPSO tends to go long periods without finding better 

solutions, a counter has been set up so that if the optimizer has gone a prescribed number of 

iterations without improving, the mini-swarm optimizer is called once again to search around the 

current best solution. The hybrid optimizer methodology is represented in Figure 7.   
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Figure 7. Integrated Hybrid Optimizer Logic 
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6.2 Hybrid Optimizer Comparison 

For initial testing, the compound optimizer was used on the same solid rocket motor code 

used in Reference 27. The results from these tests looked very promising and the hybrid 

optimizer was able to outperform the conventional RPSO in all test cases. These initial findings 

successfully demonstrated the compound optimizer’s potential to work on more complex 

engineering problems. 

For the next level of testing, the RPSO-RPSO compound optimizer has been attached to 

the same sounding rocket code used in the previous section to see if further improvement can be 

made in the performance of the particle swarm algorithm. The hybrid optimizer will be 

compared against the standard RPSO using the same goal set and number of function evaluations 

used for the sounding rocket in the previous study. Initially, the same parameter settings found 

for the best performer in the previous RPSO study were used for the parent swarm and the mini-

swarm of the hybrid. Results from these settings for the sounding rocket code, however, did not 

prove as promising as the results from the solid rocket motor code used in Reference 27. At this 

point, it was decided to use another set of velocity parameters α, β, γ, and ω for the mini-swarm 

settings. The new set of parameters chosen was one used in the previous grid run search for the 

conventional RPSO. Although this set of parameters did not produce a final answer as good as 

the optimal set for the standard RPSO, it was primarily chosen for its fast convergence and 

relatively good fitness value. 

This new combination of parent and mini-swarm parameters proved to work much better 

for the compound optimizer. Combinations of 5 and 10 particles allowed to search within 5% 

and 10% of the solution space were the settings used to test the mini-swarm. The convergence 

histories for these four hybrid settings and the previously optimized RPSO are shown in Figure 
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8. The numbers represented in the legend for the hybrid optimizer (ex. 5 – 5%) represent the 

number of particles within the mini-swarm and the percentage of the parameter range they are 

allowed to search within. 

 

 

 

The compound optimizers behave much differently than the standard particle swarm. The 

hybrid particle swarm tends to converge much faster and in a much more continuous fashion. 

Until making the large fitness jump after the 200,000 function evaluation mark, the non-

hybridized particle swarm was being beaten by all of the different hybrid input combinations.  

Both the 5 particle-5% search area and the 10 particle-10% search area mini-swarm 

combinations performed very well for the hybrid. At the 150,000 function evaluation mark, they 

had already converged to answers which are comparatively close to the answer that the standard 

RPSO required an extra 50,000 function evaluations to achieve. Although the best performer of 

Figure 8. Hybrid Optimizer Sounding Rocket Convergence History 
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the hybrid runs performs more efficiently than the original, it still does not converge as well as 

the GA’s.  

Table 5 shows the design parameter and goal values while Figure 9 shows the grain 

cross-section plots for the best performer of the hybrid and the single phase RPSO with the 

optimum input parameter set. The hybrid optimizer developed a somewhat different looking 

motor with a significantly better fitness than the standard particle swarm. The hybrid ends up 

matching the burnout altitude much better but does a worse job in matching the burnout velocity 

and minimizing the weight. This is most likely a direct result from how the fitness is actually 

determined and the weighting of the three goals. The altitude goal is of an order of magnitude 

higher than both of the other goals, thus it has the highest impact on the overall fitness. 

The hybrid produced a design roughly 25% better than the standard particle swarm, and it 

did so with significantly fewer function evaluations. The mini-swarm allows the RPSO to search 

within more confined areas of the solution space which, consequently, allows the optimizer to 

converge faster and in a more gradual fashion. The required number of particles of the mini-

swarm and the size of the solution space they are allowed to search in may be different for each 

problem, depending on the makeup of the solution space. This initial test of the compound RPSO 

hybrid proves promising, yet the optimizer requires further validation to ensure that it is a useful 

optimization device. 
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Table 5. Original and Compound RPSO Sounding Rocket Converged Design Parameters 

PARAMETER RPSO BEST 
Compound RPSO  

(5 – 5%) 

propellant type 7 7 

propellant RPVAR: 

(Rp+f)/(body radius) 
0.52232459 0.48779950 

propellant RIVAR: 

Ri/Rp 
0.01010000 0.43874862 

number of star 

points 
8 9 

fillet FVAR: f/Rp 0.06356675 0.05419492 

epsilon star width 0.47259510 0.52420674 

star point angle 1.27535397 6.41346202 

grain length 239.78698141 241.09208069 

outer radius of grain 23.76000000 23.97510469 

throat diameter 19.80000000 19.35065689 

nozzle expansion 

ratio 
1.91562031 2.78466686 

Altitude @BO 47760.86 48364.79 

Velocity @BO 960.67 1051.18 

Initial Weight 21672.41 22611.68 

Total Fitness 2300.14 1709.00 

 

    
RPSO Best             Compound RPSO 

 
Figure 9. Original and Compound RPSO Sounding Rocket Final Grain Cross Sections 
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7 SINGLE STAGE SOLID MISSILE SYSTEM DESCRIPTIONS 

To more effectively compare the optimizers, a more complex suite of codes and multiple 

goal sets were required. A bit more complex than the sounding rocket, the single stage solid 

missile system design code
1
 generates preliminary level engineering models of missiles powered 

by single stage solid propellant motors and flies them based on a set of 35 essential design 

parameters. The optimizers are used to manipulate these design parameters in order to develop 

missiles that achieve desired performance goals. This code has been used in multiple 

optimization studies
11,12,23

 and has proven to be an accurate and reliable instrument for use in 

engineering applications. 

After the program is initialized, it reads in various constants contained in two input files. 

These terms include mathematical constants, program limits, material properties, moments of 

inertia, component lengths and locations, and program goals. The entire component breakdown 

of the files is presented in Table 6. Some of these terms may be altered at some point within the 

code, but the variable arrays must be created with acceptable values at the start of the code. 
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Table 6. Component Breakdown of Missile Design Code Initial Constants 

 

Component Section Number of Variables 

Constants 22 

Material Densities 6 

Program Lengths, Limits, and Constants 31 

Constants and Set Numbers 25 

Initiation of Launch Data 16 

Target Data 6 

GA Goals (outdata variables) 20 

Auxiliary Variables to be Used as Needed 21 

List of GA Variables Passed to Setup, etc. 35 

Total Missile Variables 40 

Guidance and Plotting Variables 29 

Component Densities 30 

Masses 30 

Center of Gravity 30 

Moments of Inertia 60 

Component Lengths 30 

Axial Starting Point of Components 30 

Required and Computed Data for Aero 30 

Other Dimensions 16 

Internal Solid Rocket Grain Variables 14 

Nozzle and Throat Variables 23 

Other Computed Stage Variables 8 

 
 

Once all of the constants are initialized, the program reads in the appropriate optimizer input file. 

Whether for one of the GA’s or the RPSO, the file will contain the optimizer controlling 

parameters as well as the variables to be used in the optimization. Whenever a new member is 

created by the GA’s or every time a particle moves in the RPSO, a completely new missile is 

created based on the initial constants and specified design parameter constraints. The missile 

flight is then simulated by a sequence of subroutines that determine the propulsion 

characteristics, mass properties, and aerodynamic properties. The performance and flight profile 

for the missile are determined by a 6-degree-of-freedom, or 6-DOF, routine. 
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 For the 6-DOF to successfully fly the missile, all of its flight characteristics must be 

known. A number of parameters define the geometry and propellant characteristics for the 

missile, and from these parameters, the code is able to determine the thrust profile for the motor 

in a manner similar to that described in Section 4. The code uses the specified grain geometry to 

determine the part of the thrust equation that is independent of atmospheric conditions. The large 

volume left inside of the missile after the propellant has been burned required that the tail-off for 

the thrust be modeled in order to more accurately predict performance. Once the propulsion 

system is modeled, the mass properties for the missile are calculated and used to determine the 

center of gravity and moments of inertia for all component systems. 

 Before the 6-DOF routine can take control of the missile, its aerodynamic properties are 

determined using a fast predicting aerodynamic scheme called AERODSN
32

. AERODSN is very 

useful in that it is a non-linear, fast-predictive code, which is essential for use with the optimizers 

in order to provide a fairly high level of accuracy while simultaneously minimizing run times. 

However, this requires that certain assumptions be made primarily relating to missile geometry.  

The 6-DOF simulates missile flight by integrating the equations of motion and using the 

previously calculated propulsion, physical, and aerodynamic characteristics in a single model. 

The program flies the missile in a spherical earth model using all six degrees of freedom to 

determine the missile’s overall performance and flight profile. The missile’s individual 

performance is then compared against the desired performance goals specified at the onset of the 

program, a fitness determined, and returned to the optimizer for analysis. A flow chart for the 

code is shown in Figure 10. 
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Figure 10. Missile System Design Code Program Flow 
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Table 7. Single Stage Solid Missile Variable Definitions 

 

Missile 

Geometry 
Propellant Properties Autopilot Controls 

Nose Radius Ratio = 

rnose/rbody 
Fuel Type 

Autopilot On Delay 

Time 

Nose Length Ratio = 

lnose/dbody 

Propellant Outer  

Radius Ratio 

rpvar=(rp+f)/rbody 

Initial Launch Angle 

(deg) 

Fractional Nozzle 

Length Ratio = f/ro 

Propellant Inner Radius 

Ratio rivar=ri/rp 
Pitch Multiplier Gain 

Nozzle Throat 

Diameter/dbody 
Number of star points Yaw Multiplier Gain 

Total Length of 

Stage1/dbody 
Fillet Radius Ratio f/rp 

Initial Elevator Angle 

(deg) 

Diameter of Stage1 

(dbody) 
Epsilon - star width 

Gainp2 – gain in pitch 

angle dif 

Wing Exposed Semi-

span = b2w/dbody 
Star point angle B2var = b2vane/rexit 

Wing Root Chord = 

crw/dbody 
 

Time Step to Actuate 

Controls 

Wing Taper Ratio = 

ctw/crw 
 

Gainy2 – gain in yaw 

angle dif 

Leading Edge Sweep 

Angle Wing (deg) 
 

Deltx for Z 

Corrections 

xLEw/lbody  
Deltx for Y 

Corrections 

Tail Exposed Semi-

span = b2t/dbody 
  

Tail Root Chord = 

Crt/dbody 
  

Tail Taper Ratio = 

ctt/crw 
  

Leading Edge Sweep 

Angle Tail (deg) 
  

xTEt/Lbody   

Nozzle Exit 

Dia/dbody 
  

 

For this study, a single stage solid motor was used in the design optimizations. In order to 

create a fully developed missile system, 35 design variables are used for the model. Table 7 lists 

the required variables for the model and separates them between the various types.  
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As can be seen in the second column of Table 7, the solid motor grain design used in this 

system is very similar to that used in the sounding rocket program. The absent propellant 

property variables that are inherent to the sounding rocket are defined elsewhere in this program 

as it works to develop a more complete missile system. The third column of the table lists the 

variables used to control the autopilot for the program. These variables are used in case the 

missile is being guided by an active control system. This missile code possesses the ability to 

control the missile through tail fin deflections, nozzle vane deflections, or nozzle gimbaling. 

However, during this study, the autopilot system was turned off and the missiles were only 

allowed to fly ballistic trajectories. The first column of the table lists all of the parameters used to 

develop the external geometry of the missile including the nose, wings, tail fins, and nozzle
33

. 

The missile code designs a bell nozzle by fitting a parabola tangent to a circular arc throat 

section. The parabola is extended out until the required expansion ratio for the nozzle is met
33

. A 

more detailed description of the external geometry components of the missile can be seen in 

Reference 34.  
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8 SINGLE STAGE SOLID MISSILE SYSTEM OPTIMIZER COMPARISONS 

 All four of the optimization algorithms were compared using the single stage solid motor 

missile system code described in Section 7. To effectively compare the optimizers, they must be 

evaluated on multiple goals and goal sets. In the first set of optimizer tests, the two GA’s, RPSO, 

and compound RPSO were used to match a specified range. By only requiring a match to one 

goal, the optimizers have a higher probability of finding a missile design that successfully meets 

the performance requirement. It would be possible for all four optimizers to find completely 

different, yet nearly equivalent optimal solutions. A more effective comparison of the optimizers, 

however, would require a more difficult goal set. That is why for the next set of tests, the 

optimizers were used to match various goal pairs. By matching two separate goals, such as range 

and takeoff weight, the probability of finding good solutions significantly decreases. The design 

parameters for all four of the optimizers are constrained by the same maximum and minimum 

allowable values so as to allow for the optimizers to potentially choose the same or similar 

designs. The input files for the optimizers can be seen in Appendices F – H. 

 

8.1 Single Stage Solid - Match Range 250,000 ft 

 For the first optimizer test, the algorithms were required to match a single goal: design a 

missile that has a range of 250,000 ft. For all of these tests, the optimizers were allowed to 

perform 100,000 function evaluations and once again, were compared on overall fitness and on 

speed of convergence. Due to the lower amount of function evaluations allowed for these tests 

and its overall performance in the sounding rocket test, the hybrid RPSO was run using 5 
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particles with a 5% search area for the mini-swarm. The fitness for matching range is calculated 

as follows: 

         
                       

  
    (20) 

The corresponding convergence histories for the optimizers are shown in Figure 11. 

 

 

 

 

The real-coded GA was able to achieve the best fitness over the entire length of the optimization 

run. It was able to maintain a fitness nearly an order of magnitude better than the binary GA, 

which was the second best overall performer. Neither the conventional RPSO nor the compound 

RPSO were able to outperform either of the GA’s.  The compound RPSO, however, was able to 

outperform the standard RPSO in both speed of convergence and overall fitness value. The scale 

of the graph should be noted. Even though the compound particle swarm did not match the 

Figure 11. Single Stage Solid Match Range 250,000ft Convergence History 
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desired range as closely as the GA’s, it still missed the target by less than 5 ft, which might be 

considered a sufficient answer.  

As the previous particle swarm input parameter study showed, the velocity parameters for 

the swarm can have a profound effect on the optimizer’s performance. Similar results could 

possibly be demonstrated for the parameters of the mini-swarm. A varied set of control 

parameters could result in increased solution convergence for the compound RPSO. 

The final missile design parameters and relative 3-D missile plots are shown in Table 8 

and Figure 12, respectively. There are significant differences between all four of the optimizer 

designs. Interestingly, the compound RPSO design matches much more closely to the two GA 

designs than it does the standard RPSO. This optimizer test could have shown how single goal 

problems have the ability to produce completely separate but nearly equally optimal results, yet 

all of the optimizers appeared to be converging on a similar solution. There seems to be a direct 

correlation to the size of the missile and the fitness value. The real GA was obviously able to 

match the goal much more closely, but the compound RPSO still only missed the target range by 

less than one missile diameter.   
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Table 8. Single Stage Solid 250,000ft Range Design Parameters 

 

PARAMETER 
COMPOUND 

RPSO 
RPSO BINARY GA REAL GA 

rnose/rbody 0.5940 0.5940 0.4667 0.4921 

lnose/dbody 2.9700 2.9700 2.4677 2.1681 

fuel type 7.7000 8.9100 4.2000 3.6886 

star out R (rpvar) 0.6410 0.6167 0.5857 0.4981 

star inner ratio 0.6043 0.7920 0.3800 0.1907 

number of star pts 7.7251 10.8900 10.6000 7.5305 

fillet radius ratio 0.0468 0.0990 0.0953 0.0565 

eps 0.6700 0.9405 0.8333 0.8321 

star point angle (deg) 1.2394 7.3168 6.4000 2.2710 

fractional nozzle length 0.8517 0.6784 0.8171 0.9489 

dia throat/dbody 0.2983 0.2970 0.2730 0.2794 

fineness ratio 13.3776 14.8500 12.0000 12.2367 

dia stage 1 (m) 0.4375 0.6336 0.4622 0.3952 

wing semispan/dbody 0.0362 0.0495 0.0271 0.0415 

wing root chord/dbody 0.0361 0.0495 0.0214 0.0303 

wing taper ratio 0.9125 0.9468 0.9300 0.9830 

wing LE sweep angle (deg) 5.3544 13.3342 7.4444 1.1327 

xLEw/lbody 0.2330 0.2475 0.2143 0.2423 

tail semispan/dbody 1.2577 1.3860 1.2000 1.3276 

tail root chord/dbody 1.0925 1.0890 0.9667 1.0370 

tail taper ratio 0.6744 0.9483 0.6196 0.8493 

tail LE sweep anlge (deg) 17.2962 3.7229 6.0635 22.5363 

xTEt/lbody 0.9994 0.9900 0.9643 0.9686 

autopilot delay time (sec) 5000.0000 5000.0000 5000.0000 4999.1740 

initial launch angle (deg) 65.5544 73.7197 67.8571 67.2771 

pitch multiplier gain 3.7484 3.9793 3.9200 4.1139 

yaw multiplier gain 1.7744 1.1841 2.3889 1.1935 

nozzle exit dia/dbody 0.8933 0.6196 0.6033 0.8466 

initial pitch cmd angle (deg) -7.0000 -7.0000 -11.2667 -11.4603 

gain in pitch 0.0035 0.0043 0.0100 0.0042 

b2var=b2vane/rexit 0.0050 0.0090 0.0000 0.0085 

time step to actuate noz (sec) 0.4301 0.9307 0.4400 0.9656 

gain in yaw 0.0055 0.0024 0.0100 0.0075 

deltx corrections for z 0.2712 0.7056 0.0000 0.3523 

deltx corrections for y 0.9599 0.6725 0.0000 0.2061 

FITNESS 0.142455 3.704469 7.41948E-05 2.24332E-08 
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Compound RPSO 

 

 
RPSO 

 

 
Binary GA 

 

 
Real GA 

 

 
Figure 12. Single Stage Solid 250,000ft Range 3-D Models 
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8.2 Single Stage Solid - Match Range 750,000 ft 

 For the second optimizer test, the algorithms were once again required to match a range 

goal. This time they were expected to design a missile that has a range of 750,000 ft. Although 

similar to the previous test, this evaluation is still valuable because it helps to further evaluate the 

optimizers by forcing them to explore a separate part of the solution space. Once again, the 

optimizers were allowed to perform 100,000 function evaluations and were compared on overall 

fitness and on how fast they converged. The corresponding convergence histories for the 

optimizers are shown in Figure 13. 

 

 

 

 

Just as in the previous match range problem, the real-coded GA completely outperformed the 

other optimizers in both convergence speed and overall fitness. The RPSO’s also failed once 

again to outperform either of the GA’s. The RPSO was unable to make any further 

Figure 13. Single Stage Solid Match Range 750,000ft Convergence History 
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improvements after the initial fitness jump that occurred after only a tenth of the allowable 

function evaluations were performed. The compound RPSO was able to overcome this and 

produce a design with a fitness value an order of magnitude lower.  

The final missile design parameters and relative 3-D missile plots are shown in Table 9 

and Figure 14, respectively. As with the previous optimizer test, four completely different 

designs were developed by the optimizers. Interestingly, the two RPSO designs are more similar 

to each other, while at the same time, the two GA designs are more similar to each other. This 

could be a testament to the differences between the social behavior theory of the Particle Swarms 

and the evolution theory of the Genetic Algorithms.  

The design chosen by the compound RPSO happened to be one of the larger missiles 

again, but the size disparity between it and the GA’s designs happened to be much larger than in 

the previous test. The hybrid RPSO optimizer design ended up missing the target by less than 5 

ft. This seems like a fairly good result considered it is only just over twice the missile diameter 

and less than 5.8x10
-4

% error. The two GA’s achieved this level of accuracy after less than 

20,000 function evaluations. 
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Table 9. Single Stage Solid 750,000ft Range Design Parameters 

 

PARAMETER 
COMPOUND 

RPSO 
RPSO BINARY GA REAL GA 

rnose/rbody 0.5940 0.5940 0.6000 0.4686 

lnose/dbody 2.9700 2.9700 1.5000 2.4161 

fuel type 3.0716 7.1135 6.3333 4.8264 

star out R (rpvar) 0.7920 0.7920 0.4429 0.5630 

star inner ratio 0.1965 0.5741 0.3333 0.2903 

number of star pts 10.4201 10.8900 10.2000 9.3306 

fillet radius ratio 0.0990 0.0990 0.0533 0.0608 

eps 0.9405 0.9405 0.7944 0.7660 

star point angle (deg) 6.9040 9.3931 5.2000 2.3099 

fractional nozzle length 0.9801 0.7402 0.6862 0.8173 

dia throat/dbody 0.2970 0.2970 0.2563 0.2679 

fineness ratio 14.8500 14.8500 14.3333 12.5506 

dia stage 1 (m) 0.6336 0.6336 0.4919 0.5579 

wing semispan/dbody 0.0495 0.0495 0.0500 0.0373 

wing root chord/dbody 0.0495 0.0495 0.0386 0.0231 

wing taper ratio 0.9801 0.9126 0.9540 0.9874 

wing LE sweep angle (deg) 29.7000 8.2556 3.3016 5.1092 

xLEw/lbody 0.2475 0.2475 0.2071 0.2321 

tail semispan/dbody 1.3860 1.3860 1.4000 1.3079 

tail root chord/dbody 1.0890 1.0890 1.0333 1.0480 

tail taper ratio 0.6678 0.5651 0.7276 0.6418 

tail LE sweep anlge (deg) 24.7908 14.2276 29.0794 13.9887 

xTEt/lbody 0.9836 0.9900 0.9786 0.9903 

autopilot delay time (sec) 5000.0000 5000.0000 5000.0000 4999.3909 

initial launch angle (deg) 46.9515 57.1010 61.4286 65.3084 

pitch multiplier gain 4.3312 3.6348 3.9200 4.0316 

yaw multiplier gain 1.2869 1.0999 2.0714 1.7802 

nozzle exit dia/dbody 0.6604 0.7374 0.7100 0.6705 

initial pitch cmd angle (deg) -7.0000 -7.0000 -9.1333 -12.9696 

gain in pitch 0.0055 0.0046 0.0100 0.0082 

b2var=b2vane/rexit 0.0022 0.0099 0.0000 0.0057 

time step to actuate noz (sec) 0.5286 0.3815 0.9067 0.3822 

gain in yaw 0.0037 0.0079 0.0000 0.0068 

deltx corrections for z 0.3883 0.2938 1.0000 0.7611 

deltx corrections for y 0.5040 0.1351 0.0000 0.1520 

FITNESS 0.43482 5.04715 5.76720E-05 2.48252E-06 
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Figure 14. Single Stage Solid 750,000ft Range 3-D Models 
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8.3 Single Stage Solid - Match Range 100,000 ft Takeoff Weight 2,500 lb 

 To more thoroughly test the optimizers, three more complex goal sets were chosen for 

comparison. The first goal set required the algorithms to match a range of 100,000 ft while also 

matching a takeoff weight of 2,500 lb. As with the single goal tests, the optimizers were allowed 

to perform 100,000 function evaluations. Because the optimizers are required to match two 

goals, they are driven more towards a global solution that minimizes both goals. The 

optimization only required the minimization of single fitness value as before. The fitness is 

determined by summing the goals as follows: 

         
                       

  
 

                         

  
  (21) 

The corresponding convergence histories for the optimizers are shown in Figure 15. 

 

 

 

 

Figure 15. Single Stage Solid Match Range 100,000ft Weight 2,500lb 

Convergence History 
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Though still the best performer, the real-coded GA did not perform overwhelmingly better than 

the other optimizers. The compound RPSO outperformed the standard particle swarm for the 

entire optimization run, with the standard RPSO only coming close with the last large fitness 

jump. This final jump by the hybrid particle swarm after 80,000 function evaluations actually 

pushed it to a better fitness than the binary GA. As previously speculated, the optimizers all 

appear to be driven toward a global minimization solution. There is very little difference between 

the four fitness values. Because the fitness values are relatively high, the actual optimal solution 

to this minimization problem may not have been defined within the prescribed set of allowable 

parameters. The indication of these results is that the compound RPSO is a competitive 

algorithm for complex problems.  

Table 10 and Figure 16 show the final missile design parameters and relative 3-D missile 

plots, respectively. Unlike the previous tests, there does not appear to be as much diversity 

between the designs developed by the optimizers. As expected, the worst performer, the binary 

GA, ended up being most unlike the other designs. The graphical representation for the 

convergence for the RPSO’s is somewhat skewed compared to the GA’s. The current best fitness 

values for all of the optimizers are recorded only at the end of each generation/iteration. For the 

real GA, this is after every function evaluation, and for the binary GA, this is after every 200 

function evaluations. The RPSO’s iterations are much longer, and the best fitness values are 

reported only after more than 4,000 function evaluations. This accounts for a much less gradual 

graphical representation of convergence for the RPSO’s. The compound RPSO may appear more 

gradual due to the fitness value being reported after the much shorter mini-swarm iterations. 
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Table 10. Single Stage Solid 100,000ft Range 2,500lb Weight Design Parameters 

 

PARAMETER 
COMPOUND 

RPSO 
RPSO BINARY GA REAL GA 

rnose/rbody 0.4787 0.5869 0.5333 0.4150 

lnose/dbody 1.7441 1.8614 2.4677 2.4533 

fuel type 6.5340 2.5608 6.3333 7.3769 

star out R (rpvar) 0.5462 0.5870 0.7286 0.7065 

star inner ratio 0.3410 0.1010 0.5200 0.3949 

number of star pts 6.5239 10.5705 8.6000 9.4862 

fillet radius ratio 0.0532 0.0760 0.0813 0.0484 

eps 0.8666 0.8236 0.8889 0.8546 

star point angle (deg) 3.9955 6.3574 7.6000 5.4533 

fractional nozzle length 0.7367 0.9801 0.7386 0.9640 

dia throat/dbody 0.2751 0.2970 0.2524 0.2534 

fineness ratio 14.8500 14.8500 13.0000 12.5510 

dia stage 1 (m) 0.2816 0.2823 0.3401 0.3332 

wing semispan/dbody 0.0322 0.0185 0.0214 0.0209 

wing root chord/dbody 0.0472 0.0455 0.0386 0.0415 

wing taper ratio 0.9452 0.9504 0.9240 0.9228 

wing LE sweep angle (deg) 22.9509 1.0712 11.5873 16.8577 

xLEw/lbody 0.2274 0.2475 0.2500 0.2392 

tail semispan/dbody 1.3860 1.3642 1.2000 1.2000 

tail root chord/dbody 1.0890 0.9325 0.9667 0.9674 

tail taper ratio 0.6547 0.7858 0.5694 0.9270 

tail LE sweep anlge (deg) 13.5621 2.1120 16.6508 9.0799 

xTEt/lbody 0.9965 0.9990 0.9643 0.9769 

autopilot delay time (sec) 5000.0000 5000.0000 5000.0000 4999.1318 

initial launch angle (deg) 54.1655 57.4390 41.4286 57.1196 

pitch multiplier gain 4.2039 4.0119 3.9200 4.3300 

yaw multiplier gain 1.0298 2.5035 2.4286 1.7933 

nozzle exit dia/dbody 0.6646 0.9398 0.8700 0.9483 

initial pitch cmd angle (deg) -7.0000 -7.0000 -8.0667 -11.9299 

gain in pitch 0.0001 0.0084 0.0100 0.0044 

b2var=b2vane/rexit 0.0069 0.0000 0.0100 0.0043 

time step to actuate noz (sec) 0.4129 0.3977 0.7200 0.7346 

gain in yaw 0.0085 0.0036 0.0100 0.0076 

deltx corrections for z 0.2438 0.6875 0.0000 0.1884 

deltx corrections for y 0.8862 0.7156 0.0000 0.8768 

TOTAL FITNESS 18.04673 18.19579 19.63227 15.82746 

Range Error 0.64565 5.52699 0.85501 0.04880 

Weight Error 17.40109 12.66880 18.77725 15.77866 
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Figure 16. Single Stage Solid 100,000ft Range 2,500lb Weight 3-D Models 
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Figure 17. Match Range 100,000ft Error, Test 3 

 
 

Figure 18. Match Weight 2,500lb Error, Test 3 

Figure 17 shows the solution convergence plot for the match range goal of the optimization. 

Only the real GA had large fluctuations in its range error while the RPSO’s and binary GA 

maintained nearly constant values after their initial improvements, with only small changes 

during the rest of the run. Figure 18 shows the convergence history for the weight error.  
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For this goal, only the standard RPSO showed large fluctuations in its weight error, while the 

other optimizers remained mostly constant with only small improvements for the majority of the 

run. The standard RPSO managed to be the worst performer in the range goal and the best 

performer in the weight goal. Interestingly, the compound RPSO’s improvement over the binary 

GA involved it having better answers for both the range goal and the weight goal.  
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8.4 Single Stage Solid - Match Range 350,000 ft Takeoff Weight 4,000 lb 

 The second two goal test required the optimizers to match a range of 350,000 ft while 

also matching a takeoff weight of 4,000 lb. Figure 19 shows the convergence histories for the 

optimizers. 

 

 

 

Once again, the real GA ended up being the best performing optimizer. The compound RPSO 

was able to outperform the single phase particle swarm optimizer for this goal and produce an 

answer better than the binary GA. The hybrid RPSO’s ability to take advantage of a much more 

thorough local search is very apparent around the 80,000 function evaluation mark. The standard 

RPSO was unable to make any significant improvements after its initial jump, but the hybrid was 

able to make some significant improvements with the use of the mini-swarm. The optimizers 

were not grouped as closely together as with the previous range-weight goal set and the run 

produced multiple orders of magnitude improvement between the four fitness values.  

Figure 19. Single Stage Solid Match Range 350,000ft Weight 4,000lb 

Convergence History 
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Table 11 and Figure 20 show the final missile design parameters and relative 3-D missile 

plots, respectively. Looking at these, the compound RPSO effectiveness becomes more apparent. 

The compound RPSO was able to develop a unique design compared to the three other 

optimizers, and although not as accurate as the real-coded GA, its fitness is better than that of the 

binary GA. This test run shows how making multiple calls to the mini-swarm after failing to 

improve can prove effective. The standard RPSO was unable to improve over the length of the 

run, but because the hybrid continued to call upon the mini-swarm, it was able to make a very 

significant improvement before reaching the maximum number of function evaluations.    
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Table 11. Single Stage Solid 350,000ft Range 4,000lb Weight Design Parameters 

 

PARAMETER 
COMPOUND 

RPSO 
RPSO BINARY GA REAL GA 

rnose/rbody 0.5940 0.4040 0.4000 0.5450 

lnose/dbody 2.9700 2.2931 2.4677 2.6525 

fuel type 7.3291 3.8625 2.6000 5.3379 

star out R (rpvar) 0.5016 0.5360 0.5142 0.4674 

star inner ratio 0.3103 0.2878 0.7533 0.3902 

number of star pts 9.1741 5.0500 9.4000 5.9667 

fillet radius ratio 0.0877 0.0733 0.0720 0.0636 

eps 0.6408 0.6060 0.8611 0.7068 

star point angle (deg) 4.8039 6.2506 2.2000 7.7415 

fractional nozzle length 0.7767 0.7463 0.6914 0.7006 

dia throat/dbody 0.2559 0.2548 0.2865 0.2661 

fineness ratio 11.9358 10.1000 11.0000 11.4019 

dia stage 1 (m) 0.4824 0.5099 0.4858 0.4766 

wing semispan/dbody 0.0246 0.0344 0.0214 0.0265 

wing root chord/dbody 0.0233 0.0450 0.0214 0.0405 

wing taper ratio 0.9143 0.9090 0.9480 0.9719 

wing LE sweep angle (deg) 27.2583 27.8624 12.5079 20.4673 

xLEw/lbody 0.2053 0.2020 0.2285 0.2206 

tail semispan/dbody 1.2577 1.2120 1.3333 1.3692 

tail root chord/dbody 1.0566 0.9090 1.0333 0.9740 

tail taper ratio 0.6420 0.5050 0.5964 0.5899 

tail LE sweep anlge (deg) 23.3743 23.4372 28.1587 12.5368 

xTEt/lbody 0.9682 0.9595 0.9642 0.9867 

autopilot delay time (sec) 5000.0000 5000.0000 4999.0000 4999.2974 

initial launch angle (deg) 75.7407 64.9833 53.5714 70.8039 

pitch multiplier gain 3.8389 3.6360 4.2933 3.6346 

yaw multiplier gain 2.6228 1.3101 3.0634 1.7781 

nozzle exit dia/dbody 0.8719 0.6135 0.7366 0.7861 

initial pitch cmd angle (deg) -7.0000 -7.0000 -11.2666 -9.8070 

gain in pitch 0.0100 0.0053 0.0000 0.0030 

b2var=b2vane/rexit 0.0078 0.0000 0.0000 0.0062 

time step to actuate noz (sec) 0.8941 0.3030 0.8600 0.4220 

gain in yaw 0.0017 0.0003 0.0100 0.0068 

deltx corrections for z 0.0607 0.7626 0.0000 0.3531 

deltx corrections for y 0.0382 0.5597 1.0000 0.6857 

TOTAL FITNESS 4.76180 71.77821 8.05037 0.06887 

Range Error 2.65134 71.63351 0.76689 0.05249 

Weight Error 2.11046 0.14468 7.28348 0.01638 
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Figure 20. Single Stage Solid 350,000ft Range 4,000lb Weight 3-D Models 
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Figure 21. Match Range 350,000ft Error, Test 4 

 
 

Figure 22. Match Weight 4,000lb Error, Test 4 

Figure 21 shows the solution convergence plot for the range error. The real-coded GA once again 

had large fluctuations in the range error while the other optimizers only had a small number of 

changes in the range error. The compound RPSO maintained a poor range error close to that of 

the standard RPSO until the final call of the mini-swarm managed to provide a drastically better 

solution. Figure 22 shows the weight error convergence history for the optimizers.  
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The real GA continued to improve steadily with only minor fluctuations, while the binary GA 

showed no changes after about 7,000 function evaluations. The mini-swarm of the compound 

RPSO managed to make significant improvements in both goal errors at the end of the run. The 

hybrid RPSO was actually able to match the weight much more closely than the binary GA, 

accounting for its overall better fitness.  The standard RPSO was able to effectively minimize the 

weight goal, but its inability to similarly minimize the range goal ultimately led to its poor 

performance.  
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8.5 Single Stage Solid - Match Time of Flight 240 sec Takeoff Weight 2,500 lb 

 The final two goal test required the optimizers to match a 240 sec time of flight while 

also matching a takeoff weight of 2,500 lb. The optimizers have already proven their ability to 

match range goals, so this test uses another performance parameter for evaluation. Once again, 

the optimization only required the minimization of a single fitness value as before. The fitness is 

determined by summing the goals as follows: 

         
                   

  
 

                         

  
  (22) 

Figure 23 shows the convergence histories for this optimization test. 

 

 

The binary GA ended up being the best performer of this optimization test, but did not perform 

overwhelmingly better than the other optimizers. The compound RPSO outperformed the 

standard particle swarm for most of the optimization run and was able to develop an answer very 

near that of the GA’s. The optimizers were once again driven toward a global minimization 

solution with there being very little difference between the four fitness values. The relatively 

Figure 23. Single Stage Solid Match TOF 240sec Weight 2,500lb 

Convergence History 
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high fitness values may have resulted from the actual optimal solution not being defined within 

the prescribed set of allowable parameters.  

The final missile design parameters and relative 3-D missile plots are shown in Table 12 

and Figure 24, respectively. The hybrid RPSO was once again able to develop a design 

completely unlike the others while maintaining a performance very comparable to the GA’s. 

Other than the nose parameters, most of the other design parameters for the hybrid are 

significantly different than those of the other optimizers. 

 

 

 



64 
 

Table 12. Single Stage Solid 240sec TOF 2,500lb Weight Design Parameters 

 

PARAMETER 
COMPOUND 

RPSO 
RPSO BINARY GA REAL GA 

rnose/rbody 0.4040 0.4040 0.4667 0.4000 

lnose/dbody 1.5048 2.1651 2.8065 1.6679 

fuel type 2.9327 5.1677 2.0667 2.5834 

star out R (rpvar) 0.5231 0.5159 0.5857 0.7075 

star inner ratio 0.2099 0.2807 0.2400 0.5570 

number of star pts 5.0439 5.1944 11.0000 10.3661 

fillet radius ratio 0.0888 0.0601 0.1000 0.0468 

eps 0.6135 0.6419 0.7889 0.7175 

star point angle (deg) 4.9593 6.5429 5.8000 3.5387 

fractional nozzle length 0.6704 0.6781 0.7752 0.9069 

dia throat/dbody 0.2532 0.2525 0.2627 0.2500 

fineness ratio 10.9351 12.5823 12.0000 11.5040 

dia stage 1 (m) 0.2967 0.2853 0.3088 0.3180 

wing semispan/dbody 0.0110 0.0467 0.0157 0.0104 

wing root chord/dbody 0.0348 0.0495 0.0157 0.0473 

wing taper ratio 0.9087 0.9090 0.9120 0.9399 

wing LE sweep angle (deg) 2.7909 12.7349 18.0317 18.8796 

xLEw/lbody 0.2021 0.2020 0.2357 0.2064 

tail semispan/dbody 1.2120 1.2120 1.2667 1.2000 

tail root chord/dbody 0.9059 0.9090 0.9000 0.9440 

tail taper ratio 0.5114 0.5050 0.7817 0.7500 

tail LE sweep anlge (deg) 9.9175 29.7000 22.6349 30.0000 

xTEt/lbody 0.9907 0.9900 0.9571 0.9683 

autopilot delay time (sec) 5000.0000 5000.0000 5000.0000 4999.5958 

initial launch angle (deg) 83.7936 84.1500 85.0000 85.0000 

pitch multiplier gain 4.3675 4.3560 3.9733 3.6810 

yaw multiplier gain 3.4244 3.4650 3.4206 1.2194 

nozzle exit dia/dbody 0.9355 0.9405 0.9500 0.9483 

initial pitch cmd angle (deg) -7.0000 -7.0000 -9.6667 -7.9205 

gain in pitch 0.0099 0.0099 0.0100 0.0052 

b2var=b2vane/rexit 0.0088 0.0099 0.0000 0.0049 

time step to actuate noz (sec) 0.9950 0.9900 0.3467 0.5563 

gain in yaw 0.0097 0.0099 0.0000 0.0065 

deltx corrections for z 0.9910 0.9900 1.0000 0.5178 

deltx corrections for y 0.9929 0.9900 1.0000 0.2823 

TOTAL FITNESS 13.79352 14.23533 13.53377 13.59890 

TOF Error 13.79294 13.68900 13.53333 13.59890 

Weight Error 0.00058 0.54633 0.00045 7.27596E-13 
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Compound RPSO 

 

 
RPSO 

 

 
Binary GA 

 

 
Real GA 

 
Figure 24. Single Stage Solid 240sec TOF 2,500lb Weight 3-D Models 
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Figure 25. Match TOF 240sec Error, Test 5 

 
 

Figure 26. Match Weight 2,500lb Error, Test 5 

Figure 25 shows the time of flight error history for the optimizers. The error for this goal 

accounted for the majority of the error for all of the optimizers. It appears the solution space 

might have limited the time of flight error to around 13.5. Figure 26 shows the convergence 

history for the weight errors.  
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Table 13. Final Optimizer Fitness Comparisons 

 

 
COMPOUND 

RPSO 
RPSO BINARY GA REAL GA 

Match 250,000ft 0.142455 3.704469 7.41948E-05 2.24332E-08 

Match 750,000ft 0.434820 5.047148 5.76720E-05 2.48252E-06 

Match 100,000ft 2,500lb 18.046730 18.19579 19.63227 15.82746 

Match 350,000ft 4,000lb 4.761799 71.778210 8.05037 0.06887 

Match 240sec 2,500lb 13.793520 14.235330 13.53377 13.59890 

 

All of the optimizers performed fairly well at matching the weight goal for this problem. Other 

than the single-phase RPSO, the optimizers were able to match the weight within a hundredth of 

a pound. The added accuracy of the real GA is purely academic and may make the graph a bit 

misleading. Because the optimizers were able to match the weight so well and the time of flight 

so poorly, this most likely means it would require a much larger missile to achieve the required 

flight time. The optimizers probably chose to match the weight goal instead of the time goal 

because the weight goal is an order of magnitude larger and resulted in much higher fitness 

values when time of flight was matched. This discrepancy could be addressed by goal weighting. 

Table 13 shows the overall fitness results for all four of the optimizers for the five single 

stage solid missile test cases performed. 
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9 CONCLUSIONS AND RECOMMENDATIONS 

A repulsive particle swarm optimizer has been developed by compounding a RPSO for 

use on complex engineering problems. This compound RPSO was developed based on a 

previously modified version of the standard RPSO that was adapted to make the algorithm 

compatible with reasonable engineering problems. To demonstrate the utility of this approach, 

this new optimization algorithm has been applied to a complex rocket propulsion application. 

The standard RPSO algorithm was first coupled to a solid motor sounding rocket design code so 

that a study could be performed on its input parameters and how they affect optimizer 

performance. From these results, the compound particle swarm optimizer was developed by 

imbedding a second, smaller particle swarm within the original algorithm. These two forms of 

the RPSO were then attached to a full 6-DOF single stage solid missile design code and 

compared against a binary and real-coded GA. A number of single and two goal tests were 

performed in which the optimizers were allowed to run for 100,000 function evaluations in order 

to compare their fitness convergence. Even in its early stages of development, the compound 

particle swarm optimizer showed significant potential as a useful engineering tool when 

compared to the genetic algorithms. The hybrid RPSO was generally able to converge much 

faster than the standard RPSO, but did not necessarily always have the best fitness at the end of 

the optimization run. Although unable to outperform the GA’s, the particle swarm was shown to 

be effective. The compound RPSO actually seemed to be more competitive on the more complex 

problems.  
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Further studies on the compound RPSO’s mini-swarm control parameters are 

recommended to determine whether a more optimum set exists for better overall convergence or 

to determine varying sets of input parameters for use on different problems. It may also be 

beneficial to use a separate optimizer to optimize the input parameters for use on certain 

problems or for different engineering applications. The standard RPSO’s inability to 

continuously improve on some of the goals may show that the optimized input parameters found 

in the sounding rocket study may not be the best parameters for use on the full missile code. The 

hybrid swarm also showed its ability to make improvements when the single-phase could not by 

making repeated calls to the mini-swarm after the larger swarm failed to show improvement. 

Changing the frequency of these calls may also have a profound impact on the overall solution. 

The compound RPSO proved extremely useful on cases when the standard RPSO would 

fail to improve during most of the run. Studies have also shown that the number of particles, the 

percentage of the solution space, and the number of iterations allowed for the mini-swarm can 

have a significant impact on the solution convergence. A fundamental modification to the local 

search portion of the particle swarm optimizer may make it more efficient and may lead to 

dramatically improved results. For example, the Pattern Search algorithm may be used on the 

best performer at the completion of the mini-swarm runs in order to improve results. The RPSO 

and especially the compound RPSO are relatively new tools for use in this area, but the 

preliminary results have proven promising. The compound RPSO was even able to outperform 

the binary GA on two of the multi-goal test cases. However, the RPSO’s are still not able to 

converge to solutions nearly as quickly as the GA’s. The current compound RPSO algorithm has 

shown a vast improvement to Mishra’s particle swarm algorithm with plenty of room left for 

further advancement. 
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APPENDIX A: Sounding Rocket Binary GA Input File 

.false.    ; micro 

.false.    ; pareto 

.false.                                       ; steady_state 

.false.    ; maximize 

.true.    ; elitist 

.true.    ; creep 

.false.    ; uniform 

.false.    ; restart 

.true.    ; remove_dup 

.false.    ; niche 

.false.    ; phenotype 

0.04    ; niche diversity percentile goal 

61742    ; iseed 

0.9    ; pcross 

0.002    ; pmutation 

0.05    ; pcreep 

3    ; ngoals 

1.,1.,1.    ; xgls(j) 

1.    ; domst 

2550    ; convrg_chk (end of group2) 

11    ; no_para 

 

 'kfuel 1' ,  8.0 , 1.0 , 1.0 , .false.  ;xmax,xmin,resolution,niche_par 

 'rpvar 2' ,  0.95  , 0.1     , 0.01 , .false.  ;xmax,xmin,resolution,niche_par 

 'rivar 3' ,  0.99  , 0.01   , 0.01 , .false.  ;xmax,xmin,resolution,niche_par 

 'nsp 4'  ,  17.0  , 3.0     , 2.0 , .false.  ;xmax,xmin,resolution,niche_par          

 'fvar 5'  ,  0.2    , 0.01   , 0.01 , .false.  ;xmax,xmin,resolution,niche_par          

 'eps 6'  ,  0.9    , 0.1     , 0.1 , .false.  ;xmax,xmin,resolution,niche_par          

 'ptang 7' ,  10.0  , 1.0     , 0.1 , .false.  ;xmax,xmin,resolution,niche_par 

 'gl  8'  ,  800.  , 100.   , 2.5 , .false.  ;xmax,xmin,resolution,niche_par   

 'rbi  9'  ,  24.    , 2.0     , 0.5 , .false.  ;xmax,xmin,resolution,niche_par 

 'diath 10' ,  20.0 , 0.5     , 0.1 , .false.  ;xmax,xmin,resolution,niche_par                  

 'ratio'  ,  10. , 1.5     , 0.1 , .false.  ;xmax,xmin,resolution,niche_par 

   1                                              ; ifreq 

   400                                          ; mempops 

   625                                          ; maxgen 
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APPENDIX B: Sounding Rocket Real GA Input File 

.false.    ;generational  ONLY 1 GA TYPE CAN BE  

.true.    ;steady_state  ONLY 1 GA TYPE CAN BE 

.false.    ;hybrid        ONLY 1 GA TYPE CAN BE 

.false.    ;uniform x (50% parent1 and parent2)     

.true.    ;Blend x (blend of parents) 

.false.    ;singlepointx     

.false.    ;var_mutation  true allows mutation  

2000    ;kcheck # of gen before 1/5 rule ck   

0.2    ;xmutation_rate  how much mutation  

.1    ;xmutation_amount % of variables mutate   

3.    ;ngoals                               

1.,1.,1.    ;xgls(j)            

11    ;no_para 

 

'kfuel 1' ,  8.0 , 1.0 , 1.0 , .false.  ;xmax,xmin,resolution,niche_par 

'rpvar 2' ,  0.95 , 0.1 , 0.01 , .false.  ;xmax,xmin,resolution,niche_par 

'rivar 3' ,  0.99 , 0.01 , 0.01 , .false.  ;xmax,xmin,resolution,niche_par 

'nsp 4'  ,  17.0 , 3.0 , 2.0 , .false.  ;xmax,xmin,resolution,niche_par          

'fvar 5'  ,  0.2 , 0.01 , 0.01 , .false.  ;xmax,xmin,resolution,niche_par          

'eps 6'  ,  0.9 , 0.1 , 0.1 , .false.  ;xmax,xmin,resolution,niche_par          

'ptang 7' ,  10.0 , 1.0 , 0.1 , .false.   ;xmax,xmin,resolution,niche_par 

'gl  8'  ,  800. , 100. , 2.5 , .false.  ;xmax,xmin,resolution,niche_par   

'rbi  9'  ,  24. , 2.0 , 0.5 , .false.  ;xmax,xmin,resolution,niche_par 

'diath 10' ,  20.0 , 0.5 , 0.1 , .false.  ;xmax,xmin,resolution,niche_par                  

'ratio'  ,  10. , 1.5 , 0.1 , .false.  ;xmax,xmin,resolution,niche_par 

1    ; ifreq 

30    ; mempops 

250000   ; maxgen 
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APPENDIX C: Sounding Rocket RPSO Input File 

0  ;maximize objective function = 1, minimize objective function = 0 

30  ;population size, n 

10  ;neighboring population sample size, nn (must be less than n) 

100  ;maximum allowable number of independent variables, mx 

5  ;local sample space size, nstep (5 < nstep <15) 

100  ;results displayed every "nprn" iteration, nprn 

1  ;chaos parameter, nsigma (=0 no chaotic perturbation, =1 chaotic perturbation) 

3  ;neighborhood topology type, itop (=1 ring, =2 ring and random, =3 random)  

0.75d0  ;particle velocity term 1 constant, a1 

0.05d0  ;particle velocity term 2 constant, a2 

0.25d0    ;particle velocity term 3 constant, a3 

0.36d0  ;particle velocity inertia constant, w 

0.01d0  ;chaos conditioning term, sigma  ... should not have to change 

4863  ;random generator seed 

600         ;number of iterations (generations), itrn 

11  ;actual number of independent variables, m 

3  ;ngoals 

1.,1.,1.  ; xgls(j) 

'kfuel 1' ,  8.0d0 , 1.0d0  , 1.0d0  ;xmax,xmin,vlim 

'rpvar 2'    ,  0.95d0 , 0.1d0  , 1.0d0  ;xmax,xmin,vlim 

'rivar 3' ,  0.99d0 , 0.01d0 , 1.0d0  ;xmax,xmin,vlim 

'nsp 4'  ,  17.0d0 , 3.0d0  , 1.0d0  ;xmax,xmin,vlim          

'fvar 5'  ,  0.2d0 , 0.01d0 , 1.0d0  ;xmax,xmin,vlim          

'eps 6'  ,  0.9d0 , 0.1d0  , 1.0d0  ;xmax,xmin,vlim        

'ptang 7' ,  10.d0 , 1.0d0  , 1.0d0  ;xmax,xmin,vlim 

'gl 8'       ,  800.d0 , 100.0d0 , 1.0d0  ;xmax,xmin,vlim   

'rbi 9'  ,  24.d0 , 2.0d0  , 1.0d0  ;xmax,xmin,vlim 

'diath 10'   ,  20.d0 , 0.5d0  , 1.0d0  ;xmax,xmin,vlim          

'ratio 11'   ,  10.0d0 , 1.5d0  , 1.0d0  ;xmax,xmin,vlim          
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APPENDIX D: RPSO Source File 

      subroutine swarm 

c 

c     SUBROUTINE TO FIND GLOBAL MINIMUM BY REPULSIVE PARTICLE SWARM METHOD 

c     WRITTEN BY SK MISHRA, DEPT. OF ECONOMICS, NEHU, SHILLONG (INDIA) 

c 

c     modified by R.M. Jenkins, Auburn University (May-November 2009) to 

c     include constrained optimization based on user-input parameter limits 

c     and more realistic parameter behavior in multi-disciplinary 

c     engineering optimization problems 

c 

      implicit double precision(a-h,o-z) 

      parameter(np=100,nnp=25,mxp=100,nstepp=25,itrnp=2200,nsigmap=1) 

      parameter(itopp=3,nprnt=100) 

      parameter(npr=200,mstr=750,mpop=400,ngls=20) 

      character names*14 

      character ext*5,fname*80 

      COMMON /RNDM/IU,IV 

      common/swarmcontrol/minmax,ibest,mvar,iter,member,intl,intlans, 

     &bstwrt,shtans 

      common/bounds/xxmax(mxp),xxmin(mxp),vlim(mxp) 

C     common/pass/yy(15,100) 

      common/range/rangej(mxp) 

      common/pop/amn(np) 

      common/cal/ical 

      common/best/bestans,bestyy(mxp) 

      common/gls/ngoals 

      common/gls2/xgls(ngls*2) 

      INTEGER IU,IV 

      dimension x(np,mxp),v(np,mxp),a(mxp),vi(mxp),tit(50),c(mxp) 

      dimension xx(np,mxp),f(np),v1(mxp),v2(mxp),v3(mxp),v4(mxp) 

      dimension bst(mxp),xmax(mxp),xmin(mxp),names(mxp+1) 

      dimension cenj(mxp),xval(np,mxp),vval(np,mxp),z(np,mxp) 

      dimension vlimin(mxp),vlimax(mxp),gbst(np,mxp),bestpop(itrnp) 

      dimension trial(mxp) 

      dimension xoa(itrnp,np,mxp),sol(np),bestx(itrnp,mxp) 

      dimension fminmem(np),xbest(np,mxp) 

      dimension bwt(mxp) 

      data fmin /1.0d10/ 

      common/fcount/fcount 

      integer fcount 

      common/pass/yy(1,15,30),ys(11,40) 

      integer pnlt(np),bstwrt 

c 

c     minmax   = 1 maximize; = 0 minimize 

c     n    = population size 

c     nn   = neighboring population sample size (must be less than n) 

c     mx   = maximum allowable number of independent variables (f(x1,x2,......,mx) 

c     nstep   = local tunneling parameter (ignores local gradients) 

c                 5 < nstep < 15 
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c     nprn   = results displayed every nprn iteration 

c     nsigma is a perturbation parameter 

c                 nsigma = 0  no chaotic perturbation 

c                 nsigma = 1  chaotic perturbation 

c     itop   = neighbor topology type 

c                 itop = 1    ring 

c                 itop = 2    ring and random 

c                 itop = 3    random 

c     iu   = random number generator seed 

c     itrn   = number of iterations (generations)  

c     m          = actual number of independent variables  

c     xmax,xmin   = maximum and minimum parameter values; (xmax-xmin) = range 

c     vlim        = upper limit on particle velocity, expressed as a 

c      multiplier on parameter range (maximum = 1.0)               

c 

      epsilon=1.D-20 ! ACCURACY NEEDED FOR TERMINATON 

c     

      open(unit=5,file='rpsoin.dat') 

      open(unit=4,file='funcount.dat') 

      open(unit=36,file='initpop.dat') 

      open(unit=48,file='Best_data.dat') 

      read(5,*)minmax 

      read(5,*)n 

      read(5,*)nn 

      read(5,*)mx 

      read(5,*)nstep 

      read(5,*)nprn 

      read(5,*)nsigma 

      read(5,*)itop 

      read(5,*)a1 

      read(5,*)a2 

      read(5,*)a3 

      read(5,*)w 

      read(5,*)sigma 

      read(5,*)iu 

      read(5,*)itrn 

      read(5,*)m 

      read(5,*) ngoals  

      read(5,*) (xgls(j),j=2,ngoals+1) 

c 

      xgls(1)=float(ngoals) 

      ys(4,5)=dble(float(ngoals)) 

 

      do j=1,m 

      read(5,*) names(j),xmax(j),xmin(j),vlim(j) 

 if(vlim(j).gt.1.0d0) vlim(j)=1.0d0 

 xxmax(j)=xmax(j) 

 xxmin(j)=xmin(j) 

 enddo 

 close(5) 

      names(m+1)='fln' 

      names(m+2)='z0' 

      names(m+3)='tol' 

      names(m+4)='parmatch' 

c 

      FFMIN=1.D30 
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      fmin=1.0d10 

      LCOUNT=0 

      npop=n 

      mvar=m 

c 

c     generate boundaries for solution space 

c 

      iter=1 

      fcount = 0 

      avg = 0 

      bstwrt = 0 

      do j=1,m 

 rangej(j)=xmax(j)-xmin(j) 

      enddo 

c 

c     Generate an initial random population of m-tuple parameters x(i,j)  

c     for "n" population members and calculate the fitness function of each member.   

c     Each parameter is constrained to lie within user specified ranges. 

c 

      intl = 0 

      pnlt = 0 

      shtans = 10e9 

      write(*,*)'filling initial population with viable solutions' 

      isol=0 

c  

      write(36,714)(names(i),i=1,m), 

     & ('fitness') 

  714 format(7x,120(a14,1x)) 

c 

   50 do 450 i=1,100000 

        do j=1,m 

   rangej(j)=xmax(j)-xmin(j) 

          call random(rand) 

   trial(j)=rand*rangej(j)+xxmin(j) 

   a(j)=trial(j) 

   ys(9,j)=a(j) 

 enddo 

   ys(4,2)=dble(float(isol+1)) 

   ys(4,3)=dble(float(0)) 

        call objective_function(a,M,solution) 

 if(solution.lt.1.0d10.and.isol.lt.n.and.i.le.100000)then 

   isol=isol+1 

   write(*,*)i,isol,sngl(solution) 

   sol(isol)=solution 

   fminmem(isol)=solution 

          do k=1,m 

     x(isol,k)=a(k)  

   enddo 

   if(isol.eq.n)then 

           write(*,*)'initial population filled' 

    goto 60 

   endif 

 endif 

 

  450 continue 

c 
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      write(*,*)'initial population could not be completely filled 

     &with viable solutions' 

      do i=isol+1,n 

      fminmem(i)=1.0d10 

        do k=1,m 

   call random(rand) 

   x(i,k)= rand*rangej(k)+xmin(k)  

 enddo 

      sol(i) = 1.0d10 

      enddo 

   60 continue 

c 

c  write initial population data 

      do i=1,n 

      write(36,716)i,(x(i,ii),ii=1,m), 

     & (sol(i)) 

  716 format(1x,i3,1x,120(e14.8,1x)) 

      enddo 

      close(unit=36) 

c  determine best member of initial population 

      fmin=sol(1) 

      bestans=sol(1) 

      do j=1,m 

       bestyy(j)=x(1,j) 

      enddo 

      ibest=1 

      do i=2,n 

 if(sol(i).lt.fmin)then 

   fmin=sol(i) 

   bestans=sol(i) 

   do j=1,m 

           bestyy(j)=x(i,j) 

   enddo 

   ibest=i 

 endif 

      enddo 

  

      do j=1,n 

 avg = avg + sol(j) 

      enddo 

      avg = avg/n 

 

      best0=fmin  !best value returned from random population 

c 

c     prepare data for next generation 

c 

      do i=1,n 

 member=i 

        amn(i)=fminmem(i) 

        do j=1,m 

   a(j)=x(i,j) 

          z(i,j)=a(j) 

c 

c     randomize initial generation velocities 

c 

          call velocity(i,j,x,a1,dvelmin,dvelmax,velmin,velmax,rangevel) 
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          call random(rand1) 

          vtemp=rand1*rangevel+velmin 

   v(i,j)=vtemp-x(i,j) 

 enddo 

      enddo 

c 

      DO 100 ITER=1,ITRN  !*** THIS IS THE GENERATION LOGIC LOOP ***  

c 

      ys(4,3)=dble(float(iter)) 

      if(fcount.gt.100000) goto 999 

c 

      write(ext,'(i5)') iter 

      do kb=1,5 

       if(ext(kb:kb).eq.' ')ext(kb:kb)='0' 

      enddo 

      fname='Iteration.'//ext 

      open(unit=45,file=fname,status='unknown') 

      write(45,714)(names(i),i=1,m), 

     & ('fitness') 

c 

        do i=1,n  !*** THIS IS THE POPULATION LOGIC LOOP *** 

           member=i 

           do j=1,m 

            if(iter.eq.1)then 

      a(j)=z(i,j) 

     else 

      a(j)=z(i,j)+v(i,j) !array of all independent variables  

c               for particle "i" in a given generation 

     endif 

             c(j)=a(j) 

             vi(j)=v(i,j)         !array of velocities for particle "i" 

           enddo 

c      

c      LSRCH lets each particle look in a limited "volume" of space  

c      to determine if a better solution s available.  The array of parameters 

c      for such a solution, if one exists, is called xx(member,i) 

c  

         amnn=amn(member) 

         intl=1 

c 

  call lsrch(a,m,nstep,amnn,bst,fi) 

   70      if(fi.lt.amnn)then 

      amn(member)=fi 

    endif 

           do in=1,m 

            xx(member,in)=bst(in) 

           enddo 

         f(i)=fi 

  write(45,716)i,(a(ii),ii=1,m),(f(i)) 

        enddo   !*** END OF POPULATION LOGIC LOOP *** 

c 

      if(iter.eq.1)then 

         bestpop(iter)=f(1) 

  ibest=1 

         do i=2,n 

     if(f(i).lt.bestpop(iter))then 
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       bestpop(iter)=f(i) 

       ibest=i 

     endif 

  enddo 

  fmin=bestpop(iter) 

  bestoa=fmin 

     member=1 

     intl=2 

     call setup 

      endif 

c 

c     now consider all other iterations 

c 

      bestpop(iter)=f(1) 

      ibest=1 

      do i=2,n 

  if(f(i).lt.bestpop(iter))then 

    bestpop(iter)=f(i) 

    ibest=i 

  endif 

      enddo 

      if(bestpop(iter).lt.bestoa)then 

        bestoa=bestpop(iter) 

     member=1 

     intl=2 

     call setup 

      endif       

 fmin=bestpop(iter) 

  

      do j=1,n 

 avg = avg + f(j) 

      enddo 

      avg = avg/n 

 

      write(27,*)'iteration no.',iter,'     fitness =',sngl(bestans) 

      write(48,*)'iteration no.',iter,'     fitness =',sngl(bestans) 

      write(*,*)'iteration no.',iter,'     fitness =',sngl(bestans) 

      write(4,*) iter,fcount,sngl(bestans),avg 

      avg = 0 

 

      bstwrt = 1 

      do l=1,m 

      bwt(l) = bestyy(l) 

      enddo 

      call objective_function(bwt,M,solution) 

 

      do j=1,m 

      write(27,*)bestyy(j) 

      write(48,*)bestyy(j) 

      enddo 

      bstwrt = 0 

c 

c     F(I) CONTAINS THE LOCAL BEST VALUE OF FUNCTION FOR ITH INDIVIDUAL 

c 

c     XX(I,J) IS THE M-TUPLE VALUE OF X ASSOCIATED WITH LOCAL BEST F(I) 

c 
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c      NOW LET EVERY INDIVIDUAL RANDOMLY CONSULT NN(<<N) COLLEAGUES AND 

c      FIND THE BEST AMONG THEM 

c 

      do i=1,n 

c     ------------------------------------------------------------------ 

        IF(ITOP.GE.3) THEN 

c     RANDOM TOPOLOGY ****************************************** 

c     CHOOSE NN COLLEAGUES RANDOMLY AND FIND THE BEST AMONG THEM 

          BEST=1.0D10 

           DO II=1,NN 

                 CALL RANDOM(RAND) 

               NF=INT(RAND*N)+1 

                IF(BEST.GT.F(NF)) THEN 

                 BEST=F(NF) 

                NFBEST=NF 

                 ENDIF 

           ENDDO 

        ENDIF 

C---------------------------------------------------------------------- 

        IF(ITOP.EQ.2) THEN 

C     RING + RANDOM TOPOLOGY ****************************************** 

        BEST=1.0D10 

          CALL NEIGHBOR(I,N,I1,I3) 

          DO II=1,NN 

                IF(II.EQ.1) NF=I1 

                 IF(II.EQ.2) NF=I 

                  IF(II.EQ.3) NF=I3 

                      IF(II.GT.3) THEN 

                     CALL RANDOM(RAND) 

                      NF=INT(RAND*N)+1 

                     ENDIF 

                  IF(BEST.GT.F(NF)) THEN 

                  BEST=F(NF) 

                  NFBEST=NF 

                 ENDIF 

             ENDDO 

        ENDIF 

C--------------------------------------------------------------------- 

        IF(ITOP.LE.1) THEN 

C     RING TOPOLOGY ************************************************** 

        BEST=1.0D10 

           CALL NEIGHBOR(I,N,I1,I3) 

           do ii=1,3 

                if(ii.eq.1) nf=i1 

                if(ii.eq.2) nf=i 

                if(ii.eq.3) nf=i3 

                if(best.gt.f(nf)) then 

                  best=f(nf) 

                  nfbest=nf 

                endif 

             enddo 

        endif 

c--------------------------------------------------------------------- 

c     Each particle "i" will now move through the solution space (with a 

c     "velocity" V) based on the following criteria 

c 
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         do j=1,m 

            vlimin(j)=-(x(i,j)-xxmin(j)) 

     vlimax(j)=xxmax(j)-x(i,j) 

  enddo 

c 

c     (1) velocity based on the particle's experience, including memory of  

c         it's best position in the past ... xx(i)  

c      

      do j=1,m 

        CALL RANDOM(RAND) 

        V1(J)=A1*RAND*(XX(I,J)-X(I,J)) 

c 

c     (2) velocity based on neighboring particles best experience, based on 

c         the choice of solution topology ... "W" is an "inertial weight 

c         parameter in the next three terms 

c 

        CALL RANDOM(RAND) 

        V2(J)=V(I,J) 

        IF(F(NFBEST).LT.F(I)) THEN 

          V2(J)=A2*W*RAND*(XX(NFBEST,J)-X(I,J)) 

        ENDIF 

c 

c     (3) velocity selected randomly 

c 

        CALL RANDOM(RAND) 

        RND1=RAND 

        CALL RANDOM(RAND) 

        V3(J)=A3*RAND*W*RND1 

c 

c     (4) velocity based on the particle's most recent velocity value  

c 

        V4(J)=W*V(I,J) 

c 

c     The total particle velocity is then 

c 

           V(I,J)= V1(J)+V2(J)+V3(J)+V4(J) 

c 

c      now ensure that the particle remains within the defined parameter space 

c 

  if(v(i,j).gt.0.0d0)then 

   vmax=vlim(j)*vlimax(j) 

   if(v(i,j).lt.vmax)then 

    goto 900 

   else 

    v(i,j)=rand*vmax 

          endif 

  elseif(v(i,j).lt.0.0d0)then 

    vmin=vlim(j)*vlimin(j) 

   if(abs(v(i,j)).lt.abs(vmin))then 

    goto 900 

   else 

    v(i,j)=rand*vmin 

          endif 

  endif 

  900 continue 

        X(I,J)=X(I,J)+V(I,J) 
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           ENDDO 

      ENDDO 

c 

       DO I=1,n 

         IF(F(I).LT.FMIN) THEN 

           FMIN=F(I) 

           II=I 

           DO J=1,M 

             BST(J)=XX(II,J) 

           ENDDO 

         ENDIF 

       ENDDO 

      IF(LCOUNT.EQ.NPRN) THEN 

      LCOUNT=0 

c      IF(DABS(FFMIN-FMIN).LT.EPSILON) GOTO 999 

      FFMIN=FMIN 

      ENDIF 

      LCOUNT=LCOUNT+1 

      ansitrn=fmin 

 if(minmax.eq.1)ansitrn=1.0d0/fmin 

  100 CONTINUE      !***** END OF GENERATION LOGIC 

LOOP ***** 

  999 continue 

      ans=fmin 

 if(minmax.eq.1)ans=1.0d0/fmin 

 close(unit=4) 

 return 

  200 format(10x,100(a14,3x)) 

  201 format(4x,100(f10.4,8x)) 

  202 format(10x,102(a14,1x)) 

  203 format(/) 

      end 

c 

      SUBROUTINE lsrch(a,m,nstep,amnn,bst,fi) 

      implicit double precision(a-h,o-z) 

      parameter(np=100,nnp=25,mxp=100,nstepp=25,itrnp=2200,nsigmap=1) 

      COMMON /RNDM/IU,IV 

      common/bounds/xxmax(mxp),xxmin(mxp),vlim(mxp) 

c     common/pass/yy(15,100) 

      common/range/rangej(mxp) 

      common/swarmcontrol/minmax,ibest,mvar,iter,member,intl 

      common/pop/amn(np) 

      common/best/bestans,bestyy(mxp) 

      common/pass/yy(1,15,30),ys(11,40) 

      INTEGER IU,IV 

      dimension a(mxp),b(mxp),x(np,mxp),xx(np,mxp) 

      dimension c(500,mxp),bst(mxp) 

 

c 

c     This subroutine allows an individual particle to "wander" within a specified locality 

c         to determine if a better solution can be found in that locality. It does so by 

c         systematically varying each independent parameter sequentially. 

c 

 ichange=0 

 amin=dfloat(-nstep/2) 

 amax=dfloat(nstep/2-1) 
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c 

c     "A" is the initial array of values for each independent variable for a given particle "i" 

c     "B" is a new (possible) array of these variables, determined by NSTEP 

c     "M" is the number of independent variables 

c     "NSTEP" determines the separation of values examined within the local search volume, 

c                centered on "A" 

c     this subroutine is called for every particle "i" in a given generation 

c 

      ncount=1 

      kbest=1 

      fbest=amnn 

 

 do k=1,m 

  b(k)=a(k) 

 enddo 

 

      do j=1,nstep    !step loop  

c 

         do jj=1,m    !loop systematically changes the parameter 

c                                  set sequentially 

 

  rangej(jj)=xxmax(jj)-xxmin(jj) 

  if(rangej(jj).lt.1d-5) then 

  b(jj)=xxmax(jj) 

  goto 350 

  endif 

 

       call velocity(member,jj,x,vlim(jj),dvelmin,dvelmax,velmin,velmax, 

     &   rangevel) 

         anstep=dfloat(j-(nstep/2)-1) 

         delamin=(dvelmin-0.0001d0)/(-amin) 

  delamax=(dvelmax-0.0001d0)/amax 

         if(anstep.lt.0.0d0)then 

            

                 call random(rand) 

 

           b(jj)=a(jj)+delamin*anstep*rand 

      ys(9,jj)=b(jj) 

    call objective_function(b,m,fii) 

           do k=1,m 

             c(ncount,k)=ys(9,k) 

    enddo 

    goto 350 

    elseif(anstep.gt.0.0d0)then 

 

              call random(rand) 

 

           b(jj)=a(jj)+delamax*anstep*rand 

    ys(9,jj)=b(jj) 

           call objective_function(b,m,fii) 

           do k=1,m 

             c(ncount,k)=ys(9,k) 

    enddo 

    goto 350 

    else 

           ys(9,jj)=a(jj) 
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      c(ncount,k)=ys(9,k) 

    endif 

  350 continue 

         if(fii.lt.fbest)then 

  fbest=fii   !best value for member "i"from NSTEP 

   if(fbest.lt.bestans)then 

           bestans=fbest 

    do jk=1,m 

     bestyy(jk)=c(ncount,jk) 

    enddo 

  endif 

  amnn=fbest 

  kbest=ncount 

  endif 

         amnn=fbest 

         bst(jj)=c(kbest,jj)    !array of parameters associated with 

c                                          best value of member "i" to date 

  ncount=ncount+1 

  enddo 

      enddo 

      fi=fbest 

      return 

      end 

c 

c     THIS SUBROUTINE IS NEEDED IF THE NEIGHBOURHOOD HAS RING TOPOLOGY 

c     EITHER PURE OR HYBRIDIZED 

c 

       SUBROUTINE NEIGHBOR(I,N,J,K) 

       IF(I-1.GE.1 .AND. I.LT.N) THEN 

       J=I-1 

       K=I+1 

       ELSE 

       IF(I-1.LT.1) THEN 

       J=N-I+1 

       K=I+1 

       ENDIF 

       IF(I.EQ.N) THEN 

       J=I-1 

       K=1 

       ENDIF 

       ENDIF 

       RETURN 

       END 

c 

      SUBROUTINE RANDOM(RAND1) 

       DOUBLE PRECISION  RAND1 

       COMMON /RNDM/IU,IV 

       INTEGER IU,IV 

       RAND=REAL(RAND1) 

       IV=IU*65539 

       IF(IV.LT.0) THEN 

       IV=IV+2147483647+1 

       ENDIF 

       RAND=IV 

       IU=IV 

       RAND=RAND*0.4656613E-09 
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       RAND1=DBLE(RAND) 

       RETURN 

       END 

c 

      subroutine velocity(i,j,x,par,dvelmin,dvelmax,velmin,velmax, 

     &rangevel) 

c     subroutine to determine limits on particle velocity 

      implicit double precision(a-h,o-z) 

      parameter(np=100,nnp=25,mxp=100,nstepp=25,itrnp=2200,nsigmap=1) 

      common/bounds/xxmax(mxp),xxmin(mxp),vlim(mxp) 

      dimension x(np,mxp) 

      dvelmin=dabs(x(i,j)-xxmin(j)) 

      dvelmax=dabs(xxmax(j)-x(i,j)) 

      velmin=x(i,j)-par*dvelmin 

      velmax=x(i,j)+par*dvelmax 

      rangevel=velmax-velmin 

      return 

      end 
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APPENDIX E: Compound RPSO Mini-Swarm Input File 

5  ;population size, n2 

5  ;neighboring population sample size, nn2 (must be less than n) 

5  ;local sample space size, nstep2 (5 < nstep <15) 

100  ;results displayed every "nprn" iteration, nprn2 

1  ;chaos parameter, nsigma2 (=0 no chaotic perturbation, =1 chaotic perturbation) 

3  ;neighborhood topology type, itop2 (=1 ring, =2 ring and random, =3 random)  

0.25d0  ;particle velocity term 1 constant, a1_2 

0.95d0  ;particle velocity term 2 constant, a2_2 

0.05d0    ;particle velocity term 3 constant, a3_2 

0.70d0  ;particle velocity inertia constant, w_2 

0.05d0  ;percentage of solution space for miniswarm search, sp 

20        ;number of iterations (generations), itrn2 
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APPENDIX F: Single Stage Solid Binary GA Input File 

.false.    ;micro  FIN                           

.false.    ;pareto                               

.false.    ;steady_state                         

.false.    ;maximize                             

.true.                                        ;elitist                              

.false.                                       ;creep                                

.false.                                       ;uniform                              

.false.                                       ;restart                              

.true.                                        ;remove_dup                           

.false.                                       ;niche                                

.false.                                       ;phenotype                            

0.04    ;niche_diversity_percent_goal         

67742    ;iseed                                

0.9    ;pcross                               

0.002    ;pmutation                            

0.05    ;pcreep                               

2    ; ngoals 

1.0 1.0    ; xgls(j) 

1.    ;domst                                

2550    ;convrg_chk(end_of_group2)            

35    ;no_para                              

 'rnos/rbod' 0.60000 0.40000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'lnos/dbod' 3.00000 1.50000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'kfuel___3' 9.00000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'rpvar___4' 0.80000 0.30000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'rivar___5' 0.80000 0.10000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'nsp_____6' 11.0000 5.00000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'fvar____7' 0.10000 0.03000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'eps_____8' 0.95000 0.60000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'ptang___9' 10.00000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'fn1____10' 0.99000 0.66000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'dth/Db_11' 0.30000 0.25000 0.0020  .false. ;xmax_xmin_resolution_niche 

 'Lb/Db__12' 15.00000 10.0000 0.5000  .false. ;xmax_xmin_resolution_niche 

 'dbody__13' 0.64000 0.25000 0.0020  .false. ;xmax_xmin_resolution_niche 

 'b2w/DB_14' 0.05000 0.01000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'crw/DB_15' 0.05000 0.01000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'trw____16' 0.99000 0.90000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'wleswe_17' 30.0000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'xLEw___18' 0.25000 0.20000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'b2t/DB_19' 1.40000 1.20000 0.1000  .false. ;xmax_xmin_resolution_niche 
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 'crt/DB_20' 1.10000 0.90000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'trt____21' 0.99000 0.50000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'tleswp_22' 30.00000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'xTEt___23' 1.00000 0.95000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'Apdly  24' 5000.0  4999.0  1.0  .false. ;xmax_xmin_resolution_niche 

 'thet0__25' 85.00000 40.00000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'gainp1_26' 4.40000 3.60000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'gainy1_27' 3.50000 1.00000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'xcet___28' .95000  .55000  0.0500  .false. ;xmax_xmin_resolution_niche 

 'dele0__29' -7.000  -15.000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'gainp2_30' 0.01000 0.00000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'b2var__31' 0.01000 0.00000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'dtchek_32' 1.00000 0.30000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'gainy2_33' 0.01000 0.00000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'delx-z_34' 00001.0 00000.0 00001.0 .false. ;xmax_xmin_resolution_niche 

 'delx-y_35' 00001.0 00000.0 00001.0 .false. ;xmax_xmin_resolution_niche 

 1    ;frequency  FIN DEDR_6                   

 200                                         ;number of members in each generation    

 500                                         ;number of generations                   
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APPENDIX G: Single Stage Solid Real GA Input File 

.false.    ;generational  ONLY 1 GA TYPE CAN BE  

.true.    ;steady_state  ONLY 1 GA TYPE CAN BE  

.false.    ;hybrid        ONLY 1 GA TYPE CAN BE  

.false.    ;uniform x (50% parent1 and parent2   

.true.    ;Blend x (blend of parents)           

.false.    ;singlepointx                         

.false.    ;var_mutation  true allows mutation   

2000    ;kcheck # of gen before 1/5 rule ck   

0.2    ;xmutation_rate  how much mutation    

.1    ;xmutation_amount % of variables mutated 

2    ;ngoals  

1.0 1.0    ;xgls(j)  

35    ;no_para                              

'rnos/rbod' 0.60000 0.40000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'lnos/dbod' 3.00000 1.50000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'kfuel___3' 9.00000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'rpvar___4' 0.80000 0.30000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'rivar___5' 0.80000 0.10000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'nsp_____6' 11.0000 5.00000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'fvar____7' 0.10000 0.03000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'eps_____8' 0.95000 0.60000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'ptang___9' 10.00000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'fn1____10' 0.99000 0.66000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'dth/Db_11' 0.30000 0.25000 0.0020  .false. ;xmax_xmin_resolution_niche 

 'Lb/Db__12' 15.00000 10.0000 0.5000  .false. ;xmax_xmin_resolution_niche 

 'dbody__13' 0.64000 0.25000 0.0020  .false. ;xmax_xmin_resolution_niche 

 'b2w/DB_14' 0.05000 0.01000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'crw/DB_15' 0.05000 0.01000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'trw____16' 0.99000 0.90000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'wleswe_17' 30.0000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'xLEw___18' 0.25000 0.20000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'b2t/DB_19' 1.40000 1.20000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'crt/DB_20' 1.10000 0.90000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'trt____21' 0.99000 0.50000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'tleswp_22' 30.00000 1.00000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'xTEt___23' 1.00000 0.95000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'Apdly  24' 5000.0  4999.0  1.0  .false. ;xmax_xmin_resolution_niche 

 'thet0__25' 85.00000 40.00000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'gainp1_26' 4.40000 3.60000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'gainy1_27' 3.50000 1.00000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'xcet___28' .95000  .55000  0.0500  .false. ;xmax_xmin_resolution_niche 



92 
 

 'dele0__29' -7.000  -15.000 1.0000  .false. ;xmax_xmin_resolution_niche 

 'gainp2_30' 0.01000 0.00000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'b2var__31' 0.01000 0.00000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'dtchek_32' 1.00000 0.30000 0.1000  .false. ;xmax_xmin_resolution_niche 

 'gainy2_33' 0.01000 0.00000 0.0100  .false. ;xmax_xmin_resolution_niche 

 'delx-z_34' 00001.0 00000.0 00001.0 .false. ;xmax_xmin_resolution_niche 

 'delx-y_35' 00001.0 00000.0 00001.0 .false. ;xmax_xmin_resolution_niche 

   1    ; ifreq FIN DEDR_6                    

   30    ; mempops                             

   100000   ; maxgen                             
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APPENDIX H: Single Stage Solid RPSO Input File 

0  ;maximize objective function = 1, minimize objective function = 0                 

30  ;population size, n                                                              

10  ;neighboring population sample size, nn (must be less than n)                    

100  ;maximum allowable number of independent variables, mx                          

5  ;local sample space size, nstep (5 < nstep <15)                                   

100  ;results displayed every "nprn" iteration, nprn                                 

1  ;chaos parameter, nsigma (=0 no chaotic perturbation, =1 chaotic perturbation)    

3  ;neighborhood topology type, itop (=1 ring, =2 ring and random, =3 random)        

0.875d0 ;particle velocity term 1 constant, a1                                       

0.75d0  ;particle velocity term 2 constant, a2                                        

0.625d0    ;particle velocity term 3 constant, a3                                     

0.36d0  ;particle velocity inertia constant, w                                        

0.01d0  ;chaos conditioning term, sigma  ... should not have to change                

4863  ;random generator seed                                                          

2200         ;max number of iterations (generations), itrn                                 

35  ;actual number of independent variables, m                                       

2  ; ngoals 

1.0 1.0  ; xgls(j) 

 'rnos/rbod' 0.60000 0.40000 1.0d0      ;xmax,xmin,vlim 

 'lnos/dbod' 3.00000 1.50000 1.0d0      ;xmax,xmin,vlim 

 'kfuel___3' 9.00000 1.00000 1.0d0      ;xmax,xmin,vlim 

 'rpvar___4' 0.80000 0.30000 1.0d0      ;xmax,xmin,vlim 

 'rivar___5' 0.80000 0.10000 1.0d0      ;xmax,xmin,vlim 

 'nsp_____6' 11.0000 5.00000 1.0d0      ;xmax,xmin,vlim 

 'fvar____7' 0.10000 0.03000 1.0d0      ;xmax,xmin,vlim 

 'eps_____8' 0.95000 0.60000 1.0d0      ;xmax,xmin,vlim 

 'ptang___9' 10.00000 1.00000 1.0d0      ;xmax,xmin,vlim 

 'fn1____10' 0.99000 0.66000 1.0d0      ;xmax,xmin,vlim 

 'dth/Db_11' 0.30000 0.25000 1.0d0      ;xmax,xmin,vlim 

 'Lb/Db__12' 15.00000 10.0000 1.0d0      ;xmax,xmin,vlim 

 'dbody__13' 0.64000 0.25000 1.0d0      ;xmax,xmin,vlim 

 'b2w/DB_14' 0.05000 0.01000 1.0d0      ;xmax,xmin,vlim 

 'crw/DB_15' 0.05000 0.01000 1.0d0      ;xmax,xmin,vlim 

 'trw____16' 0.99000 0.90000 1.0d0      ;xmax,xmin,vlim 

 'wleswe_17' 30.0000 1.00000 1.0d0      ;xmax,xmin,vlim 

 'xLEw___18' 0.25000 0.20000 1.0d0      ;xmax,xmin,vlim 

 'b2t/DB_19' 1.40000 1.20000 1.0d0      ;xmax,xmin,vlim 

 'crt/DB_20' 1.10000 0.90000 1.0d0      ;xmax,xmin,vlim 

 'trt____21' 0.99000 0.50000 1.0d0      ;xmax,xmin,vlim 

 'tleswp_22' 30.00000 1.00000 1.0d0      ;xmax,xmin,vlim 

 'xTEt___23' 1.00000 0.95000 1.0d0      ;xmax,xmin,vlim 
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 'Apdly  24' 5000.0  4999.0  1.0d0      ;xmax,xmin,vlim 

 'thet0__25' 85.00000 40.00000 1.0d0      ;xmax,xmin,vlim 

 'gainp1_26' 4.40000 3.60000 1.0d0      ;xmax,xmin,vlim 

 'gainy1_27' 3.50000 1.00000 1.0d0      ;xmax,xmin,vlim 

 'xcet___28' .95000  .55000  1.0d0      ;xmax,xmin,vlim 

 'dele0__29' -7.000  -15.000 1.0d0      ;xmax,xmin,vlim 

 'gainp2_30' 0.01000 0.00000 1.0d0      ;xmax,xmin,vlim 

 'b2var__31' 0.01000 0.00000 1.0d0      ;xmax,xmin,vlim 

 'dtchek_32' 1.00000 0.30000 1.0d0      ;xmax,xmin,vlim 

 'gainy2_33' 0.01000 0.00000 1.0d0      ;xmax,xmin,vlim 

 'delx-z_34' 00001.0 00000.0 1.0d0      ;xmax,xmin,vlim 

 'delx-y_35' 00001.0 00000.0 1.0d0      ;xmax,xmin,vlim 

 

 


