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THESIS ABSTRACT
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216 Typed Pages

Directed by T. Prabhakar Clement

Multi-species reactive transport equations coupled through sorption and
sequential first-order reactions are commonly used to model sites contaminated with
radioactive wastes, chlorinated solvents and nitrogenous species. Although researchers
have been attempting to solve various forms of this reactive transport problem for over
fifty years, a general closed-form analytical solution to this problem is not available in
the published literature. In the first part of this research work, a closed-form analytical
solution to this problem is deduced involving a generic spatially-varying initial condition.
Two distinct solutions are derived for Dirichlet and Cauchy boundary conditions each
with Bateman-type source terms. The proposed solution procedure employs a
combination of Laplace and linear transform methods to uncouple and solve the system

of partial differential equations. The final solution is organized and presented in a
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general format that represents the solutions to both the boundary conditions. In addition,
the mathematical concepts for deriving the solution within a generic framework that can
be used for solving similar transport problems are also presented.

In the second part of this research work, the computational techniques for
implementing the new solutions are discussed. These techniques are then adopted to
develop a general computer code which is used to verify the solutions. In addition,
several special-case solutions for simpler transport problems involving zero initial
condition, identical retardation factors, zero advection, zero dispersion and steady-state
condition are also derived. Where ever possible, these special-case solutions are
compared against previously published analytical solutions to establish the validity of the
new solution. The performance of the new solution is tested against other published
analytical and semi-analytical solutions using a set of example problems. Finally, an
investigation into extending the general solution to multiple dimensions using the
approximate Domenico solution is also presented.

This thesis has produced the following three journal publications:

1) V. Srinivasan, T.P. Clement, and K.K. Lee. “Domenico Solution — Is it Valid?”,
Ground Water, 25(2): 136-146, May 2007.

2) V. Srinivasan, and T.P. Clement. “Analytical Solutions for Sequentially Coupled
Reactive Transport Problems — Part I: Mathematical Derivations”, Submitted May 2007,
Advances in Water Resources.

3) V. Srinivasan, and T.P. Clement. “Analytical Solutions for Sequentially Coupled
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CHAPTER1

INTRODUCTION

1.1 Background

Transport problems involving sequentially decaying contaminants are frequently
analyzed by groundwater hydrologists to assess water quality issues associated with
environmental and health hazards. Examples of sequentially decaying contaminants
include radioactive waste materials, chlorinated solvents, and nitrogenous species [4, 11,
45]. Several types of models, using both analytical and numerical procedures, have been
formulated for solving these sequentially coupled reactive transport problems [12, 26].
Although numerical models are capable of solving complex and heterogeneous problems,
their performance often needs to be tested against experimental datasets or analytical
models. Experimental simulations of complex reactive transport problems are not only
time consuming but can also be expensive. Therefore, analytical models provide a
convenient, cost-effective alternative to test and validate numerical formulations [18, 30,
44]. Furthermore, analytical models also provide computationally efficient screening
tools for simulating the fate and transport of reactive contaminants in groundwater

systems [3, 13].



1.2 Literature Review

The analytical solution given by McLaren [32] and McLaren [33], which describes
the steady-state, one-dimensional transport of a five species nitrogen chain, is one of the
first multi-species solutions derived for solving sequentially coupled reactive transport
problems. This work assumed that the transport was only governed by advection, and the
effects of dispersion and sorption were ignored.

Cho [9] developed explicit analytical solutions to a three species transport problem
that was subjected to advection, dispersion, linear equilibrium sorption, coupled through
sequential first-order reactions. Explicit analytical solutions were obtained using Laplace
transform procedures for the Dirichlet boundary condition. One of the limitations of this
solution is that only the first species in the chain was subjected to sorption. Later, Misra
et al. [34] derived semi-analytical solutions to a problem similar to Cho [9] using a pulse
source boundary.

Burkholder and Rosinger [7] and Lester et al. [29] developed solutions for the
advective dispersive transport of radionuclide chains subjected to linear equilibrium
sorption. Explicit analytical solutions were presented for a three species problem
involving distinct retardation factors for each species, for both impulse and decaying-
band release boundary conditions. In addition, they also provided solutions for the case
of no dispersion and for the case of identical retardation factors.

Harada et al. [23] published a research report presenting general semi-analytical
solutions to sequentially coupled one dimensional reactive transport problems of arbitrary
chain lengths subjected to arbitrary release modes. However, one of the major limitations

of the solution strategy was that, the semi-analytical solution for a given species in the
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chain required the computation of its entire predecessor species. This would result in
computationally inefficient algorithms especially when analyzing transport problems
involving long reactive chains. Harada et al. [23] and Higashi and Pigford [24] also
provided explicit closed-form solutions for a set of purely advective (no dispersion)
transport problems with various types of boundary conditions.

Gurehian and Jansen [21] presented an analytical solution to a transport problem
involving a three member, first-order decay chain in a multi-layered system, subjected to
advection, dispersion and linear equilibrium sorption processes for both continuous and
band source release conditions. Convolution theorems and Laplace transform techniques
were used to obtain semi-analytical solutions for the case involving both advective and
dispersive transport, and explicit closed-form analytical solutions for the case involving
non-dispersive transport.

van Genuchten [45] developed explicit analytical solutions to model a sequentially
coupled four species transport problem governed by advection, dispersion and linear
equilibrium sorption processes involving, first-order reactions. It was assumed that all
the species had distinct retardation factors. One of the key contributions of this work is
that it considered both Dirichlet and Cauchy boundary conditions. Furthermore, van
Genuchten [45] developed a robust computer code (CHAIN) for implementing his
analytical solution.

Angelakis et al. [2] developed a semi-analytical solution to a sequentially coupled
two-species transport problem governed by advection, dispersion and linear equilibrium
sorption subjected to Dirichlet boundary condition. The transport problem assumed that

the reactions were first-order and each of the species had different dispersion coefficients
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and distinct retardation factors. The authors also demonstrated that when the dispersion
coefficients of both the species were equal, their solution reduced to the closed-form
solution similar to the solutions presented by Cho [9] and Misra et al. [34]. Furthermore,
the authors also provided solutions for the no dispersion (pure advection) case.
Angelakis et al. [1] developed an interesting semi-analytical solution for a problem
involving the coupled transport of two solutes and a gaseous product in soils. The solute
migration was governed by advection, dispersion, linear equilibrium sorption and
sequential first-order reaction, whereas the gas migration was governed by diffusive
transport coupled with reversible linear equilibrium dissolution.

Lunn et al. [30] solved a three-species transport problem, which was similar to the
Cho [9] problem, using the Fourier transform method. The authors demonstrated that the
use of Fourier transforms enabled them to solve problems having non-zero initial
conditions by solving two special case problems.

Khandelwal and Rabideau [27] developed semi-analytical solutions for a three
species, sequentially-coupled, first-order reactive transport problem. The key
contribution of this work was that they addressed cases involving linear, non-equilibrium
sorption mechanisms.

Eykholt and Li [18] developed a solution method based on kinetic response
functions to solve a linearly coupled non-sequential reactive transport problem having
different retardation factors. Although, there was no restriction on the number of species
in the system, this method required numerical procedures to evaluate the final solution.

Furthermore, for the case of the non-ideal plug flow scenarios (advective dispersive



transport), the accuracy of this method appears to decrease with decrease in Peclet
number.

Sun et al. [42] developed a method that can solve multi-species advective
dispersive transport equations coupled with sequential first-order reactions involving
arbitrary number of species for different types of initial and boundary conditions. Their
method was based on the use of a transformation procedure to uncouple the system of
equations, which could then be solved analytically in the transformed domain. The final
solutions are obtained by retransforming the solutions to the original domain. Later, Sun
et al. [43] extended the transformation format to solve problems involving a combination
of serial and parallel reactions. Clement [11] presented a more general and fundamental
approach to derive the Sun et al. [43] solution by employing the similarity transformation
method. The approach presented by Clement [11] can also be used to solve problems
involving serial, parallel, converging, diverging and/or reversible first-order reaction
network. However, all of these methods are only applicable for solving problems
involving identical retardation factors.

Bauer et al. [4] presented a method to solve one, two, and three-dimensional
sequentially coupled reactive transport problems with distinct retardation factors. This
method was based on transforming the system of equations to a Laplace domain and then
obtaining a set of fundamental solutions to each of the equations in the transformed
domain. The specific solutions in the Laplace domain can then be obtained through a
linear combination of the fundamental solutions provided the fundamental solutions are
linearly independent. Finally, the Laplace domain solutions can be transformed back to

the time domain using the inverse Laplace transform procedure, which could be
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accomplished either analytically or numerically. Although this method can be applied to
solve different types of boundary conditions, the solution procedure is mathematically
tedious; specifically obtaining analytical inverse transform expressions for long chain
lengths can be a challenge.

Montas [35] developed an analytical procedure to solve a three species, multi-
dimensional transport problem coupled by a first-order, non-sequential reaction network
subject to a pulse type boundary condition. This procedure involved obtaining a basis
solution of a convoluted form for the transport equation and then evaluating the basis
solution using Laplace transforms. One of the key advantages of this procedure is that it
can model transport problems with distinct retardation factors. However, as mentioned
earlier this solution was limited to a three species system.

Quezada et al. [38] extended the approach given by Clement [11] and developed a
method that can solve multi-species transport equations coupled with a network of first-
order reactions involving distinct retardation factors. This method involves transforming
the system of governing equations to a Laplace domain and then solving the transformed
system of equations using the Clement [11] approach. The solutions in the Laplace
domain are then retransformed to the time domain using an inverse Laplace transform
procedure. One of the key limitations of this approach is that, except for a simple two
species transport problem, the solutions are in general semi-analytical since they require a

numerical inverse Laplace transform routine to evaluate them.



1.3 Scope and Objective

The above literature review indicates that one-dimensional reactive transport
equations coupled through sorption and sequential first-order reactions have explicit
closed-form analytical solutions only for short chains up to four species. To model
transport problems involving longer reaction chains, one has to either use semi-analytical
solutions or purely numerical solutions.

This objective of this work is to develop a general closed-form analytical solution
to the sequential transport problem involving arbitrary number of species subjected to a
generic exponentially decaying Bateman-type source boundary, for a spatially varying
initial condition. The solutions derived in this study are then implemented in a
computational platform and tested and validated against other analytical and semi-

analytical solutions published in the literature.

1.4 Organization

This thesis is organized into five chapters. Chapter I presents a brief introduction
with a detailed literature review of analytical solutions to coupled reactive transport
problems.

Chapter II details the solution derivation of the sequentially coupled one
dimensional reactive transport problem. Chapter III discusses some of the techniques in
implementing the new solution on a computational platform and testing the new solution
through a set of example problems. Chapters II and III are draft versions of manuscripts

that have been submitted to Advances in Water Resources journal.



Chapter IV investigates the validity of approximations involved in extending the
one-dimensional solutions derived in this study into three-dimensions. The contents of
this chapter are extracted from the author’s publication titled “Domenico Solution — Is it
Valid?” in the Groundwater journal.

Chapter V summarizes the key findings of this study, and also discusses some

recommendations for future work.



CHAPTER 11

GOVERNING EQUATIONS AND SOLUTION DERIVATION

2.1 Governing Equations

Consider, a one-dimensional transport problem involving ‘n’ sequentially decaying
contaminants simultaneously subjected to advection, dispersion and linear adsorption
processes. The general governing equation for this transport problem can be expressed

as:

2
R, ad g:’t) +vac’é;’t) -D, g cé)(;’t) =yk_c(x,t)—kc (x,t) ; Vi=2,3,..n

:—kl.cl.(x,t) si=1 (1)

; V>0 and 0<x<o

2

where; ‘c,’ is the concentration of species 1 [ML™]; ‘R’ is the retardation

coefficient of species i [Dimensionless];‘ y,’ is the effective yield factor that describes

2

the mass of a species i produced from species i-1 [MM™]; “k;’ is the first-order decay

rate constant of species i [T™]; ¢V ’is the transport velocity [LT™]; ¢ D’ is the dispersion

coefficient [LZT'I]; and ‘n’ is the total number of species in the reaction network.

Equation(1) is solved for a generic exponentially distributed initial condition given by:

¢ (x,0)=cle™, 0<x<oo; Vi=12,..n (2)



b

where; ‘¢’ is the initial source concentration of species i [ML™]; M.’ 1s the

1
first-order decay parameter of the initial distribution of species i [L']. The boundary
condition at ‘00’ is given as:

oc, (o0,1)

=0,t>0;Vi=12,..n 3)
ox

Explicit solutions including detailed derivation steps are provided for the following
two inlet (source) boundary conditions: Dirichlet (Section-3) and Cauchy (Section-4)

boundaries.

2.2 Derivation of the Solution for the Dirichlet Boundary condition
For the case of the Dirichlet boundary, the boundary condition at the source is

described as follows:

" i 0 <t<t
¢, (0,7)= Z‘ e St=h ; Vi=1,2,..n 4)

0, 1>1¢,

2

where; ¢ B is the source boundary concentration of specie i, that contributes to

species i [ML™]; ‘Zil’ is the first-order decay of the corresponding ‘B!’ term [T'].

Equation(4) can be conveniently re-written as:

i

¢, (0.6)=>"Bie " {u(t)-u(t-t,)}, t>0; Vi=1,2,..n

i=1

where ; u is the unit step function given by
0, if t<a

u (t - a) = ‘f
Lif t>a

and a is an arbitrary positive constant

)
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The system of equations given by (1) can be written in a matrix format as [11,

38]:

R 2 p Ti ©

3

where; [ ]’ denotes a square matrix and ‘{ } > denotes a column vector. The

corresponding initial and boundary conditions can be written as:

{c(x,O)}:{c”e’“"}, 0<x<ow (7)

{ac(oo’t)}zo, (>0 ®)

ox

{c(0,1)} ={w}, 1>0

where ; ®, =2Bf‘efk"‘t {u(t)—u(t—to)}, t>0;Vi=L2,..n

i=1

©)

The solution procedure used here is adopted from Quezada [38]. Applying

Laplace transform to equation(6), we get:

[R]s ) [Ree 0 v 2L p TUPL iy 10)

where; ‘s’ is the Laplace variable and ‘p’ is the Laplace transformed

concentration.

Substituting equation(7) in (10) and rearranging we get:

dx? D dx D

d’ d 1 -1 §
{p}—(Lj {p} +—([K]—[R]s){p}=—[R]{c”e ”"} (11)
Now in order to uncouple the system of ordinary differential equations (ODEs)

given by equation(11), we apply the linear transform procedure described by Clement

[11], by performing the following matrix operation.
11



tpy=[4]i6) (12)

where; ¢ {b} > is the concentration in the doubly transformed domain and [A] is

an arbitrary square matrix of order n. Applying this transformation equation(11) gets

modified as:

o [4]{r} _{LJW+L([K]_[R]S)[A]{5} “ZlR)fee) 3)

ox’ D ox D Ex

X X

Pre-multiplying equation(13) with [A]_1 > we get:

L3 A2

X X (14)

where [k}:[A]-l([K]—[R]S)[A] and {é}:[A]-l [R] e+

By forcing the columns of the [A] > matrix as the eigenvectors of the combined

reaction coefficient matrix ‘<[K ]—[R]s>’ we can make the ‘[K }’ matrix a diagonal

matrix and thus uncouple the system of equations; the details of this similarity
transformation procedure are illustrated in Clement [11]. The corresponding ‘[A] ’

matrix is:
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¢l

it —(k,+ SR, —k,—sR,)

[

,0,0,...,(n—1)times

i=2 yiki,
n—(k, +sR —k —sR)) ll[—(k2 + SR, —k, —sR.)
i=3 Y iki—l , i=3 Y iki—l

n—(k,+sR —k —sR))

[1

" —(k, +sR, —k —sR.
( 2 2 i 1)

i=n yiki—l

| L1,...,ntimes

The ¢ [A]_1 > matrix is:

11

i=n yiki—l

,0,0,...,(n—2)times

]

i=n yiki—l

n—(k_,+sR _ —k —sR
(nl n—1 i 1)0

b

(15)



14!

n
I | Y iki—l
i=2
n

H —(k, +sR, —k, —sR,)

i=1,(i#1)
H yik, |
i=2

,0,0,...,(n—l)times

n
I | ik,
i=3

n 2 n

H —(k, +sR, —k, —sR,) H —(k, +sR, —k, —sR,)

i=1,(i%2) i=2,(i#2)

H vk, H vk,
i=2 i3

,0,0,...,(n—Z)times

n

H vk,

i=n

n 2 n

H —(k, +sR, —k,—sR,) H —(k, +sR, —k,—sR,)

i=1,(i#n) i=2,(i#n)

1

n

H —(k, +sR, —k,—sR,)

':n—l,(iin)




The corresponding [K } > matrix is:

_—kl - SRI,O,O,...(I’Z - l)times
0,—k, —sR,,0, O,...(n - 2)times

0,0,...(n — l)times,—kn - SR,

0,0,...(i - l)times,—kl. —-sR,,0,0,...

(17)

(n —i)times

The corresponding {C} > vector is:

n
0 _—mx
Rcje I Iyiki—l
i=2

n

H —(k1 + SR, —k, —SRI.)

i=1,(i=1)

n
0 _—mx
Rcje Hyiki—l
i=2

n
0 _—Ihx
R,cye I |yiki—1
i3

n

H —(k, +sR, —k,— sR,)

i=1,(i#2)

n
0 _—x
Rce Hyiki—l
i=2

+

=2,(i#2)

n

H —(k, +sR, —k,— sR,)

n
0 _—lhX
R,cje I |yiki—1
i3

n

H —(k, +sR, —k,—sR))

i=1,(i=n)

+

0 _—H,X
+..+Rce

n

H —(k, +sR, —k,—sR,)

:2,(i¢n)

(18)

The explicit expression for ¢ C;’ in equation(18) is:
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o _~HyX -
Rilcile H yizk"z_1
Ci= =il “Vi=1L2,..n (19)

n

i=1 H —(kl. + SR, _kiz _SRiz)

| =i (i #i)

l

Equation(14) describes a set of ‘7’ independent second-order non-homogeneous
ODEs the boundary conditions of which are obtained by performing Laplace and linear
transforms of the boundary conditions given by equations(8) and (9). Laplace transform

of equations(8) and (9) yields:

{M} -0 (20)

Oox

{p(0.5)} ={g}

B {1 —e“’(”"l)} @1)
Vi=12,..n

where &l.:g (s+7»)

To transform the boundary conditions from ¢ p > domain to the ‘b’ domain, we

apply the linear transform given by equation(12). This yields:

{M} =0 (22)

Oox
{b(0,5)} =[4]" (&} (23)

The explicit expression for ‘b, (O, s) ” in equation(23) is given as:

n . ) ‘ )\‘
o T mfeet)
iy=i +1

iml ﬁ —(k‘,+sR‘,—kL _SR:;)FI (S+7»,-2) (24)
i, =i, (i, #i) 7 )

bl.(O,s):

;Vi=12,..n
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Since equation(14) is uncoupled, it can now be written as a set of ‘m’

independent equations as:

n
o _~HyX
Ril ce H Vi, kiz—l

2 i
g bi()zc’S)_{lj abi(x,S)-i_L(_ki _SRi)bi(an):__l n —
ox Dx ox Dx Dx i=1 H _(k,-'i_SRi_kiz_SRiz)
iy=iy (i #0)
,Vi=L2,...n
(25)

The general solution to equation(25) is given as:
Q(ms}z@%xs)+@%xs);‘Vi=L2,"n (26)
where; ‘bl.h (x,s)’ is the general solution of the homogeneous part of
equation(25) and ‘b (x,s)’ is a particular solution of equation(25). The general

solution * bl.h (x, S) > can be readily obtained as:

{x{er B +4(k,.+s1e,.)H {x{v_ B +4(k,-+sRi)H
b (x,s)z‘I’ll.e 2|p, D2 D, F e 2|, D2 D, 27
; Vi=12,..n

where; ‘I’} and ‘I’IZ are constants. The particular solution ‘b (x,s) ’ is obtained

by using the method of undetermined coefficients. The general form of the particular

solution is given as:

1 MR, c; et ﬁ Yiki
b? (x,s) =— b (28)

n

il H —(ki + SR, _ki2 _SRiz)

iy =iy (ip #i)
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where; ‘M ; > 1S a constant.  Substituting equation(28) in the governing

2

equation(25) and simplifying, we evaluate the constants ¢ M j as:

D
M. = =

" (u,’D, +p,v—k —sR,) (29)
;Vi=12,..n

Substituting the values of * M ; ’ into equation(28) we get the particular solution

‘b’ (x,s) ’ to equation(25) as:
i Rilclf:e_#ilx ﬁ y"zkiz_1
bip (.X,S) — _z iz:i1+1
A=l (,u;Dx + v =k — SRl.) 11 —(kl. +SR, —k, —sR, ) 30)

iy =iy (i, #i)

;Vi=1L2,..n

Substituting equations(27) and (30) in equation(26), we get the general solution to

equation(25) as:

x| v v2 4(ki+SRi) x| v v2 4(ki+SRi)
2|0, 2" b, , 2l b
1 X X X X X X
b,(x,s)="Ye +%¥e

i Rilci?e_”flx ﬁ yizkiz—l |

B Z iz:il"'l (31)

i=1 (,U,?Dx + luilv _ki _SRi) H _(ki + SRi _kiz _SRiz)
iy=iy (i, #i)

;Vi=1L2,..n

In order to apply the boundary condition given by equation(22) we differentiate
the general solution with respect to x. Differentiation of equation(31) with respect to x

yields:
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x| v [v? A(k+sR;)
6bl.(x,s) P! 1| v N v +4(kl.+SRl.) {2{1); D, H
= —— e
Ox “"2|D, \D; D,
1 > 4(k+sR) H i H
. . 2|D D
+W¥| = v v2 +— ZANPE
2 D D
X X X (32)

n
o _~HyX
; (_,ui1 ) Ri1 Ci1 e H yiz kiz -1
_ ip=i)+1
2. n

P (ﬂ,-le+ﬂi1V—ki_SRi) I1 —(k,.+sR,.—k,.Z —sR,-z)

iy =iy (i #i)

;Vi=1L2,..n

To satisfy the boundary condition given by equation(22), i.e. when ‘X’ tends to
‘o0’; the exponential function in the first term tends to ‘oo’, hence ‘I—’i must vanish.

Equation(32) now reduces to:

HV_ vz+4(k,~+st)H
b(x,s)=Ye A A

_ i —
o _THyX
Ri1cile H yizkiz—1

B Z i2n:i1+1 (33)
i=1 (/uilsz + v —k, _SRi) H —(kl. + SR, —kl-z —SRiz)
iy=iy (iy#i)

;Vi=1L2,..n

Applying the second boundary condition given by equation(24), we get:
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n ) B ) )\‘
H y"zk";*l i B,llz {1—6 t(J(b+ :z)}
iy =i +1

iy=1 ﬁ —(ki+SRi—kiz —sRiz)z‘z=1 (S+7w2)

L =i (i 20) ) (34)
RI.ICI-(: H yizkiz—l

+Z iy=i +1 ; \v’i:1,2,...l’l

n

iy =i (i, #i)

Therefore, the solution in the b ’domain is:

s+4,

; H vk i B! {1 —e ”2)} Ly V7 aD, (ksk,)
bl. ()C,S) _ Z n iy=i +1 Z (S ") ) eLDX{ }}

= T] —(k[ +sR —k, —sR, ) b=l

iZ :il ’(iZ ¢l)

n X vV + x( o i)
5: Rilc;:izzilﬂyizkiz_l e[sz{ s }}
+ n
B (luij +’ul'1v_ki _SR,') H _(kl' +SR,- _ki2 _SRiz)

iy=iy (iy #i)

_ e_,ui]x

; Vi=1L2,..n
(35)

Inverse linear transform of equation(35) is done to obtain the solution in the

Laplace domain (‘p’ domain) by using equation(12). The solution given by

equation(35) can be split into two parts and represented as:

20



b,(x,s)=b,(x,s)+b’(x,s)

where ;

N T | e e

bl'l (‘x’s) = Z n - Z ¢ o

i1 TT —(k +sR —k —sR )>? (S * ;Liz)
’.ZZ[I ’(’Ztl) ’

n
o U
Ril Cil H in kiZ -1 —e

! iy=i;+1

b (xs)=2, 2
ij=1 (;u;Dx +ﬂ,~1"_kz’ —SRI-) H _(ki + SR, _kiz _SRI'Z)

iy=iy (iy i)

{e[zg{vm;} }

;Vi=12,..n
(36)

Using the distributive property of matrix addition, we can apply the inverse linear
transform to each of the individual terms and then sum them to get the solution in the

¢ p’ domain. This is expressed as:

{p}=[4]{p} =[4]{p'} + [4]{p7) (37)

The first term [A] {bl} > can be evaluated as:

{p'}=[4]{p'] (38)

The explicit expression for p; (x,s) > in equation(38) is given as:
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p;

j ,~ B."Z{l—e_t”(SM"Z)}

Li};[rlinki21 Z; (S+/1i2)
L ke
2

iy=i H —(kl.2 + SR,-Z _ki3 - SRia)

iy=i (1320

X
2D

X

e (39)

; Vi=12,..n

Using a similar approach the second term * [A]{bz} > 1s evaluated and the explicit

. ‘ 2 0+
€Xpression for D; ()C,S) 1S:

H Yi, kiz—l

iy=ij+1

[0
Rl.l c [

i

Z i
iy =i (lufDx + luilv — kl.2 — SRiz) H _(kiz + SR,-2 - ki3 - SRi3)
i3 =i1 ’(i3 ¢i2)
;Vi=1L2,..n
(40)

|

J

X
2D

X

_ e_#ilx

Substituting equations(39) and (40) into equation(37) we get the solution in the

Laplace domain as:

22



>

i =i H _(ki2 + SRZ.2 - ki3 - SRi3 )

iy=iy (i3 %15

Rilcg[ ﬁ yizkiZI]

i =) +1

i=1 i

Z i
=iy (ﬂij + :uilv_kiz _SRiz) H _(kiz T SRiz _ki3 _SRi3)
i3=ila(i3¢i2)
;Vi=1L2,..n
(41)

The final solution is obtained by taking an inverse Laplace transform of the
solution given by equation(41). Inverse Laplace transform is performed as follows:
C; (x,t) = c,.1 (x,t) + cl.2 (x,t)
=/ <pl1 (x,s) +p! (x,s)>

= (i () 7 (97 ()

; Vi=12,..n

(42)

In Appendix A, the terms 0 <pl1 (x,s)>’ and < (' <pl.2 (x,S)> > are evaluated.

Substituting equations (A.7) and (A.16) in equation(42) we obtain the final solution in the

time domain as:
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Ci(x,f)=ziﬂﬁ yl.zklél]i , (Gl +h(G)) Gé}}

i=1 iy =i+l

iy=iy i3=1

E v T [Sloren@)a)| e
i=1 iy =iy +1 iy =iy

;Vi=L2,..n

where; the ¢ G’ terms are defined as (See equations (A.7) and (A.16) in Appendix
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4

F o [x,t] —u (t —t, )e(_ﬂ“t”)
_i.
]

B?

,- N\em et uli—1,)d

Gll — Z iy ,in

F;'z,i3,0 |:X,(t o tO )]
ta)F;sz oy |:X,(t o to ):|

S i i
iy=i) ,(14 #iy, Ry, :&R,-Z) l k R R
a. . — /A II —K, . ay A II - o\a, . —da. .
iy iy iy iy ,is iy ,ig iy ,is iy ,is Iy iy
is=i ,(15 #iy ,R;; =R;, ) is=i ,(15 #iy s #is, Ris #R;, )

Bi’;s <F;z=i3’0 [x,t] —u(t _t")e(_i"ﬁ")F;z,i},o [x,(t —1, ):|>

H _ki2 iy

iy=iy iy %1y R, =R, )

iy,iy 03

S i i
=i ,(13 #iy, Ry, #R;, ) R k R R
a. . —a. _. . —K. . o —o\a. . —a .
iy,i3 i~y iy i iy iy i3 iy iy iy iy i i3
iy=i ,(14 #iy ,R;, =R, iy =i\ g7y iy #i3, Ry # Ry, )

_<E2 sdmh [x,f] B e(_ﬂilx_ail ’[2t)> (44)

1

Riz H _kiz i3

iy=i, ,(i3 #i, Ry =R, |



where; the term ‘El’ : ’ is given by: (See equation(B.8) in Appendix B)

iy

—X;

1,23 _
o e 2Dx e"jf‘c Rllx a)ll ’iZ’if’ t
e_aiz,lgtesz 2\/Rll Dxt
O ) P
iz 2 i iy i
2D Rilx + 1,0y 503
+e 7 erfc (45)
2JR Dt
1
here ; _ [ +ar D |k
wnere | wil,iz,i3 = v+ i R__aiz,lé

b

The above solution is valid only for real values of ‘@, ;. For problems

involving complex values for ‘@.. .’ the ‘F. . .° terms are given as: (See

LR il 5i2 5i3
equation(B.14) in Appendix B)

xv *

X, ; X, . .
—-a;, .t .
E [x,f]=€ 2l 4Cos| —225 | — BSin| —25
2D, 2D,
here : o, = | | +4r D |
where , a)il»izis - v+ i x — 4 (46)

i

Rx+iw , . t
and (A+iB)=erfc ‘ —
2R Dt
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2.3 Derivation of the Analytical Solution for the Cauchy Boundary Condition

For the case of the Cauchy boundary, the boundary condition at the source is

ac, (0 VB 0<r<t
described as follows: —D, i ’t)+vcl.(0,t)= ,]Z:‘ Ve S Vi=1,2,..n

ox
0, 1>1,

(47)

Equation(47) can be conveniently re-written as:

-D, W+vci (0,¢)= IZBii've_ki‘t {u(t)—u(t—ta )} ,t>0;Vi=12,..n
X i=1
where ; u is the unit step function given by

48
0,if t<a (48)

u(t_a):{l, if t>a

and a is an arbitrary positive constant

Note that the governing equations, initial conditions and the boundary condition at
‘00 for the Cauchy boundary are identical to the Dirichlet boundary. Furthermore, the
boundary conditions at the source for both these boundaries share a similar structure.
Due to this structural similarity, the solution procedures for the Cauchy boundary will be
analogous to that of the Dirichlet boundary. The details of the solution derivation are
presented in Appendix C. The final solution for the Cauchy boundary can also be
represented by equation(43). However, the ‘G’ terms associated with the Cauchy

boundary are defined as (See equations (D.6) and (D.13) in Appendix D):
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8¢C

4 )F.

E o [t]-u(t—1)d " E | Tx(i-1)]
x,t]+u(t—t0)e(_i"3t”)F. [x.(t—1,)]

iyl iy

B"

b

; —F

1 _ Iy 5l iy [
Gl= 2
[is =i (

i i

H _ki2 Jis }(Riz g ) H _Ri2 Jis (aiz Jds aiz iy )

it Rg=R,) ) st

iy=iy (i %1y, Ry # Ry, )
iy iy iy
is=1i ,(15 #iy s #ig R #R;, )

Bi? <Ez,i3,0 [x,t] —u (t —t, )e(‘ﬂ;3 tU)EZ,i3,0 [x,(t —t )}>

H _kiz,i4
iy=iy iy %1y R, =R,
/,ID — il X—a; .t /JD - X—a;, .t
<£1+”x F. . . [x,t]—e( eat) |y g HaTx F .. [x,t]+e( i)
i v 25157 v 2512503
Gi= 2
1 o . .
iy =iy iy %y Ry, %R, ) ! i
(aiz,lé _aila—iz )Riz H _kizsi4 Riz»’é H _Riz»i4 (aizsi4 _aizsi3)
iy=iy

iy#iy Ry, =R;, iy=iy iy #iy g i3, R, 4¢R,.2)

D — U Xx—a; _.t
<[1 + IUIX\JF;Q,I],—I'Z [X,f] _ €( Hy X~y —ip )> (49)
1%
G; =

2 i

Riz H _ki2 Jis

iy =iy iy %y Ry, =R, )




where; the term * El

iy

: ” is given by: (See equation (E.20) in Appendix E)

and

ip,iy 2

: when —=a_ .

byl

X0y i i3
2D, _
€ erfc Rilx a)il»iz»ist +
vl (vta,, ) 2R Dt
—a, 1t 2D, 1512513 1
E .. [x,t]zve 2het
1502513 X0 iy iy .
2D,
e Rl.lx + C()l.1 s t
—F erfcs
(v-a,..) 2JR Dt
v Kyt
2v° {Dx 1} R x+vt k.
+ ¢ Herfcq — ; when —#a_ .
(0,0 V") 2./R Dt R
11,0503 I X 1
i 2 —(R,-lx—vl‘)2 i
1 Ril’x_Vt Vvt o KD
kit | A
=1 2 2R Dt 7R D,
=e 1
pay
1 xv o Vit o R, x +vt
R —_— e X c _—
2 D, RD, 2R Dt
. _ 2 i
where ; @, , = [V +4R D, —a,,
il
(50)

The above solution is valid only for real values of ‘@,

involving complex values for ‘@,

k.
are given as: (See equation (E.26) in Appendix E) Note: when ¢ —- = a . > the ¢

terms are unchanged.

sy sl3

i
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iy ,0y i3



* xa)il’iz’i3
(14\}—3601-1 b )COS T
XV (e
[ t ] = v e “2n gl i
iyl L2 2 * 2 *
Vo PR * . xa)il,iz,i3
—(Aa)l.1 wa T Bv)Szn
— X -
xv kit
V2 {Dv_Ril R x+vt
+ et erfci—
; 2R Dt
2Ri1 D x o aiz A
il
. * _ 2 i
where ; @, = [ V' +4R D | ——a,
il
_ Rx+iw, , ,t
and (A+lB)=erfc ! —
2/R.Dt (1)

Equation(43) along with equations (44), (45) and (46) and (49) ,(50)and (51) give
the complete explicit general solutions to the transport problem described by equation(1)
subject to the initial condition given by equation(2) and the boundary condition at o0
given by equation(3) for the Dirichlet and the Cauchy source boundaries given by

equations(4) and (47) respectively.

2.4 Discussion

In the original governing equation given by equation(1), it was assumed that the
degradation occurs in the liquid phase only. However, in several real life contaminant
transport scenarios such as radioactive transport, decay occurs in both the liquid and solid

phases. Under this condition the governing equation should be modified as:
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2
l ad (g:’t) +vaci(g)):’t) -D, d cé)(;’t) =y.R_k_c_ (xt)-Rkc,(x,t) ; Vi=2,3,..n

=—Rkc (x, t) si=1

; V>0 and 0<x<oo
(52)

Note the additional parameters in the right side of equation(52). The solution to
the above equation can be readily obtained from the previous solution given by
equation(43) by substituting the value of k> with < Rk .

From Sections 2.2 and 2.3, it can be seen that the solutions for the Dirichlet and

the Cauchy boundaries share a common structure. However, careful observation
indicates that the * G12 > and G22 > terms for the Dirichlet boundary (see equation(44)) and
the Cauchy Boundary (see equation(49)) are different. Furthermore, from equations (45)

and (46) and equations (50) and (51) it can be observed that the ‘F;l i > terms involved

in the ‘G’ terms are distinctly different for the two boundary conditions. The solutions
are presented in a format wherein they share a very similar structure. One of the key
advantages of this type of presentation is that the implementation of the solution for one
type of boundary condition becomes relatively easy if we have the algorithm for the other
boundary implemented. Furthermore, the general solution is presented in a format which
enables us to directly obtain explicit solutions for any of the species in the chain without
involving the computations of its parent chain members. This unique feature makes the
general solution computationally efficient. The solutions previously published in the
literature have either been restricted to small chain lengths or have been semi analytical
solutions for longer chain lengths. The solutions derived in this study overcome both

these difficulties and making them highly suitable for screening level models.
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In the following chapter, the general solutions are first implemented in a
computational platform and then tested against other analytical and semi-analytical

solutions using a set of example problems.
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CHAPTER III

TESTING AND VALIDATION OF THE ANALYTICAL SOLUTIONS

3.1 Introduction

To test the general solution, one can either compare it analytically against other
closed-form solutions or compare the results of its simulation against other analytical or
numerical solutions. While testing the general solution using example simulations
requires its implementation in a computational platform, analytical comparison is a viable
verification option only when we have suitable solutions that solve an identical transport
problem. Since explicit closed-form solutions are available only for simplified transport
scenarios, the general solution is first simplified to these special cases and then compared
against previously published closed-form solutions. The objective of this chapter is to: 1)
discuss the computational implementation of the new general analytical solution; 2) test
and validate the solution against published analytical and numerical results; and 3)
evaluate the salient features and limitations of the solution. In the following sections the
general solutions are first validated analytically against the solutions presented by van
Genuchten [45] and Higashi and Pigford [24] for simplified transport scenarios. To
further test the general solutions for a more general case, example simulations are
performed and the results of the general solution are compare against the results

generated from the semi-analytical solution given by Quezada et al. [38].
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3.2 Implementation of the Solution

To develop a computer code for the general solution, one has to formulate an
algorithm based on the looping structure presented in equation(43). In order to evaluate
the summation loops, one has to compute all the ‘G’ terms in equation(43), which are

defined in equations (44) and (49). From these, equations one can observe that the ‘G’

terms require the evaluation of E} > terms. These “ F, | i > terms, which are defined

S 503 15025

in equations (45), (46), (50) and (51), involve computations of the product of

complementary error functions and exponential functions. After evaluating the * E} b ’

terms, one can then compute the ‘G’ terms. The general solution can then be
implemented by substituting the values for the corresponding ‘G’ terms in the
summation loop described by equation(43). Although the above procedure appears to be

a straightforward task, round-off errors and underflow/overflow errors that occur during

the computations of the ‘G’ and E} b > terms, can cause severe stability problems even

for short chain lengths involving four species [45]. These computational errors are
further aggravated when solving problems involving the Cauchy boundary condition for
long chain lengths and/or large simulation times.

As pointed out by van Genuchten [45] the round-off errors arise due to the

approximations in the computation of the complementary error functions (ERFC)

involved in the ‘E'l,iz,ig > terms, especially when employing the Cauchy boundary

condition, for large retardation factors and long simulation distances or simulation times.

Typically ERFC is evaluated by approximating it either as a closed-form analytical
34



expression [20] or as an infinite summation series [19]. Van Genuchten [45] suggested

that this round-off error could be considerably limited by first substituting the

approximate expressions for the ERFCs into the * F;l i > terms and then combining and
simplifying the resulting terms. The mathematical details of this strategy can be obtained
from the computer code CHAIN [45]. Although this strategy significantly improves the
round-off errors, it involves extensive book keeping procedures. It must be noted that
van Genuchten [45] used the Gautschi [20] and Gautschi [19] approximations for
computing the ERFC terms. Using a more accurate approximation for the ERFC
function, such as the Cody [14] Chebyshev approximation, would provide additional
improvement to the round-off errors.

Another important computational challenge encountered in implementing this
solution is the handling of very large and/or very small numbers involving the

computations of the exponential and ‘I1’ functions. These numbers arise when solving

problems involving long chain lengths and/or large simulation times. For example,

consider the computations involved in the * G12 > term in equation(44).
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9¢

. (_/‘ilx_ail,—izt) . (_/‘ilx_aiz,i3t)
; <Fl.zj1 -, [x,t] e F,.ZJ.2 A [x,t] +e
G= 2
1 - . .
iy =iy (i %y, Ry %Ry, ) ! !
(aiz g ails_iz )Riz H _kiz iy Riz i3 H _Riz iy (aizsi4 - aiz i3 )

iy=iy (iy#h Ry, =R;) ) iy=iy iy %1y iy %13 Ry #R,) )

(53)

From equation(53) one can observe that the denominator term involves two independent product loops that have to be
evaluated. Under certain parameter combinations, each of the arguments within these product loops can assume very small
values (e.g., less than 1E-5) and when this loop is run for long chain lengths (e.g., greater than 10) the product of these
arguments results in an extremely small number (lesser than 1E-50). Performing division by a small number of this order,
results in very large arguments which cannot be represented accurately by using finite computer precision. Furthermore,

mathematical operations (additions and/or subtractions) of these large arguments can result in severe round-off errors. Note

that this problem is not only restricted to the * G12 > term, but can also apply to the other ‘G’ terms. Similarly, one can also

observe that the numerator of the * G12 > terms in equation(53) involves the computation of exponential functions. While

performing simulations for large times and small distances, one may encounter very large arguments within these exponential
functions that cannot be represented by finite computer precision. Therefore, it is common to observe overflow errors when

solving problems involving large simulation times.



A powerful solution to tackle these two problems involving long chain lengths
and large simulation times is to use a log based formulation. The log based formulation
involves transforming the arguments whose products have to be evaluated in to the log
space. Within the log space the products are evaluated by performing a set of additions.
Finally, the evaluated product is inverse transformed from the log scale to the linear
scale. By employing the proposed log based formulation, the underflow and/or overflow
errors related to evaluating the ‘I1° terms can be virtually eliminated. However, the
proposed log based formulation can only be applied to compute product terms and cannot
be used to compute summation terms. To tackle the problem of overflow errors while

evaluating summation terms, one can make use of the symmetrical property of the

*F. .’ terms. This involves combining the ‘F;l b ’ terms that have identical ‘7, and

iy 0y i3

[

I, values and then evaluating the sum of these combination terms separately and then
substituting them in the main solution [45]. Although this method seems to have a direct

approach, the algebraic manipulation involved in combining the various £ b > terms
15125

requires the reformulation of the final solution in a different format. This reformulation
would be mathematically tedious involving extensive book keeping, especially for
problems having long chain lengths.

One can use the log formulation and other computational techniques suggested
above for developing a computer code for the general solution. In addition to this, in the
section below, another alternative is presented where solutions for several simpler and
more practical cases that are computationally less challenging to implement are deduced.

These special-case solutions are particularly useful for developing screening level
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models. Furthermore, some of these simple solutions can be directly compared against
analytical solutions presented in the literature to provide powerful arguments for

demonstrating the validity of the general solution.

3.3 Special Cases

In this section solutions to several simplified transport scenarios are presented and
where ever possible, these solutions are validated against previously published analytical
solutions. It should be noted that for some of these special cases, a more rigorous
mathematical analysis (rather than simple substitution) is required to derive these
simplified solutions. Furthermore, unlike the general solution these special case solutions

impose fewer restrictions on the transport parameter values (Appendices A and D)

3.3.1 Zero Initial Condition
The general solution can be readily simplified to solve transport scenarios where

the initial concentrations of all the contaminants are zero. This is done by substituting the

value of ‘¢’ as zero. For this case, the general solution simplifies to:

i

¢(x6)=) ﬁyizkiz_l ii{GHh(Gf) Gzl} (54)

i=1| \i=i+1 bh=iy =1

;Vi=12,..n

where; ‘a : > is given by:

ip L

—2 s when i, >0
il = Rilsiz (55)
A5 when i, =0

L
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Note that the Gl1 >and ¢ G21 > terms in equation(54) defined in Appendices A and D

remain unchanged. It can be shown that the expressions for the first four species of this
special case solution match the solutions given by van Genuchten [45]. Furthermore,
from equation(54) one can observe that, for the zero initial condition case, the second
term of the general solution given by equation(43) is absent. This not only relaxes some
of the restrictions on the transport parameter values but also directly helps in improving

the round off errors especially during large simulation times.

3.3.2 Identical Retardation Factors

Special cases arise when the retardation factors of all the species in the transport
problem are identical (for example, the transport of non-sorbing set of sequentially
decaying contaminants, where the retardation factors of all the species will be 1). One
can obtain the solution for this problem from the general solution by simple substitution.
The modified solution for this special case problem for both types of boundary conditions
is given as:

cl.(x,t)=zl: (ﬁyizkizl i 2{6;5}

i=1| \ =i+ ih=iy =

i i

4 i 2
+ Z Rilci1 H yizkl'z—1 Z{Gz} (56)
i=1 ip=i+1 ih=iy
;Vi=12,..n
Note that the ° Gzl’ and ° G22 > terms defined in Appendices A and D remain

unchanged. The exclusion of the ‘Gll’ and ‘Gl2 > terms helps in obtaining a
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computationally more stable solution for longer chain lengths. Additionally this solution
imposes lesser restriction on the transport parameter values. Sun et al. [42] solved a
transport problem similar to the above problem assuming zero initial conditions.
However, unlike the solution presented in equation(56), Sun et al. [42] did not provide an
explicit closed-form expression, instead they only present a computational algorithm to

compute the concentration profiles.

3.3.3 Zero Advection Velocity
In some situations the transport of contaminants is governed mostly by dispersion.

The solution for this condition is identical to the general solution given by equation(43),

except that the * E} i > terms will be modified. For the Dirichlet boundary condition, the

‘F , term is given as:

R

Xy s i
21D2 : Rilx B i1 517,03
e T erfc
2R Dyt
e I x
Fii [x.t]=
2 Zhik Rx—w . .t

2D ] 150
+e "7 erfcd — LEhL (57)

2R Dt

k.
where ; @. . . = [4R.D | ——a

1,0y 503 Lox 1,53

The above expression is valid only for real values of ° ., o If ‘a)l.1 5 1.3’ is

complex the  F’ b > term is modified as:

i,
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~a, it xa)il A . xa)il A
E .. [x,t]:e | ACos| —=== |— BSin| —==
P2 2D 2D

X X

Rl.x+iaf. t

1,1y 503

2R Dt

; k,
where ; .. . = | 4R D | —~—a. . and ; (A+iB):erfc

150,03 1 X 1y,l3
i
(58)
For the case of the Cauchy boundary condition forcing the advection velocity to
be zero would result in a zero boundary condition. To avoid this, it is assumed that the

boundary condition at the source does not involve the ‘v’ term and modify Cauchy

source boundary condition as:
d i —Agt
oc, (0,1 Ble ™, 0<t<t,
D 1 ( ) — 2 .

x ax ij=1 9
0, 1>1,

Vi=1,2,..n (59)

Under this condition, the ¢ F, . , term is modified as:

1,0y

=T ]
2D, _
e erfe Rx-w,, 1 N
—a. .t a)il sy 2 Ril Dxt ’
F;l iy i3 [x,t]:e in i3 ; When _liai s and
= XDy ip i3 ) 2503
2D, 1
e 2D Rix+a)iiit l
| 1512513
erfc
T Yy 2 Rilet
kit (R-x vt)
i if
R, t 4R, Dt X R,-1 X i
e when B
7R, D 2D, 7 | 2/RD ll
kl1
Where ’ a)il’iz’iS - 4R11DX __ Iy,l3
Ri
|
(60)
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The above expression is valid only for real values of ° ., o If ‘a)l.1 5 1.3’ is

complex the  F’ b > term is modified as:

i,

- .
_B (AR
v 1,0y I3
2 —a, 2t 2D x
i3t 2D
F, [rl]= s e e
1512503 a) 2 5
(A . XQ. . .
1512503 A . iyl i3
iy
X
.k
. k. . Rx+io,, ,t
where ; @, , = | 4R D,| —-—a,, || and (A+iB)=erfc
! 2R Dt
1 i x
(61)

The solutions obtained for the zero advection velocity case are specialized solutions
that can be directly applied to model reactive transport scenarios involving chemical and

nuclear repository leakage through diffusion.

3.3.4 Steady State

The behavior of a contaminant plume under steady state conditions is of special
interest especially in analyzing monitored natural attenuation (MNA) problems. Steady
state solutions avoid the problems related to overflow errors which occur when
employing the general solution to solve for large simulation times. Although this
problem can be tackled by using the algebraic manipulation technique suggested in
Section 3.2, it can be a tedious effort. Furthermore, numerical codes (e.g., RT3D [12])
and semi-analytical solutions (e.g., Quezada et al. [38]), require large amounts of
computational resources to accurately model steady state solutions. For these reasons, it

is very attractive to obtain explicit solutions for steady state conditions. It must be noted
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that unlike previous special cases, it is not possible to deduce the steady state solution by
direct substitution. Therefore, the steady state solution is derived by solving the steady
state governing equations assuming a constant source for the Dirichlet and Cauchy
boundaries conditions. Since the time term is absent in the governing equations, Laplace
transform techniques are not involved, and one can directly use the linear transform
method given by Clement [11] to uncouple the system of equations. The detailed
solution procedure is given in Appendix F. The steady state solution for the Dirichlet

boundary is given as:

T e

iy=i (i3 21

;Vi=1L2,..n

The corresponding steady state solution for the Cauchy boundary is given as:

)= Tl [ S5 ,.

iy=iy {;+;m} H _(kiz _kis)

| iy=iy (i3 i) i

; Vi=12,..n
(63)

From equations(62) and (63) it can be observed that the steady state solutions are
less complex compared to the generic transient solutions since they do not involve the

ERFC terms.
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3.3.5 Zero Dispersion Coefficient

If we ignore the effects of dispersion, the governing transport simplifies to:

oc; (x,t oc, (x,t .
Rl' lét )-|-V éx ):yj—lki_lci_l(x,t)—kici (X’l’) ; VZ:2, 3,7,1

=—kc, (x,1) ; i=1 (64)

; V>0 and 0<x<o
Note that in the absence of dispersion, the Cauchy boundary condition will be
identical to the Dirichlet boundary condition. In Appendix G the above problem is
solved using the generic exponential initial condition given by equation(2). The solution
for the no dispersion condition can also be represented by equation(43). However, the
‘G’ terms associated with this solution are defined as: (See equations (G.29) and (G.38)

in Appendix G)
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where; the term ‘El’ : ’ is given by: (See equation (H.5) in Appendix H)

iy

R, x
Rox) o)
Fo. . [x,t] =u|t———|e (66)

v

It can be shown that in the absence of initial contaminant distributions the solutions
derived in this section are identical to those published in Harada et al. [23] and Higashi

and Pigford [24]. Note that, although the solution for the no dispersion case appears to be

identical in structure to the general solution, the ‘E.l i, terms involved in these ‘G’

terms, defined in equation (H.5) in equation(66), are distinctly different from that of the

general solution. These new ° F;l b > terms do not involve the ERFC terms and hence are

easier to compute.

3.4 Example Problems

A general computer code (FORTRAN) that solves equation(43) was developed
based on the computational algorithm provided in Section 3.2. Appendix I gives the
details of the code along with a sample input and output files. Using this code, the
general solution is first tested against two published examples problems: one involving
the Dirichlet boundary and the other involving the Cauchy boundary. The example
problem for the Dirichlet boundary condition is taken from Cho [9]. The parameters used
in this problem are summarized in Table 1. Note: it is assumed that the decay occurs in
the liquid phase only. The results of the general solution are tested against the results of
the analytical solution given by Cho [9]. Fig.1 compares the concentration profiles of the
two solutions. It can be observed that the two solutions give identical results.
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Parameter Value

Velocity; v (cm/h) 1
Dispersion coefficient; D, (cm*/h) 0.18
Simulation Time; t (h) 200
Pulse Time; t, (h) 200
Retardation factors; R, 1 to 3 2, 1,1
First-order decay coefficients k, 1 to 3 (1/h) 0.01,0.1,0
Yield coefficients; y, 1 to 2 1,1
First-order source decay coefficients; A, 1 to 3 (1/h) | 0,0,0
Boundary constant value species 1; B, 1 to 1 1
Boundary constant value species 2; B, 1 to 2 0,0
Boundary constant value species 3; B, 1 to 3 0,0,0
Initial condition constant; c°, 1 to 3 0,0,0
Initial condition Exponent; p, 1 to 3 0,0,0

Table 1: Parameters used in the Cho [9] example problem
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Fig. 1: Comparison of the concentration profiles of the general solution with the Cho [9]

solution (3 Species, Dirichlet boundary condition)
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The Cauchy boundary example problem is taken from van Genuchten [45]. This
problem is a modified version of the problem given by Higashi and Pigford [24]. Here
the source is modeled as a step source and decay is assumed to occur in both phases. The
transport parameters used in this problem are summarized in Table 2. The results of the
general solution are compared against the van Genuchten [45] solution and are
summarized in Fig. 2. Observation of the concentration profiles given in Fig. 2 indicates
that there is an excellent match between the two solutions.

To further test the performance of the general solution for long chain lengths, a
hypothetical 10 species problem was formulated that included an exponentially decaying
boundary condition along with spatially varying initial contaminant distributions. Decay
is assumed to occur only in the liquid phase and furthermore, the retardation factors of
some of the species were made equal. Table 3 summarizes the model parameters used in

this problem. The above problem was solved using a Dirichlet boundary condition
assuming a pulse time for the source release ‘7, > as 10 years. The results of the general

solution were compared against the semi-analytical solution given by Quezada et al. [38].
Fig. 3 shows the concentration distributions of all the species. These results indicate that
the two solutions match well. An identical problem with a source pulse time ‘7’ of 20
yrs was formulated using a Cauchy boundary. The concentration distributions of all the
species were compared against the Quezada et al. [38] solution. Fig. 4 gives the
comparative profiles of both these solutions. Again, it can be seen that the profiles
predicted by the two solutions have a good match. These simulations further validate the

performance of the general solution for transport problems involving long chain lengths.
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Parameter Value
Velocity; v (m/yr) 100
Dispersion coefficient; Dy (m®/yr) 10
Simulation Time; t (yr) 1.0E+5
Pulse Time; t, (yr) 1.0E+4

Retardation factors; R, 1 to 4

1.0E+4, 1.4E+4, 5.0E+4, 5.0E+2

First-order decay coefficients k, 1 to 4 (1/yr)

7.9E-3, 2.8E-6, 8.71E-6, 4.3E-4

Yield coefficients; y, 1 to 3

1,1,1

First-order source decay coefficients; A, 1 to 4

(1/yr)

8.9E-3, 1.0028E-3, 1.0087E-3, 1.43E-3

Boundary constant value species 1; B, 1 to 1

1.25

Boundary constant value species 2; B, 1 to 2

-1.2504, 1.2504

Boundary constant value species 3; B, 1 to 3

4.43684E-4, 5.93431E-1, -5.93874E-1

Boundary constant value species 4; B, 1 to 4

-5.1674E-6, 1.20853E-2, -1.22637E-2,
1.78958E-4

Initial condition constant; ¢°, 1 to 4

0,0,0,0

Initial condition Exponent; pu, 1 to 4

0,0,0,0

Table 2: Parameters used in the modified Higashi and Pigford [24] example problem as

given by van Genuchten [45]
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Fig. 2: Comparison of the concentration profiles of the general solution with the van

Genuchten [45] solution (4 Species, Cauchy boundary condition)
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Parameter (Should be updated) Value

Velocity; v (m/yr) 5

Dispersion coefficient; Dy (m®/yr) 50

Simulation Time; t (yr) 20

Pulse Time; t, (yr) 10 (For Dirichlet) and 20 (For
Cauchy)

Retardation factors; R, 1 to 10

19,1,14,1,5,8,1.4,3.1, 1,1

First-order decay coefficients k, 1 to 10 (1/yr)

3,2,1.5,1.25,2.75,1,0.75, 0.5, 0.25,
0.1

Yield coefficients; y, 1 to 9

1,2,1.5,04,1,1,0.7,09, 1

First-order source decay coefficients; A, 1 to 10

(1/yr)

0.1, 0.75, 0.5, 0.25, 0, 0, 0.3, 1, O,
0.65

Boundary constant value species 1; B, 1 to 1 10

Boundary constant value species 2; B, 1 to 2 0,5
Boundary constant value species 3; B, 1 to 3 0,0,2.5
Boundary constant value species 4; B, 1 to 4 0,0,0,0
Boundary constant value species 5; B, 1 to 5 0,0,0,0,10
Boundary constant value species 6; B, 1 to 6 0,0,0,0,0,5

Boundary constant value species 7; B, 1 to 7

0,0,0,0,0,0,2.5

Boundary constant value species 8; B, 1 to 8

0,0,0,0,0,0,0,0

Boundary constant value species 9; B, 1 to 9

0,0,0,0,0,0,0,0,0

Boundary constant value species 10; B, 1 to 10

0,0,0,0,0,0,0,0,0,0

Initial condition constant; c°, 1 to 10

0,0.1,0.2,0,0.25,0.3,0.15,0,0,0

Initial condition Exponent; p, 1 to 10

0,0.01,0,0,0.02,0.01,0.1,0,0,0

Table 3: Parameters used in the new 10 species example problem
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3.5 Salient Features of the General Solution

One of the most important features of the general solution is that it is a generic
solution that can solve an arbitrary number of species. Furthermore, the final solution is
given in an explicit closed-form format that avoids numerical methods. In addition to
this, the general solution is formulated and presented in format such that solutions for the
Dirichlet and the Cauchy boundaries share a common structure. This enables the
convenient implementation of both these solutions by designing one code that shares
several common routines having the capability to easily switch between the two boundary
conditions.

Another interesting advantage of this solution is that it can be used to directly
obtain the solution for a particular species in the chain without involving the
computations of other species. This is extremely efficient when modeling scenarios
where there the daughter product would be more toxic or more mobile than the parent
compound. In this case, one would be interested in obtaining the concentration profiles
for the daughter product only. Solving this problem numerically would involve the
computation of all the predecessor species and this can be time consuming. A similar
situation also arises when employing the recursive type semi-analytical solutions
presented by Harada et al. [23] (See section4, p6, eq4.20). Their solution expression for
any species ‘i>1" involves the concentration term of its predecessor ‘i-1’th species.

The third feature of this solution is that it can be readily extended to a general
diverging reaction network [43]. One can conceptualize a diverging network as a
superposition of a series of parallel reaction networks each of which can be solved

independently. It must be noted that one diverging species will have no effect on the
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other diverging species and hence they can be considered independent of each other.
Hence in order to solve a diverging reaction network, one has to split the network into a
set of parallel sequential reaction networks and solve each sequential chain
independently.

The one dimensional solutions presented in this work can be readily extended to
solve multi-dimensional transport problems involving transverse dispersion terms using
the approximate Domenico solution [16]. The mathematical details of this extension
strategy are provided in Quezada [37]. As pointed out by Quezada [37] , this strategy
yields an approximate solution. In the following chapter this approximation is
investigated to identify transport situations where the Domenico solution can be

advantageously applied with high accuracy [41].

3.6 Limitations of the General Solution

Despite its advantages, the general solution and its simplified solutions have some
key limitations. As with the case of all analytical solutions, these solutions can model
idealized transport problems only. Situations involving heterogeneity, variation in the
flow field, presence of source/sink terms, etc. cannot be modeled using these solutions.
Furthermore, these solutions are restricted to modeling first-order kinetic reactions only.
Although this is highly suitable for modeling radioactive waste transport and certain
types of simplified chemical reactions, these solutions cannot capture the more generic
reaction kinetics such as the Monod kinetics.

The general solution places several limitations on the values of the transport

parameters which are summarized in Table 4 (Appendices A and D). These limiting
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conditions arise when factorizing the denominator of the ‘G’ terms during the
computation of the inverse Laplace transforms. An easy approach to tackle this problem
would be to marginally perturb the individual model parameters such that the limiting
conditions are averted [45]. This would enable us to tackle the problem using the general
code. However, this technique can aggravate the existing computational problems related
to overflow/under flow errors. Another more rigorous approach to tackle this problem
would be to perform a mathematical analysis incorporating these special cases and
evaluating the corresponding alternate expressions, similar to the one performed on the

case of identical retardation factors (i.e. when

‘R . =0; Vi,i,=1,2,..n ; where ; i, #1i,”). This analysis would involve

modifying the factorization of the ‘G’ terms to include the limiting conditions and
performing generalized inverse Laplace transform operations on the alternate
expressions.

Finally, it must be noted that unlike the semi-analytical solutions presented by
Clement [11] or Quezada et al. [38] which can model arbitrary reaction networks, the
general solution can only model sequential and diverging reaction networks. However, it
is possible to extend this solution to solve systems involving complex reaction networks
using a similar approach. The key step required to perform this extension would be to
obtain generalized expressions for the linear transform matrices used to uncouple the

coupled system of equations.
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Table 4: Summary of parameter limitations
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CHAPTER 1V
INVESTIGATION OF ERROR ASSOCIATED WITH THE DOMENICO
APPROXIMATION

4.1 Introduction

This chapter investigates some of the approximations involved in extending the
one-dimensional solutions derived earlier into multiple-dimensions. One of the most
popular multi-dimensional analytical solutions used for modeling multi-dimensional
ground water contaminant plumes is the Domenico solution [16]. The Domenico
solution is an approximate three-dimensional solution that describes the fate and transport
of a decaying contaminant plume evolving from a finite patch source. This solution was
based on an approach previously published by Domenico and Robbins [17] for modeling
a non-decaying contaminant plume. Prior to this work, Cleary and Ungs [10] presented
an analytical solution to a similar three dimensional transport problem for a domain finite
in y and z directions. Later, Sagar [39] published an exact analytical solution to the
transport problem considered by Domenico and Robbins [17]. Wexler [48] extended the
Sagar [39] solution to include the effects of reaction and presented an exact analytical
solution to the transport problem considered by Domenico [16]. However, these
solutions are not closed form expressions since they involve numerical evaluation of a
definite integral. This numerical integration step can be computationally demanding and

can also introduce numerical errors. The key advantage of the Domenico and Robbins
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[17] approach is that it provides a closed form solution without involving numerical
integration procedures. Due to this computational advantage, the Domenico solution has
been widely used in several public domain design tools including the USEPA tools
BIOCHLOR and BIOSCREEN [3, 36].

Although the Domenico solution is extensively employed in several ground water
transport models, its approximate nature has received mixed reviews over the years. For
example, West and Kueper [47] compared the BIOCHLOR model against a more
rigorous analytical solution and observed considerable discrepancies. By comparing the
near field concentration profiles they concluded that the Domenico solution can produce
errors up to 50%. Guyonnet and Neville [22]compared the Domenico solution against
the Sagar [39] solution and presented the results in a non-dimensional form. They
concluded that for ground water flow regimes dominated by advection and mechanical
dispersion the discrepancies between the two solutions can be considered negligible
along the plume centerline. They further added that the errors may increase significantly
outside the plume centerline.

The above review indicates that there are conflicting opinions regarding the
performance of the Domenico solution. Furthermore, since the development of the
Domenico solution was based on a heuristic approach, researchers have expressed
skepticism regarding its validity [47]. Presently, there are several unanswered issues
related to the performance of this solution that include: Is there a mathematical basis for
deriving the Domenico solution? If so, what are the approximations involved in deriving
the solution? What are the errors associated with these approximations? And finally,

under what conditions are these approximations valid? To answer these questions, we
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need a fundamental understanding of the nature of the approximations involved in the
Domenico solution. The focus of this chapter is to perform a rigorous mathematical
analysis on the origin and development of the Domenico solution. The outcomes of this
analysis are used to develop some general guidelines for the appropriate use of the

solution.

4.2 Governing Equations

The transport problem considered by Domenico [16] assumes a patch source of
constant concentration ‘c,’ located at the origin in a clean, semi-infinite aquifer. The

contaminant is subjected to advection in the x direction and dispersive mixing in all three
directions. Furthermore, it is assumed that the contaminant decays through a first order

process. The governing transport equation considered by Domenico [16] is:

2 2 2
%:—v@+Dxa—f+D)a—f+Dza—f—kc (67)
ot ox Ox 7 oy Oz

The initial and boundary conditions are:

c(x,v,2,0)=0 V 0<x<ow, —0<y<o, —0<z<o0

y4 VA Y Y
c(0,y,z,t)=c ——<z<—, ——<y<—, V >0
0,y,z,t)=¢, A 5 <Y<3
=0 otherwise, ¥ >0
lim 262,20 (68)
X—® ax
lim JG 22,0 _ g
y—>too ay
lim 26,20
z—tw iz

61



where; ‘c’ is the concentration of the contaminant [ML™]; ‘c,” is the

concentration at the source [ML™]; Y and ¢ Z are the source dimensions in y- and z-

directions, respectively [L]; ‘D ’, ¢ Dy >, and “ D_’ are the dispersion coefficients in x, y

and z directions, respectively [L*T™']; < v’ is the advection velocity in the x direction [LT"

"; and ¢k is the first-order decay coefficient [T™'].

4.3 Review of the Domenico Solution

The Domenico [16] solution was based on an approximate approach given by
Domenico and Robbins [17]. Therefore, we first present a detailed review of the
development of the Domenico and Robbins solution. Domenico and Robbins [17] began
their analysis by presenting the following exact analytical solution that describes the

transport of an instantaneous pulse source in a three-dimensional domain [25]:

c(x,y,z,r)=% F.0ot) F(t) Jo(zt

_ x—vt+)2( X—=Vt——
where ; f (x,t)=|erf{———=5r—erf {——5
f f Z(Dxt)l/z f 2(Dxt)1/2
~ v+ -3 (69)
o =lerfy\——5 —efy——
2(Dyt) 2(Dyt)
VA
B Z+E Z—E
and z,t)=|erf{ ——=—t—erfi——=—
f‘z( ) f 2(th)l/2 f 2(th)1/2

They then present the following one-dimensional analytical solution [15]:
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c(x,1) =%0 £.(x.0)

(70)
where ; f (x,t) =erfc {_ x_th/Z}
2(D,t)

Note that the above expression is the solution to the standard one-dimensional
advection dispersion equation for an instantaneous source extending from zero to
negative infinity [5].

To account for the transverse dispersion due to a finite sized two-dimensional

source they employed the following two analytical solutions [15]:

c(y,t):%" f.(n.10) and c(z,t)z%" £.(z.0)

Y Y
y+§ YTy
where ; f (v,0) =|erf \—=5 r—erf \——55 (71)
2(D,t) 2(D,t)
Z
Z+E Z—E
and f.(z,t)=|erf{——=5—erf{—=
2(th)l/2 2(th)l/Z

Note that ¢(y,?) and c(z,t) are solutions to two independent one-dimensional
transient diffusion equations subjected to an instantaneous line source of widths Y and Z
respectively.  Further, it can be observed that the terms f (y,7) and f.(z,¢) in
equation(71) are identical to the terms fy (y,t) and fz(z, t) in the Hunt [25] solution.

Domenico and Robbins [17] multiplied the one-dimensional solution f (x,¢)
with these “transverse spreading terms” f (v,#) and f(z,#) and presented the following

expression.
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S S WACONACHWACK) (72)

However, the authors did not justify this superposition step. Note that the Hunt
solution [25] was never used in this analysis. At this stage, Domenico and Robbins
presented the following arguments: “The product of these three integral solutions [shown
in equation(72)] describes a semi-infinite contaminated parcel which moves in the
positive x direction with a one-dimensional velocity but which continuously expands in
size in directions transverse to x throughout the whole domain of x, i.e., in the positive
and negative regions. This is because the time t in the transverse spreading terms is
interpreted as running time. Reinterpreting this time as x/v for a moving coordinate
system, as is common in all transverse spreading models (Bruch and Street, 1967; Ogata,
1970; Domenico and Palciauskas, 1982) has the effect of maintaining the original source
dimensions at x=0 so that the condition C=Co is maintained at x=0 for t>0.” Using

these arguments they reinterpret the time term t in the transverse spreading terms f (y,?)

and f (z,t) as x/v. However, the authors did not provide a mathematical reasoning for

this time reinterpretation step. Further, all the references cited in the above text solve
fundamentally different problems and we will address this issue in a later section. Using

this time reinterpretation step, equation(72) was modified as:
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c(x,y,z,r)=%° [.00) f,(0%) fi(2,%)

where ; f (x,t) =erfc {LW}

2(Dxt)l/2
oY Y
ﬂ;(yax): el/:f 2 1/2 _el/:f 2 12 (73)
2(Dyx/v) 2(Dyx/v)
Z
Z+5 Z—E
and z,x)=|erf{—=—‘t—erf{————=—
fAax)= et 2(sz/v)l/2 / 2(sz/v)l/2

Equation(73) was presented as the final solution to the continuous finite patch
source problem considered by Domenico and Robbins [17].
Later, Domenico [16] incorporated the effects of first-order decay by replacing

the f (x,f) term with an analytical solution for the semi-infinite pulse source problem

with a decay term, presented by Bear [5]. The final solution was given as [16]:

c(x,y,z,r)=% [0 f,(x) f.(z%)

4ko "
X 4ko 1/2 x—vt| 1+ ,
where ; f (x,t)=| exps— 1—(1+ xj erfc 7
20, v 2(o,vt)
v+ y—t 9
_ 2 | 2
fy(J’ax)— erf 7z —erf 172
2(ocyx) 2(0Lyx)
VA
z+— z——
2

and f.(z,x)=|erf —21/2 —erf{ ——=—
2(ox) 2

z
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D D : e
where; oo, =—=, o, =—= and o, =—= are the dispersivities in the X, y and z
v v v

directions respectively [L].
Martyn-Hayden and Robbins [31] later modified the Domenico [16] solution,
referred in this work as modified-Domenico solution, by incorporating the following one-

dimensional solution (which describes a constant source boundary) in the f (x,7) term

[5]:

4ka j”z

4k 1/2 X—Vf(l-i' x
f.=|exp L 1—(1+ axj erfc ‘1}/2
2ax v 2(0( Vt)

X

(75)

As pointed out by Bear [5] if the value of s sufficiently large, a condition

X

usually satisfied in practice, the additional term in the above equation can be safely
ignored.

The above review shows that the development of various forms of the Domenico
solution does not have a rigorous mathematical basis. The empirical arguments provided
by the authors are vague because the mathematical procedures implied by these
arguments are inexplicit and nebulous. In the following section a more rigorous approach
to derive the Domenico solution that clearly stated the approximations involved is

presented.
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4.4 A Rigorous Approach to Derive the Domenico Solution
The exact semi-analytical solution for the three dimensional transport problem
described by equations (67) and (68), considered by Domenico [16], was provided by

Wexler [48] as:

iz =2 [ L0000 1 00) (2 de

2 2
—y -X
T—kr+ j

exp
( Ve j 4D, 4Dt
Xp

where ; f' (x,7)=

.
\/7zD
y+§ Y 5 (76)
o) =lef —57—ef \

2(D, D,

Z+5 Z—i
and z,T)=|er
f ( ) f 2(DZZ')1/2 f Z(DZT)I/Z

To obtain the Domenico solution from the above exact solution, we replace the value of t

in the transverse spreading terms /' (y,7) and f'.(z,7) with x/v (the validity of this

substitution will be discussed later). This yields the following expression:

ez =2 £, (n0) £.(= x)[ 1) de

SIS
where ; f (y,x)=|erf \—55 1 — 72 (717)
2(ayx) Z(a}x)
Z
Z+5 —
and f.(z,x)=|erf{——7—erf 1/2
2(a.x) 2(a.x)
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D o
where; o, =—= and o, =—=. Note that by substituting T = x/v we have made
% v

the transverse spreading terms f (y,x) and f.(z,x) independent of time and hence they

will not participate in the integration process. Without the transverse terms, the definite
integral can be evaluated analytically as shown in Appendix J. Therefore, the above

equation can be simplified as:

ey z) =2 f(00) f,(0) f(20)

dka "
X Ao 1/2 )C—Vl‘(l-f- xj
where ; f.(x,t) = exp{glzl—(br "] :l} erfc v (78)

v 2(05)5111‘)1/2

X

x 4ka, )" |
+| exps—|1+| 1+ x erfc
2a v 2(aw)”

Equation(78) 1is identical to the modified-Domenico solution shown in

equation(75). If we set the first-order decay coefficient k to zero equation(78) reduces to:

c(x,y,z,t)=%"ﬁ(x,t) f.(rsx) f.(z,%)

(79)
where ; f (x,t) =erfc L‘}tm +eXp{i}erfc x+vt1/2
2(a,vt) a, 2(a,vt)

Equation(79) is similar to the Domenico and Robbins (1985) solution given by
equation(73). The additional expression in the f (x,#) term in equations (78) and (79) is
due to the use of the expanded form of the one-dimensional solution that describes a

constant concentration boundary condition instead of a semi-infinite pulse source

boundary condition.
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The above analysis shows that the only approximation required for rigorously
deriving the Domenico solution is the time reinterpretation step, where t is replaced by
x/v in the transverse dispersion terms. In the following section, a detailed mathematical

analysis that investigates the validity of this approximation is presented

4.5 Mathematical Analysis of the Validity of the Approximation Involved in the

Domenico Solution

Review of transport modeling literature indicates that it is common to replace t
with x/v in the transverse dispersion terms when solving convection dominated problems
that have low longitudinal mixing. For example, Bruch and Street [6] used a similar
assumption to solve the advection-dispersion problem when the longitudinal mixing was
smaller than the transverse mixing. Another example of a convection-dominated problem
that employs this approximation is the air pollution model used for predicting the fate and
transport of smoke plumes evolving from chimneys [46]. Here, the transport is
dominated by convection along the wind direction and dispersive mixing is restricted to
the transverse directions only. Neglecting the effects of longitudinal dispersion in such

problems simplifies the governing transport equation as:

2 2
% _ %, p a—f+Dza—f—kc (80)
ot ox oy 0z

Consider solution to the above transport problem subject to the following

Domenico-type initial and boundary conditions:
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—0<zZz<©

c(x,y,2z,0)=0 V 0<x<ow, —oo<y<o,
VA

c(0,y,z,t)=c ——<z<—, ——<y<—, VYV >0

0,y,z,t)=¢, 5 5 5 <Y
t>0 (81)

=0 otherwise, Y
ICEES N
y—to ay
R ES X I

z—>t00 'z

In Appendix K, Laplace transform techniques are used to solve the above problem

and the resulting exact analytical solution is:
c o
c(x,y,z,t) = ry fi(xt) f,(xp) f.(x,2)

where ; f°(x,t) = 2exp(—gju{t—£}
v v

and u {t —f} is the step function given by; (82)
v
0 ift<t
X v
u {t ——} =
Y 1 ift> X
v

where;  f (x,y) and f.(x,z) are identical to the expressions given in
equation(77).
Since the Domenico approach approximates T as x/v in the transverse dispersion
terms one can hypothesize that the Domenico approximation must be valid when o is

zero. To test this hypothesis, a limiting analysis is performed on the modified-Domenico
solution by forcing o to zero; this is expressed as:

(., z.0) = lim e £,(x.0) £,(3.2) f.(z.0) (83)
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The mathematical details of this limiting analysis are given in Srinivasan et al.

[41]. The analysis shows that when o approaches zero the modified-Domenico solution

relaxes to the exact analytical solution given by equation(82). This proves that the

Domenico approximation indeed yields an exact analytical solution when o is equal to

Z€10.

4.6 Analysis of the Error Associated With the Domenico Solution

The mathematical analysis presented in the previous section demonstrates that the

time reinterpretation step, where t is replaced with x/v, is exactly valid when a_= 0.

From these results one could also infer that this time reinterpretation process provides a
reasonable approximation when longitudinal dispersion plays an insignificant role in the
overall transport. Hence, the Domenico solution can be expected to produce reasonable
estimates for advection-dominated problems; however, it can introduce significant errors
for longitudinal dispersion-dominated problems.

Another important feature of the time reinterpretation step is that it forces a quasi
steady-state condition along the transverse directions at all times. In other words, the
‘conceptual’ residence time (x/v value) associated with a point located at the centerline to
disperse contaminant mass in the transverse directions is independent of the simulation
time. Further, this residence time is also assumed to increase linearly with respect to x.
These unrealistic assumptions regarding residence times will lead to erroneous
predictions, especially beyond the advective front. For example, consider a problem

where v = 50 m/year and we are interested in predicting the concentration distribution of
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a two year plume (t = 2 years) at a location x = 200 meters. The Domenico solution will
estimate the residence time t for our location of interest x = 200 meters as T = x/v = 4
years; this in fact is greater than the total simulation time it self! This is an unrealistic
assumption since a 2 year old plume simply cannot have the time to disperse for 4 years!
For a particle located at the advective front the residence time assumed by the Domenico
solution is 2 years (the simulation time), and for all the particles located behind the
advective front the residence time assumed by the Domenico solution will be equal to x/v
(which will be less than 2 years); these seem to be reasonable estimates. However, for all
points beyond the advective front i.e. x > 100 meters, the Domenico solution will assign
unrealistic conceptual residence times which will be greater than the simulation time t = 2

years. It must be noted that this incorrect behavior will vanish when o is zero because,

for this case, the plume will abruptly end at the advective front and the residence time for
each particle located at or behind the advective front will in fact be equal to x/v.

When solving steady state problems, the assumption related to residence time
should be a reasonable approximation. This is because, at steady state, the theoretical
advective front will be at infinity. Therefore, the time reinterpretation should be
reasonable for any finite domain. Hence, the performance of the Domenico solution
under steady state conditions can be expected to be better. However, it is important to
note that even under steady state conditions the solution will not be exact because it will
still ignore the transport due to longitudinal mixing. In general, it can be concluded that
the Domenico solution can be expected to perform better behind the advective front. In
the following section we use an example problem to illustrate the implication of these

theoretical results.
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4.7 Example Problem

The example problem presented by Domenico and Robbins [17] is considered in
this analysis. The transport parameters used in the problem are summarized in Table 5.
The performance of the modified-Domenico solution was tested by comparing its results
against those generated using the exact solution given by Wexler [48].

It has been established in the previous sections that the Domenico approximation
makes unreasonable assumptions regarding the residence time beyond the advective
front, and reasonable assumptions behind the front. Therefore we analyze the results of
this comparison in two parts-- one behind the advective front and the other beyond the

advective front (note that for our base case, the front is at x = 1100 meters).

4.7.1 Plume Comparison Analysis Behind the Advective Front

Figures 5a and 5b compare the two-dimensional concentration contours of both
solutions on the X-Y and X-Z planes (Note: an aspect ratio of ‘2.2 : 1’ was maintained
for the X-Y plots and an aspect ratio of ‘55 : 1’ was maintained for the X-Z plots). Since
the problem is symmetric about the X axis, only half of the plume is presented. It can be
observed from Figure 5 that the modified-Domenico solution is reasonably close to the
true solution, though there are some noticeable discrepancies. To explore the limits of

these discrepancies, we performed a series of sensitivity simulations.
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Parameter Value

Longitudinal dispersivity (o) 42.58 m

Transverse dispersivity (o) 8.43 m
Transverse dispersivity (o) 0.00642 m
Velocity (v) 0.2151 m/day

Source width in Y direction (Yo) | 240.0 m

Source width in Z direction (Zo) | 5.0 m

Source concentration (Co) 850 mg/L

Simulation Time (T) 5110 days

TableS: Parameters used in the Domenico and Robbins [17] example problem
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Fig. 5: Concentration contours predicted by the Domenico and Wexler solutions for the

base case: solutions behind the advective front for (a) X-Y plane (b) X-Z plane
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In the first set of sensitivity simulations, we varied the value of the longitudinal
dispersivity (o) by an order of magnitude above and below the assumed baseline value.
Figures 6a and 6b compare the two-dimensional concentration contours of the solutions
for both the cases. Comparison of the data shown in Figures 5a and 6 indicate that the
discrepancies between the two solutions were large when the value of longitudinal
dispersivity was high. Also, as expected, when the longitudinal dispersivity was low
there was an excellent match between the solutions. Similar trends were also observed in
the concentration contours predicted on the X-Z plane. Since the spreading terms in the y
and z directions are identical in structure, the contours in the X-Y and X-Z planes will
exhibit identical trends. Therefore, from this point onwards the sensitivity analysis will
be restricted to X-Y contours.

In the second set of sensitivity simulations, we varied the value of the transverse
dispersivity (o) by an order of magnitude above and below the base line value. These
results (refer supplementary material for figures) indicated that the transverse dispersivity
in the y-direction does not play a significant role in influencing the error associated with
the modified-Domenico solution. Similar sensitivity analysis performed on other
transport parameters including the transverse dispersivity a, and the source dimensions Y
and Z also showed minimal sensitivity.

A third set of sensitivity simulations were completed for a decaying contaminant
plume by assuming various first-order rate coefficients (k). Comparison of the
concentration contours for k values of 0.0001 day™” and 0.001 day" indicated that the

presence of a decay term does not introduce any significant additional error [41].
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The fourth set of sensitivity simulations involved varying the advection velocity (v)
by an order of magnitude above and below the baseline value. Figures 7a and 7b
compare the concentration contours of the solutions for the two cases. From these figures
it can be concluded that the advection velocity has very little effect in determining the
accuracy of the solution. Note that in the absence of first order decay, varying the
advection velocity will have the same effect as varying the total simulation time (t).
Since decay does not play any significant role in determining the accuracy of the
modified-Domenico solution, it can be safely concluded that variations in the total
simulation time will have little sensitivity on its accuracy.

The above results indicate that within the advective front the longitudinal
dispersivity plays a very important role in determining the accuracy of the modified-
Domenico solution. All the other transport parameters have negligible effect on the

accuracy of the solution.

4.7.2 Plume Comparison Analysis Beyond the Advective Front

Figure 8 compares the concentration contours of the two solutions in the X-Y plane
for the base case parameters (Note: here an aspect ratio of ‘4:1° is maintained for the X:Y
plane to capture the plume beyond the advective front; also the location of the advective
front is indicated by an arrow on the x axis). It can be observed from Figure 8 that, as we
move beyond the advective front, the accuracy of the modified-Domenico solution
reduces rapidly. As pointed out in the earlier sections, this is due to the unrealistic
assumptions made by the Domenico solution when computing the conceptual residence

times beyond the advective front.
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The results of a sensitivity analysis performed on the parameter o are summarized
in Figures 9a and 9b. These figures indicate a trend similar to those present for regions
within the advective front. Higher the value of the longitudinal dispersivity, greater the
error associated with the modified-Domenico solution. Further, it can be observed that
the error systematically increases when the contaminant is transported beyond the
advective front.

A similar set of sensitivity simulations were performed on different transport
parameters including oy, o, Y, Z and K for regions beyond the advective front as well.
As expected, the results indicated that these parameters had negligible contribution in
determining the accuracy of the solution.

A final set of sensitivity simulations were performed by varying the value of the
advection velocity (v) by an order of magnitude above and below the base line value.
The results of this sensitivity analysis are summarized in Figures 10a and 10b. Initial
observations of these figures may indicate that at higher velocities, the modified-
Domenico solution appears to perform better. However, a closer analysis of these figures
with respect to their respective advective front locations indicates that at higher velocities
a greater portion of the plume is behind the advective front whereas, at lower velocities a
relatively lesser portion of the plume is behind the advective front confirming that the
advection velocity has little effect in determining the accuracy of the solution. However,
it must be noted that the advection velocity itself plays an important role in determining
the location of the advective front, which is one of the key parameters that affects the
performance of the solution. Variations in the total simulation time (t) will have a similar

effect as that of the advection velocity.

81



— WEXLER
----- DOMENICO

800 1000 1200

— WEXLER
2200 e DOMENICO

% 700 200 300 400 500 600 700
Y (m)
(b)

Fig. 9: Sensitivity results for variations in the longitudinal dispersivity value; solutions

include concentration contours beyond the advective front for (a) ax*10 (b) o/10

82



16000 r r - .

— WEXLER “

14000} e DOMENICO
12000} :
> 7]
10000
£ so00}
<
6000 ]
4000 ]
2000}
O 500 1000 1500 2000 2500 3000 3500 4000
Y (m)
(a)
Tl T— wExLER | | — WEXLER
v DOMENICO | I R DOMENICO |
1200} ] 1200}
1000} !
£ a0
-4
600 ]
............... mﬂﬁ*mw
....... ?Q -
100 K,
Lz - *." ............. “. - . -+
3@D 3300 4080 200 36D 3300 4080 .
v (m) %

(b)
Fig. 10: Sensitivity results for variations in the transport velocity; solutions include

concentration contours beyond the advective front for (a) v¥10 (b) v/10

83



From the results of these sensitivity simulations, it can be safely concluded that, the
two most important factors that affect the accuracy of the modified-Domenico solution
are the value of the longitudinal dispersivity (o) and the position of the advective front
(v*t). The solution will have minimal errors when the value of oy is low and when the
advective front is farther away from the source. It must be noted that the conclusions

obtained for the modified-Domenico solution apply to the Domenico solution as well,

provided the value of s sufficiently large [5].
o

X

4.8 Discussions and Recommendations

Since the original Domenico solution lacked a theoretical basis, several
misconceptions regarding its performance have evolved over the years. One of the
common misconceptions is that the error will be a minimum along the plume centerline.
For example, Guyonnet and Neville [22] compared the Domenico solution against the
Sagar [39] solution and concluded that “The results of the evaluation confirm that along
the plume centerline, and for ground water flow regimes dominated by advection and
mechanical dispersion rather than by molecular diffusion, discrepancies between the two
solutions (namely the Domenico solution and the Sagar solution) can be considered
negligible for all practical purposes. However the errors in the Domenico (1987)
solution may increase significantly outside the plume centerline.” However, the above
simulation results indicate that this conclusion might not be true for all cases. To
illustrate this, compare the y and z concentration transects predicted by the two solutions

for our base case scenario. Figure 1la compares the concentration profiles along y
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direction at x = 1000 m and 1500 m, and similar results for the z direction are shown in
Figure 11b. It is evident from these figures that the error is not minimal along the
centerline, but rather at a point which will always be away from the centerline. This error
pattern can also be observed in all the two dimensional contours. Further, it can be
observed from Figures 11a and 11b that the absolute error is, in fact, maximum along the
plume centerline.

Another important issue that should be addressed here is the nature in which the
error associated with the Domenico approximation is propagated spatially. The
sensitivity results presented in this chapter show that the plumes predicted by the
modified-Domenico solution are always wider than the actual plumes. This phenomenon
can easily be observed in all the figures presented in this study. This can be attributed to
the fact that the Domenico approximation over predicts the conceptual residence times of
all particles along the centerline (hence allows more time to disperse in the transverse
directions).  This over prediction would lead to a decrease in the centerline
concentrations; therefore, solutions that employ the Domenico approximation will always
under predict the overall extent of the plume in the longitudinal direction.

An important transport parameter not addressed so far is the retardation factor (R).
Retardation affects the advection velocity and possibly the decay constant (depending on
the phase where the decay occurs). Since the presence of a decay term does not introduce
any significant additional error to the Domenico solution, its effect can be ignored.
However, retardation changes the location of the advective front by changing the
advection velocity and hence would influence the overall accuracy of the Domencio

solution.
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Fig. 11: Concentration profiles predicted by the Domenico solution compared with the

Wexler solution at x = 1000m and 1500m (a) along Y axis (b) along Z axis
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Based on the theoretical results presented in this study, it can be concluded that the
key assumption used to derive the Domenico solution is the time reinterpretation step
where the time 1 in the transverse dispersion terms is replaced with x/v. The derivations
presented in section 4.5 prove that this substitution process is valid only when the
longitudinal dispersivity is zero. For all non-zero longitudinal dispersivity values the
solution will have a finite error. The spatial distribution of this error is highly sensitive to
the value of a and the position of the advective front (v*t), and is relatively less sensitive
to other transport parameters. Based on the results of this study, it can be concluded that
the error in the Domenico solution will be low when solving transport problems that have
low longitudinal dispersivity values, high advection velocities, and large simulation
times.

Despite its limitations, the Domenico approximation offers a simple alternative for
extending one dimensional analytical solutions to three dimensions. This approach is
useful for developing approximate solutions for unsolved, three dimensional, multi-
species reactive transport problems that have explicit one dimensional solutions.
However, such solutions should be used carefully after understanding the limitations

identified in this study.
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CHAPTER V

SUMMARY AND CONCLUSIONS

In this research a set of analytical solutions to multi-species reactive transport
equations coupled through sorption and sequential first-order reactions is presented. In
the first part of this work, the mathematical derivations of the general solution which
incorporates a generic Bateman type exponentially decaying Dirichlet and Cauchy source
boundary conditions and a spatially varying initial condition are presented. The solution
strategy involves uncoupling the system of governing equations through the use of
transformations and then solving the uncoupled system of equations individually to
obtain independent solutions for each species in the transformed domain. A combination
of Laplace and linear transforms were used to uncouple the system of equations. Finally
the independent solutions in the transformed domain are analytically re-transformed back
to the original time domain to obtain the final solutions. Some of the key challenges in
performing these analytical operations include formulation of the generic linear transform
matrices and evaluation of the inverse Laplace expressions.

The solutions to both the Dirichlet and Cauchy boundaries are presented in a
common format to enable simultaneous implementation of both these solutions.
Furthermore, the solutions are presented in a closed form format that avoids numerical

integrations processes. Solutions for two cases of sorption; one involving decay in liquid
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phase only and the other involving decay in both liquid and solid phases are also
presented.

In the second part of this research, the computational techniques for implementing
the solution are discussed and the general solution is validated against other published
solutions. Some of the key challenges faced when implementing the solutions are round-
off errors and underflow/overflow errors. A combination of techniques involving
algebraic manipulation and logarithmic transforms are suggested to tackle these errors. A
FORTRAN computer code “SEQUENTIAL” that solved the general solution was
developed and is provided in Appendix I. The new code was used to simulate four
example problems and the results generated by the code matched the results of previously
published analytical and semi-analytical solutions.

In addition, several special-case solutions for simpler transport problems
involving zero initial condition, identical retardation factors, zero advection, zero
dispersion and steady-state condition are also presented. Where ever possible these
special case solutions were successfully verified against previously published analytical
solutions. Strategies for extending the one dimensional sequential solutions to a generic
diverging reaction network and to multiple dimensions (using the approximate Domenico
solution) are also presented. A detailed investigation into the errors involved in this
approximation is also discussed. The solutions proposed in this research work can be
used to develop efficient screening tools for assessing ground water quality issues at sites
contaminated with radioactive materials or chlorinated solvents.

One of the key limitations of the general solution is that it can model

sequential/diverging reaction networks only. More generic reaction networks involving
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converging and/or reversible reaction networks cannot be modeled using the general
solution. The main challenge in incorporating a more generic reaction network is
obtaining the analytical linear transform matrices. Simplifying the problem to steady
state may perhaps help in reducing the complexity in obtaining the matrices.

It must be noted that Laplace transform techniques were used in this study to
uncouple the system of equations. The use of Fourier transforms for this purpose may
possibly help in easing some of the other limitations on the general solution including the
restriction on the transport parameters (See Table 4) and the limitation to modeling first-
order kinetics. Future research efforts in this area should focus on implementing more
robust mathematical induction techniques and using Fourier transforms to obtain

solutions to more general multi-species transport problems.
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APPENDIX A

Factorization of the Laplace Terms for the Dirichlet Boundary Condition

The first term ¢ £~ < pl.1 (x,s)> > can be evaluated as follows. From equations (41)

and (42) we get:

: . B {1—5’”‘”’”}
[ H yizkizl)z 1
ih=h+1 ( )

_ ip=1
1

Cil (x,t) =/ <pll (x>S)> =/ 12—1: i sz{v— /v2+4DX(k,-2+sRi2)”
1~ Z : e

iy=i, H —(kl.2 + SR,~2 _ki3 - SRia)

i iy=iy (1320 |
;Vi=1L2,..n
(A.1)

Equation(A.1) can be rewritten as:
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H yizkiz—l

=i +1

Cil (x,t) /! Z B {1 - e—to(S+/1,-3 ) } e{zg{v— [v?+4D,(k;, +sR,, )}}

x

i, =i, ir=1
270 b (s+al.3,0) H —Rl.zﬁi4(s+ai2’i4)

iy=iy (iy#iy)

;Vi=1L2,..n

1,5l

; when i, >0
U

A5 when i,=0

b

1

where ; k.. =k —k , R . =R —R and a_, =
1-°2 1 2 1-%2 1 2 12

(A2)

It must be noted that for equation(A.2) to be valid the condition Rl.2 W7 0’ must

be satisfied. This means that no two species in the transport problem can have identical
retardation factors. However, in practice, we do have situations where the retardation
factors of some of the species are equal [9]. To overcome this limitation, we reformulate
equation(A.2) to accommodate a generic case when the transport problem has any
number of sets of species having any number of species with identical retardation factors.

Incorporating this special case scenario, equation(A.2) is reformulated as:
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—_
=
—

H yizkiz—l

=i +1

¢ (xt)=1" Z i

b

B {1 _ gl } e[

x

%{V—A [vz +4D, (kiz +SR,~2 )}}

p»)

iy=iy iy=1
(S + Cll.3 0)

Note that in equation(A.3) the condition kl.z W7 0~ must be satisfied for the solution to be determinate. Factorization

of equation(A.3) gives:

i

H _kiz g

iy=iy iy %1y R, =R,

;Vi=12,..n

i

[1

iy=iy iy %1y Ry #R,, )

_Riz,i4 (s +

aiz iy )

(A.3)
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=i +1

i

b»)

iy=ij i3=1

-

H yiz kiz—l
e

B’

b

(s+a,,)

i

2

iy=iy,(ia %y Ry, #R

2

i

H _kiz g

iy=ip (ia %1y R, =R,

1

i

[1

is=iy (is#iy is#iy, R #Ry, )

)—R,.ZJ.4 (s +ai2,l.4)

;Vi=1L2,..n

—R . |a . —a .
iy ,15( i s iy iy

(A4)

It must be noted that the solution formulation as given by equation(A.4) is valid only when the condition * a . *a ’

iy,iy

is satisfied. Equation(A.4) can be further factorized and simplified as:



€0l

i

¢ (x,1) =ZH 11 y,-zkw}ZZ{Gf +h(G}) Gi}}

i=1| \ =i+ iy=i; ip=1
where |

—X

_IU(H’L} )} e|:2Dx v +4Dx(k"2 +sR;) )J

i
is=iy (is iy R =R, ) is=iy (is#0y is#iy, R #R;, )

x5

i lean {— v +4Dx(k,~2+sR2)}
v {l—e ol ’3)}e2D*
Bhe*P !
(s+a,,)
1 _
Gz
_ki2 g

iy=iy (iy %15, R, =R, )
5 (M)— 1 if M loop is not executed
o if M loop is executed
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The term * Gl1 ” in equation(A.5) can be further factorized and simplified as:

—X

{1 B e—t,)(er/l,-}) JzDX v2+4DX(kfz +sR;, )}

g—l
(s+a,,)
pay
iy 2D,
Be )
- 2
i, (s+ﬂ[3 ) [ZDV v +4Dx(ki2 +sR;, ):|
l-e e
—¢!
(s+a,,)
i
1 L |
G= > _ _ (A.6)
iy=i(iy#iy R =R, ) ! !
(aiz iy ﬁlé ) I I _kiz sis (_Riz>i4 ) I I _Rizsis (aizais - aiz iy )
is=iy (is#iy,Rig =R,y is=iy (is iy is#iy R #R,) )

b [4 — b :
o where ‘q, , —ﬂ% is

Again it must be noted that equation(A.6) is valid only when the condition ‘al.2 W T

I3,
satisfied. Using the results from Appendix B, inverse Laplace expressions for the terms * G11 > and ¢ Gé > can be evaluated and

the solution for ‘cl.1 (x,t ) ’ is obtained as:



SO1

a3 I JSElar i) o

i=1 |\ iy=ij+1 iy=i) i3=1

;Vi=1L2,..n

o Feleal-ute=0) e [ge 1)
i i
Gl = 2 _F;Z’iz’i4 [x’t]-l_u(t_to)e( 8 )F;zsizsi4 [X,(t—to):|
1
iy=iy (iy#ir.R, %R ) ‘ /
e ( iy 7 )[ H _kizais\J(_Riz,izt) H _Riz,is (aiz,is _aiz,’lt)
is=iy (is#1y. R,y =R, ) is=iy i1y s #ig R #Ry, )

Bil? <F;2’i3’0 [x’t] —u (t o ZLo )e(_ﬁi3 ta)Fz"z,zb,O l:x’(t - ZLo ):|>

H _kiz g

ig=i ’(i4 #h, Ry =R;, ) (A7)

G, =

where; the term ¢ F; : > is given by equation (B.8) or (B.14) in Appendix B. The second term * 0! < pl.2 (x,s)> N

i ,0y 1

evaluated as follows. From equations (41) and (42) we get:



_ g—l Z’: {e[szV{v [v? +4Dx(kiz +R;, )}} B e_ﬂilx } (Ag)
i=1|
(D, + v -k —sR) [] —(k, +sR, —k, —sR,)
i iy=iy (i3 #i) ]
; Vi=1L2,..n
§ Equation(A.8) can be written as:
Rifi?( H yizki21]
iy=f)+1
cz (x,t) _ E_l ZI: e|:22x{v—.[v2+4Dx(ki2 +sR;, )}:| B e—ﬂqx
i =1
_(S + ails_ )R [ H _kiz»i3 ] H _Riz A3 (S + aiz’iS )
iy =iy (iy#i, Ry =Ry, ) iy =iy

i\ 370y, Ry # Ry, )

(A.9)
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Note: the term ‘al.1 i > 1s modified as:

—2 when i, >0
il’iZ
i, =4 5 when i,=0 (A.10)

_luthx - /uilv + kiz
R

]

; when i, <0

Note that the condition kl.2 N 0 must be satisfied in equation(A.9). Factorization of equation(A.9) yields:
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(i)=Y Re!| [T wkos [2{G0+0(G7)G)
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ij= =i+l B =h

; Vi=12,..n
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{v— 1;2+4Dx(k,.2 +th~2 )} .
2Dx #le
e - e
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2D, p-1
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(S + al.l,_l.z )(S + al.m )
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Gl= >
.=
. . . . l l
i3=i ,(13 Iy ,R,‘3 inz) I I I I
Ri2 _kiz Sy Riz W3 _Riz oy ( aiz oy - aiZ 4] )
iy =i ’(i4 #iy,R;, =R;, ) i4=h ’(i4 #ila#l3 Ry # Ry

X

X 2
[20 {V_\/W” X
e —e

XV

2D, p-1
—e lg

(S + aip—iz )

(A.11)
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Note that the condition a . *a, > must be satisfied in equation(A.11). The term ° G12 > in equation(A.11) can be

Ip,i

further factorized and simplified as:

X [ 2
|:2D {v— v +4Dx(k,-2 +sR;, )” x
e —e

X X

X [2
|:2D {v— v +4Dx(k,-2 +sR;, )” B e_#[lx

e

pay
2D, /-1

e/ -

(s+a, ) (s+a,,)
i
2
Gl = Z (A.12)
iy =iy iy %y Ry, %R, ) ! !
(aiz,zs — 4 )Riz I[1 4. R, I1 R, (aiz,i4 - ain})
iy=ip,(ia#iy Ry =R, ) iy=iy (ia#iy iy 213 Ry #R,, )

Note that the condition * a;, *#a;, ; ” must be satisfied in equation(A.12). ° G12 > can be further simplified as:

iy ,—i
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|:22 {V_«'v2+4Dx(k,‘2 +5R;, )}J
I e _ ot 1
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2D
e X
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{2[) {v— v +4Dx(ki2 +sR;, )}:|
1] € i 4ot 1
i (s+a,,) (s+a,,)

G- 3 :

iy =iy iy %y Ry, %R, ) .
S ( H _kiz iy Riz i3 H

a. . —a. . .
Iol3 b~k b
iy=ip,(ia#ir Ry =Ry, ) iy=iy (ia#iy iy 213 Ry #R,, )

¢ G22 > in equation(A.11) can be further simplified as:

. )

o | 1] €7 — 1% 51 1
—e X E —e ﬂ1x€ -
(s+a, ) (s+a,_,)
1>~ 0 172

i

Riz H _kiz i3

iy=i, ,(i3 #i) R, =R,

G = (A.14)

From inverse Laplace transform tables we get: [8] (p494, eq3).

-R la . —a .
12,14( iy ,iy iy i3

(A.13)



ITI1

= 1 _ ! (A.15)
(s+a,,)

S+a. .

LR
Using equation(A.15) and Appendix B, inverse Laplace expressions for the terms * G12 >and ¢ G22 > can be evaluated and

the solution for ‘cl.2 (x,t) ’ is obtained as:

i

C(n)=3| Ret| [T vk [2{G7 +4(67)G2)

i=1 iy =i, +1 iy =i,
;Vi=1L2,..n
where ;
_ (_ﬂilx_ail,fizt) _ (_/’ilx_aizsfst)
i i <E.Z’il,_l.2 [x,t] e F .. [x,t] +e
G = Z
iy=i (%0 Ry %R, ) ‘ !
(aiz A ails—iz )Riz H _kiz iy Riz i3 H _Riz oy (aizsi4 - aiz i3 )
iy=iy iy iy Ry =R, iy=iy iy %1y iy %13 Ry #R,, )

2 ; (A.16)

Riz H _kiz i3

iy=i, ,(i3 #iy Ry =R, )

2 _<};;2,l'1,—i2 [x,t] — e(_’u"lx_ail ,,~2t)>




where; the term * FZ.I’ ; > is given by equation (B.8) or (B.14) in Appendix B.

iy i
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APPENDIX B

Evaluation of Inverse Laplace Expressions for the Dirichlet Boundary Condition

—-X

o {1 _ e—[o(s+),‘.4 )} e|:2DX v2+4D,\~(k[1 JrSR[1 )}

Xi i s = et ! (B.1)
1512513514 (S+Cl,»2,,~3)
Equation(B.1) can be simplified as:
2D,
Xivinsigiy — € (ﬁl - 182)
where ;
Ril _V2 kil
-x FX §— 4R,-1DX_R7,-1
-1 e
B=1
-’ k, v k,
— i (B.2)

— |- - +ta .
ARD, R | 4RD, R~ *°

Ry -k
—t,4, } D, ’ 4Ry D, R;
e 0%y e—tgse b 1 1

vk 2k

4 4

ﬂz =/

— ——+a,,
ARD, R | 4RD, R "

i 1
‘B, can be evaluated as follows: Invoking the ‘First Shifting Theorem’ (see

[28], p253) we can simplify ¢ /3, as:
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(B.3)
V2 k,'
S — +—1L—a. .
4R,.1Dx R,.1 20

The Laplace inverse of equation(B.3) can be readily obtained from the tables (see

[8], p495, eq19). Applying this inversion, ¢ /3, can be evaluated as:

Ril V2 kil
—X,[— 2 oy
Dx Ri1 Dx Ril
e

X R,' V2 k,'
erfcy—, |— — +—L—a, |t
2\ Dt 4R.1D R.1 2
B =
) 3
+ i R

2
i 1% [
Dt \\4RD, R "

(B.4) :

“ B, can be further rearranged and simplified as

k
h p Rx— [V'+4R D |——a , |t
o” +4Rile[l>l—ai2’i3] 1 ! Ri 23
e X ul e]i'fc 1
2R, Dt
—a;, .t
e .3
/Hl =
2 k
L p Rx+ [V +4R D | ——a. . |t
o +4R,-1DX[RI.1—a,-2J-3] 1 ! Ri 23
+e ! erfc -
2R, Dt
i (B.5) :

‘B, is evaluated as follows: ¢ £3,” can be simplified as;

114



ﬁz _ e—t,,ﬂq /! <€_tusf(,81 )> (B.6)
Now, we invoke the ‘Second Shifting Theorem’ (see [28], p265) and evaluate

‘B, as: [Note: We have already evaluated ‘ /3, °; equation(B.4)]

,Bz — e—ﬂmlau (t —t )e—aiz " (t_tu)

_ k;
X
5 \/vz +4R, D{[;—aiz i

X

e

(B.7)
2 k,
N k. Rx+ [v+4R D | —+—a, . (t—t)
vi4dR D —L—q. . i YR 2ol 0
ZDX il L{Ri IZ,I3J il
+e ‘ erfc-
2\JR D, (t-1,)
1
The final solution can be compactly expressed as:
_ﬂ'i t,
Xiv iy iy [x’t] = F;l,iz,i3 [xat] - u(t - to)e ) E’l,iz,i3 [x’(t —1, ):|
where ;
= Rx-—w . .t |
w |e P erfed 1
T 2R, D,
E, . [xt]l=——— (B.8)
2 XD iy i3
2D, Rilx + a)il LX) !
+e 7 erfc =
2 Rl.let
ii'_ v2+4Rli _il_azz
152> 1 2543
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The above solution is valid only for real values of ‘a)l.l . . For problems

involving complex values for * @, ; > the ¢ F, b > terms are evaluated as follows:

i,

k.
. _ 2 i — i
Let 0, = |V +4R D | ——a, , |=io,
il
(B.9)
Cor 2 i
where ; @, , . = | V" +4R D | ——a,
i
Now the F;l b > terms can be written as:
i _Xia);,iz,zg o * ]
w e P erfe KX~ 10, +
ol 52D, 2R, D
E . [x,t]z— . (B.10)
172573 2 Xiay ;. ; .o
T Rx+iow , .t
e 7 erfcqi— =
2 Rl.lDt
From the symmetric relations we get:
if erfc{a+ib}=A+iB ; then ; erfc{a—ib}zA—iB B.11)
where ; a,b,A,B € R
Also the exponent of a complex number can be expressed as:
e = COS(H) —1 Sin(@)
(B.12)

e’ = Cos(@) +1 Sin(@)

Using equations(B.11) and (B.12) equation(B.10) can be simplified as:
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xa).*. . xa).*. .
w |4 Cos| —25 | —i Sin| —22 |1(A4—iB)+
e_aiz,zgteZDx 2Dx 2Dx
F; Iy I [)C,t] = e A
1562543 * *
2 XD, ;i o | KB .
Cos| —== |41 Sin| —== (A—HB)
2D, 2D,
where ;
(A 'B) y l’il.l)c—ia)l.Ti2 i J (A 'B) y Rl.l)c+ia)2i2 ot
—1D )=erfc = ,an +1b)=erfc =
2R, Dt 2R, D
1
(B.13)
Further simplification of equation(B.13) yields:
P q y
—a; ; > xa)i*i I . xa);i I
F;ii[x,t]:e 2alo2le | fCos| —2h | — BSin| — b
e 2D 2D,
where ; @ . . = | V' +4R D | ——a . (B.14)
sl 13 ] X Iy,l3
U
. Rx+iw . t
and (A—HB):erfc : i
2R, D,
Hence in problems where ° @, ;. is complex the F;l,l.m > term is given as by

equation(B.14).
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APPENDIX C

Derivation of the General Solution for the Cauchy Boundary Condition

Since the governing equations, the initial condition and the boundary condition at
‘00 are identical for the Dirichlet and the Cauchy boundaries, the procedures involved in
uncoupling the system of equations will be identical and hence we can use the analysis in

‘Section 2.2° to obtain the semi-determined general solution and the linear transform

matrices ‘[A]’ and ‘[A]_l’. The semi-determined general solution [identical to

equation(33) is given by:

EL_ £+4(ki+SRi)
21D, \ D? D,

x

b,(x,s)= ‘Pfi
Rilcl.?e_#ilx ﬁ yizkiz—l
B Z iz:i1+l (C.1)
" (:ui?Dx THY— k, — SRi) H _(ki + R, — kiz N SRiz )
i iy=iy iy #i) _

;Vi=1L2,..n

The linear transform matrices ‘[A] > and ° [A]_1 > are given by equations(15) and

(16) respectively. The constant “I’iz’ in equation(C.1) is evaluated by using the

boundary condition given by equation(47) after transforming them into the ‘b’ domain;

this is done as follows. Laplace transform of equation(47) gives:
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; Bﬁv{l—e“‘”%)} (C2)
oy

In order to transform the boundary condition from the ¢ p’ domain to the ‘b’

domain, we apply the linear transform given by equation(12).

-D, Ww{b(o,s)} =[4]" (&} (C.3)

The explicit expression for ¢ <[A]_1 {§}> ’ in equation(C.3) is given as:

l

; vﬁ [Zk‘,;] ; Biiz 1— (s, )

i i=1 H _(k‘ + SR[ _k[: _sRiz) ip=1 (S + }\41.2) (C4)

i, =i, (i, %)

Vi=12,..n

From equations(C.3) and (C.4) we obtain the boundary condition in the ‘5> domain

as:
- i —t,,(s+ki2 )
ob,(0,s) " VH ik N {l_e }
D, . +vb,(0,5)=> | — : 2 (C.5)
i=1 H _(ki—‘rSRi_kL _SRL)I'ZZI (S+ iz) .
i, =i, (i, %) “ “
;Vi=12,..n

Substituting the expression for ‘bl.(x,s)’ from the semi-determined general
solution given by equation(C.l) into the transformed boundary condition given by

equation(C.5), we can evaluate the constant * ‘Plz > as follows:
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2 4(k +sR
_Dx\}ll?l v _ Vz +M
2|D D: D

X X

X, Ril C: H Yi, kiz—l

+Dx2 izziﬁ—l

iy =iy iy #i)

n
o
Ril cll H ylZ klZ -1

VP — vi At (C.6)
- (“li +Hi1V_ki _SRi) H _(ki + SR, _kiz _SRiZ)
iy =iy ,(iy #i)

i 1% H y,‘j k,‘jfl i Blllz {1 _ e_t,,(s+?\,l.2 ) }
z i, =i +1
ij=1

: 2.
H —(k‘. +sR —k_ —sR ) i=1 (s +7‘i2)

i=i (i, #i
2=i(i,#1)

From equation(C.6) * LI’IZ > is evaluated as:

i Vﬁ Y. k,;,l ; Blz {1 _ e*to(er)wz )}
Z =il i

=l H —(k, +sR —k_—sR )" (S”‘fz)
i, =i, (i, #i) i L

(v +, D, )Rl.1 clfl’ ﬁ Vi kl.z_1

+Zi: : iy=i+1

iy =iy iy #i)

(C.7)

{;4—;\/112 +4D, (k, +sRl.)}

;Vi=12,..n

Therefore, the solution in the ‘b ’domain is:
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ICI

iy=i+1

i H yizkiz—l

i B~ {1 — e_tU(AH/IiZ)}

ve

v [ AktsR)
D, \p} D,

bl.(x,s):Z -

| &=y (i)

n
o
Ril G H Vi, kz’2 -1

ip=i)+1

2
H _(k; +sR, —kl.z —SRI.Z ) =1

ll (s+/1.)

x| v [V A(ktsR)
2| D, \ D? D,

( lulij
1+~ ve
v

v 1
{24—2\/\/2 +4D_(k, +sR,.)}

—e€

v 1
{24—2\/\}2 +4D,_ (k, +sR,.)}

_/uilx

n

iy =iy (1, #i)

;Vi=1L2,..n

(/U;Dx +uv—k —sRl.) H —(kl. +sR, —k, —sRl.z)

(C.8)

Inverse linear transform of equation(C.8) is done to obtain the solution in the Laplace domain (* p > domain) by using

equation(12). The solution given by equation(C.8) can be split into two parts and represented as:



44!

b, (x,s) =b (x,s) +b’ (x,s)
where ;
ERED)

iy=i,+1 i Ul

ve

,, )3
;=1 H _(k; + SR —kl,2 _Ssz ) i=1 (S + Z’IZ) {; +;\/V2 + 4Dx(ki + SRI')}

iy =iy (i, #i)

x| v v2 4(k,-+SR,~)

( “ Dx) st
1+~ ve

V

VT

Rilci? ﬁ yizkiz—l<
h=i+ {; +;\/V2 +4Dx(ki +SRi)}

b (vs)=Y n
(/uilsz + MY _kz’ _SRi) H _(ki + SRi _kiz _SRiz)

iy=iy (iy#i)

; Vi=12,..n (©9)



Using the distributive property of matrix addition, we can apply the inverse linear

transform to each of the individual terms and then sum them

¢ p’ domain. This is expressed as:

{p}=[4]{p} =[4]{p"} +[4]{p?)

The first term ¢ [A] {bl} > can be evaluated as:

{p'} =[]’}

to get the solution in the

(C.10)

(C.11)

The explicit expression for * pl.1 (x,s) > in equation(C.11) is given as:

H yiz kiz_l

(izilﬂ

i=1 i

ps

B_iz {1 _ e—tu (SJrﬂiz )}

(s+ﬂ.i2)

E

X

ve

i

2

i=1)

Using a similar approach the second term ° [A]{bz} > is evaluated and the explicit

. 2 .
expression for  p; (x,S) st

v 1 3
{2+2\/v +4D (k, +sR,.2)}

=i ,(13 7&12)
;Vi=1L2,..n
(C.12)
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i

i
o
Ril Cil H Y iy kiz_l
i=i+1

( #,D
1+17
v

{ x
X 2D,
jve

N

v 1 3
{2+2\/v +4D (k, +sRl.2)}

—e

—/l,-lx

Z 2

iy =iy ( 7,
b

Dx+yilv—kiz—sRi2) I1 —(kl.2+sRl.2—kl.3—sR,.3)

i

iy=iy (i3#i;)

; Vi=12,..n

(C.13)

Substituting equations(C.12) and (C.13) into equation(C.10) we get the solution in

the Laplace domain as:
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D; (X,S) = pil(xas) + piz(x’s) -

_ | ,-1 B,.'f {l_e_,o(m,.z)}
oo JEE

iy=i, +1 s+ A

]

IZ; i |:22x{v_\/m}:|
I Z{ 1 ve

v 2
5 +2\/v +4D (k, +sR,.2)}

ih=1

1

= ' —(kl.2 + sRl.2 —k,.3 —SRZ.3)

3=l ,(13 #I) )

Rilcﬁ{ ﬁ yi/%l]

iy =i+l
[ lLlil Dx \J [2—;‘{\/—4 [v? Jr4DX(k,-2 +5R;, )}}
1+ ve

v

i=1 1% 1 2
{2 + 2\/\; +4D (k, + SRiz)}

i

> :
b= (,ulfDx +uv—k, - sRl.z) H —(kl.2 +sR, —k, —SRi3) (€19

iy=iy (1320

;Vi=1L2,..n
The final solution is obtained by taking an inverse Laplace transform of the solution

given by equation(C.14). Inverse Laplace transform is performed as follows:

(C.15)

In Appendix D, the terms s <pl1 (x,s)>’ and < (' <p12 (x,s)> > are evaluated.

Substituting equations (D.6) and (D.13) in equation(C.15) we obtain the final solution in

the time domain as:

125



Ci(xaf)=2Kﬁ yl.zklél)i , (Gl +h(G)) Gé}}

i =1 iy =i+l

iy=iy i3=1

$ v T [Eloreni@)a] | o

il=l i2=i1+1 iZ:il
; Vi=L2,...n

where; the “ G’ are defined in equations (D.6) and (D.13) in Appendix D.
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APPENDIX D

Factorization of the Laplace Terms for the Cauchy Boundary Condition

The first term ‘£_1< pl.l(x,s)>’ can be evaluated as follows. From equations

(C.14) and (C.15) we get:

el (xt) =7 (! (x.5))

i=l| _i

H Yi, ki2—1

=i +1

4

2

ir=1

|

B,iz {1 _ e—to<s+li2 )}

a

X

2

=N

{v 1
7+7
2 2

1

JV 4D, (k, +sR,.2)}

—(kl.2 +sR, —k, — SRi3)
iy =iy (i3
; Vi=1L2,..n
(D.1)

Equation(D.1) can be rewritten as:
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8C1

[

ip=i)+1

cmn=c 3| Wi ()}[{Jﬁ}}
P ZZ_I i i
L=h = {; + ;\/ 2 + 4Dx (kiz + SR,'2 )}(S + /1[3 ) H _kiz,i4 H _Riz,i4 (S + aiz,i4 )

ly=h ’(i“ #iy, Ry :sz) iy Zila(i4 #iy, Ry, ¢sz)

k. .
where ; k, k., -k, R, =R —R and a, =12

1,0y i iy
sl

(D.2)

Note that in equation(D.2) the condition * kl_ o 0’ must be satisfied for the solution to be determinate. Factorization
25

of equation(D.2) gives:



6Cl

=i +1

i

b»)

iy=i) i3=1

It must be noted that the solution formulation as given by equation(D.3) is valid only when the condition * a . *a

-

[

Bi? {1 _ e—tu(S+ﬂ,»3)} Ve{zgx {v—\/m}}

i

{;+;\/V2+4Dx(k,~2"'SRiz)}(S-i_ﬂ“is) H

iy=ip,(ia#iy Ry =R, )

iy ,iy

i 1
2 ,.
ig=i (4% Ry #Ry ) R (s+a. , ) I |
iy iy iy,i4

;Vi=1L2,..n

is satisfied. Equation(D.3) can be further factorized and simplified as:

—R . |a . —a .
iy ,15( i s iy iy

(D.3)

iy,

b



0¢l

i

c,.l(x,t):zul | yizkizlJZZ{Gll+h(Gll) Gj}}
i=1| \ =i+ iy=i; =1

;Vi=1L2,..n
where ;

X

{l_e_tuw,g)}ve{;@ ]

XV
iy 2D, p-1
Bre™ !l

{;+;\/v2+4Dx(ki2 +SRi2)}(S+2’i3)(S+ai2,i4)

iy=iy ia#1 Ry #R;, )

G- ¥ | |
[ H _kiz,is J(_Riz,i4 ) . ( H _Riz,iS (aiz,iS - aiz,i4)

is=iy (is#iy,Rs =R, ) is iy is#iy, R #R,) )

X

{1 _ e_t"(ﬁl% )} ve{Z_DX v2+4D, (k, +sR,, )}

(L e s

-k .

iy=iy (ig#iy R, =R, ) B
h(M)— 1 if M loop is not executed
o if M loop is executed

(D4)
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The term * Gl1 ” in equation(D.4) can be further factorized and simplified as:

—X

{1 B e—to(s*'ﬂtg ) } ve[sz V2 +4Dx(k,~2 +sR;, )}

N {V+1\/v2 +4D, (k, +sRiz)}(s+Zi3)
Bf eﬂf_l 2 2
i {1 o (544, )} e[z‘Dxx v2+4D, (k, +sR, )}
| ,- {‘2)4—;\/\}2 +4D, (k, +sR,.2)}(s+ai2’,.4)
Gl = o Z ,- ,- (D.5)
iy=iy (i R, # R,y ) (aiz ) ) H —k,, (_ R, ) H -R, . (al.2 B4, )
is=iy (is#iy Ry =R, ) is=iy (is#iy is#iy R #Ry, )

2

Again it must be noted that equation(D.5) is valid only when the condition a,  #Fa,, where ‘a; o= A s

[

satisfied. Using the results from Appendix E, inverse Laplace expressions for the terms ‘Gll > and ¢ G;’ can be evaluated and

the solution for ‘cl.1 (x,t ) ’ is obtained as:



(43!

a3 I JEE e i) o

i=1 |\ iy=ij+1 iy=ij i3=1

;Vi=1L2,..n

[ Fasleal-ute=0) e e -1)
i i
Gl = 2 _F;Z’iz’i4 [x’t]-l_u(t_to)e( 8 )F;zsizsi4 [X,(t—to)]
1
iy=iy (iy#ir.R, %R ) ‘ /
e ( iy 7 )[ H _kizais J(_Riz’izt ) H _Riz,is (aiz,is h aiz,i4 )
is=iy (is#1y.R,s =R, ) is=iy i1y s #ig R #Ry, |

Bi? <F;2’i3’0 [x’t] —u (t o ZLo )e(_ﬂi3 ta)F;z,zb,O [x’(t - to ):|>

H _kiz g

ig=i ’(i4 #h, Ry =R;, ) (D6)

G, =

where; the term “ F. . .’ is given by equation (E.20) or (E.26) Appendix E. The second term <! < pl.2 (x,s)>’ is

LRLRLE]

evaluated as follows. From equations (C.14) and (C.15) we get:



eel

cl.2 (x,t) =/ <pl2 (x,s)>

Ri1cl? [ ]j yizkizlj
i =i +1
( /’li Dx \J [ZLDX{V_G [v? +4Dx(k,-2 +sR;, )}}
l+——|ve
1%

I
~
N
|
chl
=
=

(D.7)

v 1 3
—+ —/v"+4D_(k, + sR.
,- {2 ARG ’2)}

Z ;
= (ﬂfDx +pv-k, _SRiz) 11 —(kiZ +sR, —k, _Sst)

iy =iy (i3%#0)

;Vi=1L2,..n

Equation(D.7) can be written as:



vel

i

2

=i

Ri1C;1)[ ]j yizkiz—

iy =ij+1

1]

(1 u,.lej 5 b
+—— |ve
v o
{; + ;\/v2 +4D, (k, + SRiz)}
_(S + a, )Riz ﬁ AR ﬁ _Riz Js (S + a i, )

iy =iy (i3 %y Ry =Ry, )

;Vi=1L2,..n

iy=iy (i3 21y Ryy %Ry,

(D.8)

Note that the condition kl.2 N 0 must be satisfied in equation(D.8). Factorization of equation(D.8) yields:



=1 ip=iy+1 =
Vi= 19 2 n
where ;
(1 | b j e e, )
vl _ e—ﬂilx
v {;+2\/v2+4Dx(ki2 +sRl,2)}
e2DX€_1

(s +a, . )(s +a, )

2
G= Y
I ; i
2 I | =k, |R,, I | R, . (al.2 W, )
= ’(i4 #iz:Ry =Ry, ) iy=i ’(i4 #iy iy #i3, Ry # Ry, )
Hy D {ﬁ{‘)_ vz+4Dx(ki2 +sR;, )}}
l X
1+~ |ve-™™

v

—Hy X

—e

v 1

2
{2+2\/v +4D (k, +sRl.2)}

(s +a, )
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Note that the condition ‘al.2 LA > must be satisfied in equation(D.9). The term ° G12 > in equation(D.9) can be

1,y

further factorized and simplified as:

(1,42 [Pt

X

XV

2D_ p—1
e/

V e
{; + ;\/ gt 4D, (k, + SRiz)}
(s+a,_,)
(1 4D, j“ﬁﬂ
\ e

v 1 3
{2+2\/ +4Dx(kiz+SRiz)}

(S + aiz,i3 )

iy=i) ,(i3 #i,,Ry =R, ) R
a. . —d. . .
R} h—h ]

Note that the condition ‘ a - “d

i ,—1

i i

I | _kiz g Riz A

iy=ip,(ia iy R,y =R, )

I1

iy=iy (ia %y iy #i3 Ry %R, )

3 ” must be satisfied in equation(D.10). ° G12 > can be further simplified as:

—-R la . —a .
12,14( iy iy Iy i



LET

Y S i
iy=i; ,(13 #iy ,R,-3 ¢R[2 ) ( ) R [
a. . —a. . . I I
bl h=h b

v

(1 ll’lil Dx \J |:2—2C)x{v—4 [v? +4Dx(l’c,-2 +sR;, )}}
+—— |ve
g—l

2D, -1
e/

D -
(1 + A jve{ *
! Y

(s +a, ){; + ;\/v2 +4D, (k, + SR, )} (S T, )

S ]

+e”"1x€1< ! >
(S+ai2,i3){;+;\/v2 +4D (k, +SRZ.2)} (S+al.2,l.3)

iy=iy (ig#iy R, =R, )

¢ G22 > in equation(D.9) can be further simplified as:

iy=iy (ig 2y g %13 Ry %R, )

i
_kiz g \JRiz A I I _Ri2 iy (aiz i Qi )

(D.11)
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_ (1 u,-lbx) | ‘
xv +——— |ve
_2D | g V e #
(S ta; ){; + ;\/Vz + 4Dx(ki2 + SRiz)} (S Ta, )
G, = ) ; - (D.12)

Riz H _kiz i3

=iy (53215, Ry =Ry, )
Using equation(A.15) and Appendix E, inverse Laplace expressions for the terms * G12 > and G22 > can be evaluated and

the solution for Cl.2 (x,t) ’ is obtained as:



6¢1

cl.2 (x,t) =Z Rilcg[.ﬁ yizkizljzi:{Glz +h(G12)G22}

=i+

1

i) =i

;Vi=L2,..n

\4 \4

D e D -
Hi jF;z,i1,—iz [X,f] - e( 5=y o) _ (1 +Ll1 : JEz,iz,ig [X,f] + e( & '2”3t)>

G= ¥ <(l

iy =iy iy %y Ry %R, ) (

)

i i

Gy ~ 4 i, )Riz H =k, |R,., H

iy=i, ,(i4 #i),R, =R, ) iy =i\ g # iy iy #iy, Ry # Ry, )

[x, t] _ e(_"ilx_”flrfzt) >

D
_<(1 + qu : jE‘zi
2 4 B
GZ

i

Riz H

iy =iy (i %y Ry, =Ry, )

where; the term * Fi1

st

b,y

> is given by equation (E.20) or (E.26) Appendix E.

-R la . —a .
12,14( iy ,iy iy,i3

(D.13)



APPENDIX E

Evaluation of Inverse Laplace Expressions for the Cauchy Boundary Condition

—X

o {1 _ e_to(Him)} ve{ZDx \;2+4Dx(k,-1 +sRy ):|
2D, )-1
Kiviriniy, — € 14 1
{2 + 2\/ +4D, (kl.l + Rils)}(s ta,, )

Equation(E.1) can be simplified as:

(E.1)
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Il

(E.2)

Ki sy — e (IHI _ﬂz)
where ;
D)C
5= ve
=
) k
Rl. Dx + |Ss— -+ a, ;
" 2R D, y
—ts [
B, = a
RD{——+ [s— e —ki‘ - v —ki1+a
W x 2 Rile 4R D R 4Rile R 4Ri1Dx Ri1 i ,i3

¢ B, can be evaluated as follows: Invoking the ‘First Shifting Theorem’ (see [28], p253) we can simplify ¢ 3, as:



ol

(E.3)

X 2 k
2R D, ARD, R "

The Laplace inverse of equation(E.3) can be readily obtained from the tables (see [8], p496, eq31). Applying this

inversion, ‘ £3,” can be evaluated as:



vl

i Py il X Ri VZ ki
erfcy—,|——— +—-—a,, |t
B} R 2\Ds \|4RD, R
tarp TR %
ﬂ — Ve_a’2>i3t 2 Rile i Px i
' 2R D, [ &
PR x | R Vv k,
erfcy—,|—+ +——a,, |t
} vk 2\ps \\4RD, R
2 RilD 4Ri1 Dx Ril 4
oL ky .
veLR"l D, _RJ v R
% Ry V2 X :
2R D, {2 D, E+4Rflth wt

erfc

Note: the solution given by equation(E.5) is valid only when g

iy

simplified as:

D,
2t 2R D,

iy,i3

2

‘B, can be further rearranged and

VT

+

(E.4)
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b=

ve

— k;
X 2 1l
2)(\/\/ +4R[1DX[R[1_a[2’i3 ]

erfc

“

‘B, is evaluated as follows: ¢ £3,” can be simplified as;

,Bz _ e—ii4t0€—1 <e—tus€('81 )>

k. 2 Rilet
v+ [V +4R D | —a,
1 R 2583
aiz,i:;t i ~
o \/v2+4R,.1D{k”l_a,.2J3J R x+ v2+4Rli —
veZDX R 1 1
erfc
_ 2 Rl.let
v— v +4R. D, : —a,,
— il ~
{’” k‘q 2 R x+vt
R -V XV
2Dx Rll el’fc 1
k, 2R Dt
2RD_ | —*—a,, 1
1 R 2543

(E.6)

(E.5)
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Now, we invoke the ‘Second Shifting Theorem’ (see [28], p265) and evaluate ¢ f3,” as: [Note: We have already

evaluated ¢ f3,°; equation(E.5)]

b, = e_%tnu(t - to)

k.
\/v 4R, D [;l a, ,3] Rl.lx — v+ 4R1.1Dx£]€ - aiz’%) (t —l‘o)
erfc - +
k, 2\JRD (t-1,)
v+ [V +4R D, a, . 1
@y 5 (t1,) L
k, 2 kil
= \/v +4R,1DX[R ,2,,-3] Rl.lx + v+ 4Rl.1Dx —-a, (t —l‘o)
ve ! R,
erfc
, 2\JR D (t-1,)
v— [V + 4Rl.1D 1 a, 1
- (E.7)
v Ky o
{w‘(;itq —? Rx+v(t—t,)
— ' erfc ‘
2. /R D (t—t
o TR




3 I B

Now, for the case when —=a,,’, we evaluate ° ,31’ as follows: From
Ul
equation(E.3) we get:
—Vz kl Ril
7] VJ‘X ad
,81 = /! (E.8)
Rile v V2
Js+ oV
2R D, 4R D,

v \/_ v \/_
- +
2JR.D, > 2./R. D,
(E.9)
‘ B, can be further simplified as:
{ 2 kn} {—x %\/? {—x %x/?
] o e e
pr=e 0 iy (E.10)

V2 2
S — Vv
[ AR, D, Vst 2.[RD

i x

Equation(E.10) can be conveniently rewritten as:
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Vi _72)
where ; (E.11)
{—x 2’1\/;:| {—x R[l‘/g}
_ e ’ _ e '
y, =" - and y,=10" .
v
s — Js + v
[ 4Rf1ij 2JR D,

Laplace inverse of ‘ 7, can be obtained directly by using the tables (see [8], p495,

eql9). Applying this inversion, ‘ 7, can be evaluated as:

R,
Ry v X
_x\/;x2 RilD)c Dx V\/;
e V1 erfc —
2t 2RD,
4R, D,
e
V= _ (E.12)
2 R,
R; v X :
e P RN
+e erfc +
2Nt 2R D,
‘7, can be further simplified as:
2
4R. D —XV XV
A R x—vt R x + vt
7, = e’Perfc! ——— 1t + e’ Perfc{ ——— (E.13)
2 2,/D.Rt 2,/D.Rt

Laplace inverse of “ 7, * can also be obtained directly by using the tables (see [8],

p495, eql7). Applying this inversion, ‘ ¥, ’ can be evaluated as:
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RN A

i

erfc Ex + e
2t 2/RD,

X

i,
4R,-1 D,

xb ‘—-N%

(E.14)

‘7, can be further simplified as:

—R,-lx2 2 {xv_{_ Vi
t JETY Xv N V't ¢ 2D, 4R, D,
2D, 2RD,
(E.15)

From equations(E.11), (E.13) and (E.15) we can evaluate ‘ /3, as:

(E.16)

¢ B, can be further simplified as:

vat
1 Rx vt vt 4DRt
—kit B —erjc
4 T[l% 2 DRt RD?Z'
1:e le x

fc
Rx+vt
1+— + e *erfc
[ D, { DRt}
14

(E.17)

1
2




3 Ll b

In order to evaluate ¢ f3,” for the case when ‘—-= a, ;’, we use the same

U
method as before. From equation(E.2) ¢ 3, can be written as:

By=e 0 (e U(B)) (E.18)

Now, we invoke the ‘Second Shifting Theorem’ (see [28], p265) and evaluate

‘B, as: [Note: We have already evaluated ‘ /3, °; equation(E.16)]

The final solution can be compactly expressed as:
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Zil,iz,i3,i4 [)C,t] = F;l i3 [X,t] —u (t - to )e(

where ;

_ﬁfst")F
7

.1 ’iZ 5i3

[x.(t—1,)]

i Xy iy i3 N
2D, _
e Rl.lx wil,iz,i3 t
erfc-
v v+ . . 2.0R. Dt
_ 1,0y 53 i x
a4, 53t 2D, 1
E .. [x,t] =ve e
1725 YOy iy i3
2D,
e Rl.lx + (l)l.1 s t
—F erfc
(v-a,..) 2R Dt

xv kit
2v° { : } R x+vt l.
+ € ‘erfcy——,; when —+#a, ., and
(0, -") 2./R D.t R et
it iy 53 X 1
i > —(R,-lx—vt)2 |
1 Ril'x — vt V't 4R Dt
—k; t —erfc 1
| 2 2\/Rl. D.t 7R D,
—e ! ; when
1 XV V2f - Rl. X+ vt
—— — e’ erfe| ———
2 D, RD, 2R Dt
where ; @, , . = v +4R D, d —-a,
152543 1 2543
il
(E.20)

The above solution is valid only

involving complex values for @,
11253

. 2
~”in the case when ‘—- #

for real values of ‘a)l.l b -

i

i

—=a.

iy,i3

. For problems

a, .’ the ‘F . .~ terms
2503 Islpsl3

are evaluated as follows: (Note: when ‘—- = a, .’ the ‘[ . .~ terms are unchanged)
2503 150503

i
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k.
Let ; o, , = [V +4R.D, R—"—a =i

(AN A a)il s sl
il
(E.21)
here s o, = | [V +4R D[S
where ; @, , = | |V +4r D, —a,
i
Now the F;l b ’ terms can be written as:
—xia),-*l,iz,,-3
2D, — i
e erfe R x—iw, , .t N
X (v+la).*..) 2. /R Dt
—a, .t 2D 1,0y i3 1 X ]
iii[‘x’t]:ve e Y
112513 xion .
1,12,13 "
e 2Dy Rl.x+ia)l.l.l.t
—erfcy— ~ (E.22)
(v-ie], . ) 2JR Dt
1512513 h X
kit
V2 LA;‘: Rt} Ri X+ vt
+ e Herfcq —
kl.1 2 Rl.lDt
2Ri1 Dx Ri N aizsi3
i
Using the symmetric relations:
if ; erfc{a+ib}=A+iB ; then ; erfc{a—ib}zA—iB E23)
where ; a,b,A,B € R
Also the exponent of a complex number can be expressed as:
e = COS(H) —1 Sin(@)
(E.24)

e’ = COS(H) +1 Sin(H)

Using equations(E.23) and (E.24) equation(E.22) can be simplified as:
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o YO iy | o | XD, :
(v—za). . .)1C0s —123 7 Sin| —22= >(A—ZB)+

. e i 2D, 2D,
— it 2D,
F;piz’i} [x,t] B (V2 + ; 2) ) X )
LR .ok X a)il A cae | X a)il iy i3 .
v+io,, , )y Cos >p +1i Sin Sp (A + zB)
X X

2 {‘1} R x+vt
+ % D, R erfc{”— (E.25)

(A 'B) y Rx—iw ., t J (A 'B) y Rx+iw .t
—iB)=erfcy— — ; an +iB)=erfci— S
2R Dt



Further simplification of equation(E.25) yields:

* xa)ilﬁibi}
Av—-Bow, ; . |Cos| —==
XV 12543 2D
2‘) _aizi3t 2D, X
F;l,iz,i3 ['xﬁt]: 2 * 2 e Te %
(v +wi1,izai3 ) * . xa)il,iz,i3
—(Aa)l. y +Bv)Sm —
1252553
- X -
xv Kkt
Vz |:DX_R1:| Rlx-i-Vf
+ e erfcd ———
k, 2./R D1
2Rli é_aii l
1 R 2543
b
here ; @, .. = | vV’ +4R D i
where ; @, , , =, V" +4R D | ——a,
il
_ Rx+iw , . t
and (A+zB)=erfc 1 —
2. /R Dt E.26
X ( )

: . i
Hence in problems where ‘ @, . > is complex; for the case when ‘—=#a, .’
1

1y,l3
il

the ‘El i > term is given as by equation(E.26).
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APPENDIX F

Derivation of the Steady State Solutions

Dirichlet Boundary
The system of governing transport equations can be written in a matrix format as

[11,38]:

v _p 1 _(k)ge) (k1)

where; ‘[ ]’ denotes a square matrix and ‘{ } > denotes a column vector. The

corresponding boundary conditions can be written as:

{M} =0 (F.2)

dx

{e(0)} ={o}

where ; o, :zBf‘ i Vi=12,..n

i=1

(F.3)

Now in order to uncouple the system of ordinary differential equations (ODEs)
given by equation(F.1), we apply a linear transform procedure described by Clement

[11]. i.e. we perform the following matrix operation.

tej =[41{5} (F.4)
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where; ‘{b} > is the concentration in the transformed domain. Applying this

transformation equation(F.4) gets modified as:

d’[4]{b} _(LJM+L([ K))[A4]{p} =0 (F.5)

dx’ D, dx D

X

Pre-multiplying equation(F.5) with ¢ [A]_1 > we get:

AOT

* x (F.6)

where ; M AT [K][4]

By using the similarity transformation procedure described in Clement [11], we

can make ° [K } > a diagonal matrix and thus uncouple the system of equations. The

corresponding ° [A] ’ matrix is given as:

ﬁM70909“-9(n - l)tlmes

i Yk,
L —(kl—kl.) L —(kz—k.

H ,H ’),0,0,...,(n—2)times

s Yk, s vk
[ A]= . (F.7)

ﬁ_(kn _kz'),ll[_(kz _ki),...,ﬁ _(kn—l _ki)’o

i=n yiki—l i=n yiki—l i=n yiki—l
| L1,...,ntimes

The ¢ [A]_1 > matrix is:
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Hyiki—l
i=2
H _(kl N ki)

i=1,(i=1)

Hyiki—l Hyiki—l
i=2 i=3

,0,0,...,(n —l)times

,0,0,...,(n —2)times

4 H _(k2_ki) H _(k2_ki)
[A] =\ i=1,(i=2) i=2,(i#2)

H vk, H yiki H yik.
i=2 i=3 i=n

— yerer ™ .1
H _(kn _kz‘) H _(kn _kz‘) H _(kn _ki)
i=l,(i¢n) i=2,(i¢n) i=n—l,(i¢n) (F8)
The corresponding [k } > matrix is:
_—kl,0,0,...(n —l)times ]
0,—k2,0,0,...(n—2)times
K|=| F.9
[ } 0,0,...(i—l)times,—kl.,0,0,...(n—i)times (59

0, O,...(n - l)times,—kn

Equation(F.5) describes a set of ‘n’ independent second-order homogeneous
ODEs the boundary conditions of which are obtained by linear transforming

equations(F.2) and(F.3). This yields:
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{M} -0 (F.10)

dx

i f[ yf: kf;l iy
b,(0)=2 | —=~ 2.8
=TT _(k[_k[‘)ifl (F.11)
i, =i, (i, %) :

;Vi=12,..n
Since equation(F.5) is uncoupled, it can now be written as a set of ‘m’

independent equations as:

(F.12)

The general solution to equation(F.12) is given as:

xl+i+4k,- fL_i+4kf
. \D} D, » |2|D: \ D} Dy
(F.13)

2|D

bi(x)z‘Pll.e{ +%¥e
; Vi=12,..n
where; ‘I’} and ‘I—’lz are constants. In order to apply the boundary condition

given by equation(F.10) we differentiate the general solution with respect to ‘x’.

Differentiation of equation(F.13) with respect to x yields:

x| v [V 4k
db(x) | L] v |V 4k, eHDX D; DH

+—L0le b T (F.14)
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To satisfy the boundary condition given by equation(F.10), i.e. when ‘ X’ tends to
‘o0’; the exponential function in the first term tends to ‘oo’, hence \I’i must vanish.

Equation(F.13) now reduces to:

5
bl.(x):‘Pl.zeL Il iz, (F.15)

Applying the second boundary condition given by equation(F.11), we get:

,
; R ;
iy=i +1

vr=> DB |;Vi=12,..n (F.16)

i=1 ﬁ _(k1 _k[: ) ih=1

iy, =i (i, #i
=i iy #1)

Note that the condition ‘kl.1 7 0’ where 1<i,i,<n and i, #i, must be

satisfied for equation(F.16) to be valid. Therefore, the solution in the b domain is:

n
2
I I 4k;
i yiz kiz‘l iy - L2+ :
x l))L D)

2| D

b. — iy =i, +1 Bzz ¢ ¢ ¢
) Z; I1 —(k,.—kiz)"zz‘l al (17

L i, =i, ’(izii)

; Vi=12,..n
Inverse linear transform of equation(F.17) is done to obtain the solution in the ‘¢’
domain by using equation(F.4). The final steady state solution for the Dirichlet boundary

1S:

i i oo I e{zg)({v_m}}
¢(x)=> [H yizkizlj[zBﬁsz ,- (F.18)
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Cauchy Boundary
For the case of the Cauchy boundary, the boundary condition at the source is

described as follows:

dci(0)+vci(0):23f'v s Vi=12,..n (F.19)

dx =1

Since the governing equations and the boundary condition at ‘o0’ are identical for
the Dirichlet and the Cauchy boundaries, the procedures involved in uncoupling the

system of equations will be identical and hence we can use the previous section to obtain

the semi-determined general solution and the linear transform matrices ‘[A] > and

¢ [A]_l ’. The semi-determined general solution [identical to equation(F.15)] is given by:

; Vi=12,..n (F.20)
The linear transform matrices [A] > and * [A]_1 > are given by equations(F.7) and

(F.8) respectively. The constant “I’f’ in equation(F.20) is evaluated by using the

boundary condition given by equation(F.19) after transforming them into the ‘5> domain
by applying the linear transform given by equation(F.4).
k. ,
1(0) d VH ylz il L}

db, - .
-D b (0)= iy=i +1 B
S +Vv ,( ) ; ﬁ _(k[_kt)’;l i (F.21)

159



Note that the condition ‘kl.1 L7 0’ where 1<i,i,<n and i, #i, must be

satisfied for equation(F.21) to be valid. Substituting the expression for ‘b, (x,s) > from
the semi-determined general solution given by equation(F.20) into the transformed
boundary condition given by equation(F.21), we can evaluate the constant “Pl.z’ as

follows:

of L) v v? 4k, 2N vfgl Pk : i
_Dx\Pi E F— F"'F +V\Pi = Z , ZBil (F 22)
x x x =1 H —(k[ _ k‘,: ) i=1 .

;Vi=12,..n

From equation(F.22) * ‘Pf > is evaluated as:

i Vﬁ y(j kfzfl i
§=1 H —(k[ —k‘.: ) b=l
w2 o Ll = Vi=12,..n (F.23)

{;+;,/v2 +4ka,}

Therefore, the solution in the ‘b ’domain is:

o vk o e

b(x)=2|—= LB (F.24)

RO Pt
\

L &=y (i)

Inverse Linear transform of equation(F.24) is done to obtain the solution in the
‘c’ domain by using equation(F.4). The final steady state solution for the Dirichlet

boundary is:
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APPENDIX G

Derivation of the Solution for the zero Dispersion Case

The system of governing transport equations can be written in a matrix format as

[11,38]:

PR LG P G.1)

ot ox
where; ‘[ ]’ denotes a square matrix and ‘{ } > denotes a column vector. The

corresponding initial and boundary conditions are:

{c(x,O)} :{c”e’“"}, 0<x<oo (G.2)

. G.3
where ; ® =ZB;16*W {u(t)—u(t—to)}, t>0;Vi=12,..n (G-3)

i=1
The solution procedure used here is adopted from Quezada et al. [38]. Applying

Laplace transform to equation(G.1), we get:

[R]s )[Rl ee 0} 5212 1) G

X

where; ‘s’ is the Laplace variable and ‘p’ is the Laplace transformed

concentration.

Substituting equation(G.2) in (G.4) and rearranging we get:
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—va{p} +([K]—[R]s){p}:—[R]{c"e_“x} (G.5)

Ox
Now in order to uncouple the system of ordinary differential equations (ODEs)
given by equation(G.5), we apply a linear transform procedure described by Clement

[11]. i.e. we perform the following matrix operation.
{p}=4]{p] (G6)

where; ¢ {b} > is the concentration in the doubly transformed domain. Applying

this transformation equation(G.5) gets modified as:

RO R]s) )8} =~ [R] fee ) (G.7)

ox

Pre-multiplying equation(G.7) with [A]_1 > we get:

o=

o (G.8)

where ; [K}:[A]l([K]—[R]S)[A] and {C}=[A]1 [R]{c"e™)

By using the procedure described in Clement [11], we can make ‘[K } > a diagonal

matrix and thus uncouple the system of equations. The corresponding ‘[A] > matrix,

¢ [A]_l ’ matrix, * [K } > matrix and ¢ {C } > vector is given in ‘Section 2.2°. Equation(G.8)

describes a set of ‘7’ independent first-order non-homogeneous ODEs the boundary
conditions of which are obtained by a combination of Laplace and Linear transforms of

equation(G.3). Laplace transform of equation(G.3) yields:
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{p(0.5)} ={g}

. B {1—5%(“*“} (G.9)
where;&i:z‘ (s+7v) ;) Vi=1L2,..n

In order to transform the boundary conditions from ¢ p’ domain to the ‘b’
domain, we apply the Linear transform given by equation(G.6). This yields:
-1
{b(0.9)f =[4] " {&} (G.10)

The explicit expression for ‘b, (O, s) > in equation(G.10) is given as:

n . e
; H y’,Z kizfl i B;lz {1 —e t()(3+ iy ) }
i, =i, +1

1=l ﬁ _(k,- +sR -k —sR ) i=l1 (S + 7‘;2 ) (G.11)
iy =i, (i, %) “ ’

b,(0,s)=

1

; Vi=1,2,..n
Since equation(G.8) is uncoupled, it can now be written as a set of ‘m’

independent equations as:

Ree™ T vk
ob, (x,5) : e Hly’z -
L sk (1) F .

i=1 —(ki + SR, —ki2 _SRiz) .

iy =iy (ip #i)

; Vi=1,2,..n

Equation(G.12) can be re-arranged and expressed as:

n
o _“HyX
Ril ¢, e H Yi, kiz -1

ob, (x,s k, +sR, 1< i+
(gx )+( v )bi(x,s):;. < 1 (G.13)
=TT —(k,. +sR, —k, —sRiz) '
iy =iy (i, #i)
; Vi=12,..n

The general solution to equation(G.13) is given as:
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n
o ~HyX
R’] ¢, H Yi, kiz -1 —(k;+sR; )x

i

bi(x,s)z—z e +%e
i=l (uilv—ki—sRl.) H —(ki+sRl. —k, —SRI.Z) (G.14)
iy=iy (i #i)

; Vi=12,..n
where; W, is a constant.  Applying the boundary condition given by

equation(G.11) we get:

- ; —t s+,
; H yizk‘,;l ; Billz {l—e t,)( + 2)}

i, =i, (i, #i) i i

n
o I I
Ri‘ Ct_‘ yi2 ki2 -1
i, =i, +1

N Z : (G.15)
i (mv=k=sk) TT —(k+sR —k —sR)
i, =i, (i, #i) ) ~
; Vi=12,..n
Therefore, the solution in the ‘b ’domain is:
i H yi2 kiz—l iy Blllz {1 - e_to(ﬁ—}wz )} —(ki+sR; )x
bi (x,S):Z ﬂ iy=i+1 z e v
i=1 H _(k,v+SR,'_k,-7 _SRL)&:I (S+7\4i2)
i, =i (i, %) ~ ~
B ., —(k[ +sR; )x
1 ReTT vk {e Co- e_“"‘x}
n z R (G.16)

i=1 (Pv,-‘v_k,'_SRi) H _(k,-+SR,-_ku_SRi3)

iy=i (i, #i
,=i, (i, #0)

; Vi=1,2,..n
Inverse Linear transform of equation(G.16) is done to obtain the solution in the
Laplace domain (‘ p’ domain) by using equation(G.6). The solution given by
equation(G.16) can be split into two parts and represented as:
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b,(x,5)=0b;(x,5)+b’(x,s)

where |

; ]:[1 yl.2 kl.fl i Blz {1 _ e—to(sMuiz )} (kSR )x

i=1 (,ul-‘V —k, _SR,-) H _(k,- +5sR —k, _SRz;)
=i (1, 1) : ,

;Vi=1L2,..n
(G.17)

Using the distributive property, we can apply the inverse linear transform to each

of the individual terms and then sum them to get the solution in the ¢ p > domain. This is

expressed as:
{p}=[4]{p} =[4]{p'} +[4] {7} (G.18)

The first term ¢ [A] {bl} > can be evaluated as:

{pl}z[A]{bl} (G.19)

The explicit expression for * pl.1 (x,s) ” in equation(G.19) is given as:
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Pl(x5)=Y

Z ;
=T —(kl.z +sR, —k, —SRza)

iy=i (1320

; Vi=12,..n

(G.20)

Using a similar approach the second term * [A]{bz} > 1s evaluated and the explicit

. ‘ 2 0+
€Xpression for D; (X,S) 1S:

H yizkiz—l

iy=i+1

[0
Rl.l c [

i

|

—(ki2 +SRi2 )x
e v _/uil x

> ;
b= (:uilv_kiz _SRiz) H —(kl.z +5R, —ki3 _SRi3)

iy=iy (i3#i)

; Vi=1,2,..n

(G.21)

Substituting equations(G.20) and (G.21) into equation(G.18) we get the solution

in the Laplace domain as:
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2 ;
LH=h (ll’lilv — ki2 — SRiz) H
iy=iy (32, )

; V

The final solution is obtained by taking an

—(kl.2 + SRZ.2 — kl.3 —sRl.3) G22)

i=1,2,..n

inverse Laplace transform of the

solution given by equation(G.22). Inverse Laplace transform is performed as follows:

C (x,t) = cl.1 (x,t) + cl.2 (x,t)
=/ <le (x,s) +p! (x,s)>
=0 <pl1 (x,s)> + /0 <pi2 (x,

(G.23)
5))

; Vi=1,2,...

The first term ‘€_1< pil(x,s)>’ can be evaluated as follows. From equations

(G.22) and (G.23) we get:
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c| (x,t) =" <pll (x,s)> =/

,.  Bfimet)
k :
(,-Z]:;[rlylz 121}; S+ﬂ,l.2)

(G.24)

Equation(G.24) can be rewritten as:
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OLT

H yizkiz—l

i =ij+1

i _(kiz +sR;, )x

Cl-l (x,l‘)=f_l le Zl:i Blll3 {l_e_%(‘”’lr})}e v
0=
=i i3=1 (S + ai3,0) H _kiz s H _Iel-2 iy (S + aiz iy )

iy=iy ,(i4¢i2 R, =R, ) iy =iy ,(i4¢i2 R, ¢R,~2)

:Vi=1,2,..n (G.25)

Il

; when i, >0
where ; k.. =k —k , R . =R —R and a_, =
1-°2 1 2 1-%2 1 2 12

i il

A5 when i, =0

b
Note that in equation(G.25) the condition * kl.2 N 0~ must be satisfied for the solution to be determinate. Factorization

of equation(G.25) gives:



IL1

3

Iy ,is

iy=i) i3=1

ilz_:‘ i (S+al.3’0) lL[ —k

i

2

iy=i) ,(i4¢i2 Ry ‘tsz) _Riz iy (S +

iy=ir,(ia#ir Ry =Ry, )

1

a, ., )

;Vi=1L2,..n

i

[1

is=iy (is#iy is#iy, R # Ry, )

R la . —a .
12,15( iy sis iy 0y

(G.26)

It must be noted that the solution formulation as given by equation(G.26) is valid only when the condition

*da

iy

)

3 > is satisfied. Equation(G.26) can be further factorized and simplified as:



L1

¢ (x.t)= ZH 11 yk]ZZ{G +4(G)) Gi}}

i=1| \ i=ij+1 =i =1

;Vi=12,..n

where ;

_(kfz +sR;, )x

{1 _ e—to(er/l,-S) e v

i3 p—1
Bt
(s + al.3’0)(s + %,:-4)

i

G= 3 . '
iy=iy (14 Ry %Ry, ) [ N ]j _kiz Jis ](_Riz s ) ]j

{1 - e"”(s”"S)}e ”

(S + al.3,0)

B

G, =

i
iy iy
iy=ir ({713 Ry =R, )

h(M)— 1 if M loop is not executed
o if M loop is executed

—R . (a. . —a. .
12,15( iy, Il

(G.27)



€LI

The term * Gl1 ” in equation(G.27) can be further factorized and simplified as:

i —(k,- +5R; )x _(ki +5R; )x ]
2 2 2 2
{l_e—t{,(wlg)}e N {l_e—t0(€+/1,3)}e N
i | p-1 -1
B!/ ~¢
(s+al.3,0) (S+al.25i4)
i
1 L |
G = > _ _ (G.28)
iy=iy iy #15, R, #Ry, ) ! !
(aiz iy llé ) H _kizais (_Riz Ay ) H _Riz ol (aiz is aiz kg )
is=iy (is#iy.Rs =R, ) is=iy i1y s #ig R #Ry, )

2

Again it must be noted that equation(G.28) is valid only when the condition ‘al.2 W a0 where; ‘ai3 o =A s

[}

satisfied. Using the Appendix H, inverse Laplace expressions for the terms ° Gl1 > and ° G21 > can be evaluated and the solution

for cl.l (x,t) > 1s obtained as:



vLI

ZKH vk ]ZZ{G1+h(G1) Gl}}

ij=1 ip=i;+1 iy=ij Iy

;Vi=1L2,..n

<lz,0[xt] e 3FHZ,}[)C t—t )} >

xt]+e &3 [xt t)}

where ;

i

1 _
G= 2 _
iy=iy iy %1, R, #Ry) ) !
(aiz a li} H _klz is (_Riz iy ) H _Riz s (aiz ds aiz Ay )
Is _’1 'z) )

iy 4in i iy iy iy

BB [xt]-e R, [x (e r)]> (G29)

(AR

i
I | iy,
iy =i, ,(i4 #iy.R,, =R, )

where; the term ° F;.l i > is given by equation(H.5) in Appendix H. The second term £ B < pl.2 (x,s)> > is evaluated as

follows. From equations (G.22) and (G.23) we get:



SLI

Rilci?[ ﬁ yizkizlj

i =ij+1

i —k,-2+sR,-2x
()= g (es)) = 3 {J : )_ew}
i=1 i

Equation(G.30) can be

o
Rl.l ¢ [

=
i=1
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Note that the condition kl.2 N 0 must be satisfied in equation(G.31). Factorization of equation(G.31) yields:
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Note that the condition ¢ a . *a

Ip,i

further factorized and simplified as:
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Note that the condition * a;, *#a;, ; ” must be satisfied in equation(G.34). ° G12 > can be further simplified as:

iy ,—1

; > must be satisfied in equation(G.33). The term ° G12 > in equation(G.33) can be
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¢ G22 > in equation(G.33) can be further simplified as:
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From inverse Laplace transform tables we get: (see [8], p494, eq3).
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Using equation(G.37) and Appendix H, inverse Laplace expressions for the terms * G12 >and ¢ G22 > can be evaluated and

the solution for ‘cl.2 (x,t) ’ is obtained as:
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where; the term “ F, . .’ is given by equation(H.5) in Appendix H. The final solution is obtained by substituting

151,03

equations(G.29) and (G.38) into equation(G.23).

()3 [ﬁ ]zz{H i)

i=1| \i=i+1 iy=iy i3=1

L=

$ v T [Eloren(@)a] | o
i=1 iy=i +1

;Vi=L2,..n



APPENDIX H

Evaluation of Inverse Laplace Expressions for the Zero Dispersion Case

_(kil +5R; )x
{l_e—tu(ﬁﬂm)}e N
-1
Kiviyiiy |51 =1 (H.1)
1’2’354[ ] (S+Cl,-,-)
2513
Equation(H.1) can be simplified as:
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e e e
(H.2)

_ 1
iy iy is i [xat]_e VL -
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2543 2573

Invoking the ‘Second Shifting Theorem’ (see [28], p267) we can simplify

2

‘X as:

1502513514
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where ; f(t) =/("!

‘f (t) > can be evaluated using equation(G.37). Using equation(G.37) in equation(H.3) we get:
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Equation(H.4) can be compactly expressed as:
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FORTRAN Code SEQUENTIAL
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ANALYTICAL SOLUTION FOR MULTI-SPECIES SOLUTE TRANSPORT
CODED BY: VENKATRAMAN SRINIVASAN

AUBURN UNIVERSITY

JULY 2006

PROGRAM SEQUENTIAL
IMPLICIT NONE

PROBLEM PARAMETERS

INTEGER N, BC, ADS
DOUBLE PRECISION V,AX,AY,AZ,LX,LY,LZ,DELX,DELY,DELZ,T,TA,DELT,
YS,ZS,X
DOUBLE PRECISION, ALLOCATABLE :: R(:),KM(:),Y(:),C(:),
LAM(:),B(:,:),CO(:),MU(:)

PROGRAM PARAMETERS

CHARACTER FILENAME*80, TITLE*80, COMMENT*80

INTEGER I,I1,I2,I3,I4,I5,PARA,NEGPARA

DOUBLE PRECISION,ALLOCATABLE :: KIJ(:,:),KAIIJKL(:,:,:,:),RIJ(:,:)
JATT(:,:) ,FIJK(:,:, 1)

DOUBLE PRECISION TIME,TEMP, TEMP1l, TEMP2, TEMP3, TEMP4

READ THE INPUT FILE NAME

WRITE (*,*) "ENTER THE NAME OF THE INPUT FILE"
READ (*, *) FILENAME

OPEN (5, FILE=FILENAME, FORM="FORMATTED', STATUS="'UNKNOWN")
OPEN (10, FILE="OUTPUT.DAT", FORM="'FORMATTED"', STATUS="UNKNOWN ")

READ (5,10) TITLE

WRITE (10,10) TITLE

READ (5, *) N,COMMENT !NUMBER OF SPECIES

ALLOCATE (R (N),KM(N),Y(N),LAM(N),B(N,N),CO (N),MU(N))

READING THE PROBLEM GEOMETRY

READ (5,*) LX,DELX,LY,DELY,LZ,DELZ,COMMENT !PROBLEM GEOMETRY
READ (5,*) YS,Z%S,COMMENT !SOURCE GEOMETRY

READ (5,*) T,TA,DELT,COMMENT !SIMULATION TIME, PULSE TIME, TIME STEP

READING THE PROBLEM PARAMETERS

READ (5, *) V,AX,AY,AZ,COMMENT !ADVECTION DISPERSION PARAMETERS
READ(5,*) (R(I),I = 1, N), COMMENT !RETARDATION FACTORS
READ(5,*) (KM(I),I = 1, N), COMMENT !REACTION CONSTANTS
READ(5,*) (Y(I),I = 2, N), COMMENT !YIELD COEFFICIENTS

READ (5, *) BC, COMMENT !BOUNDARY CONDITION

IF BC.EQ.0 THEN CONCENTRATION BOUNDARY
IF BC.NE.O THEN FLUX BOUNDARY
READ(5,*) (LAM(I),I = 1, N), COMMENT !SOURCE DECAY
DO I =1, N
READ(5,*) (B(I,I1),I1 = 1, I), COMMENT !BATEMAN BOUNDARY VALUES
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END DO
READ (5, *)

READ (5, *)

ADS !REACTION CONDITION

IF ADS.EQ.0, REACTION IN LIQUID PHASE

IF ADS.NE.O, REACTION IN BOTH SOLID AND LIQUID PHASES
(co(r), r =1, N), COMMENT !INITIAL CONDITION CONCENTRATION

READ(5,*) (MU(I), I = 1, N), COMMENT !INITIAL CONDITION EXPONENTIAL DECAY

CLOSE (5)
IF (ADS .NE. 0) THEN
DO I =1, N
KM(I) = R(I)*KM(I)
END DO
END IF
ALLOCATING THE PROGRAM PARAMETERS

ALLOCATE (KAIIJKL(N,N,0:N,N),FIJK(N,N,-N:N),
$ KIJ(N,N),RIJ(N,N),AIJ(N,-N:N))

CALL CKIJ(KIJ,KM,N)

CALL CRIJ(RIJ,R,N)

CALL CAIJ(AIJ,KIJ,RIJ,LAM,R,KM,MU,AX,V,N)

ALLOCATING THE CONCENTRATION VECTOR MATRIX

ALLOCATE (C(N))

CHECKING CONDITIONS OF PARAMETERS FOR DETERMINATE SOLUTION
PARA = 0

IF ANY OF THE CONDITIONS ARE NOT SATISFIED THEN PARA = 1
IF PARA = 1, THEN PROGRAM STOPS

CONDITION 1: KIJ(I2,I4) .NE. O

DO I2 = 1, N
DO I4 = 1, N
IF ((I2 .NE. I4) .AND. (R(I2) .EQ. R(I4)) .AND.
$ (KM(I2) .EQ. KM(I4))) THEN
PARA = 1

WRITE (10, *) "SOLUTION INDETERMINATE DUE TO PARAMETER
SVIOLATION"

WRITE (10, *) "CONDITION KIJ(",I2,",",I4,") = 0 ;
S$WHEN RIJ(",I2,",",I4,") = 0) IS VIOLATED"
END IF
END DO
END DO

CONDITION 2: AIJ(I2,I5) .NE. AIJ(I2,I4)

DO I2 = 1, N
DO I4 = 1, N
IF ((I2 .NE. I4) .AND. (R(I2) .NE. R(I4))) THEN
DO I5 = 1, N
IF ((I5 .NE. I2) .AND. (I5 .NE. I4) .AND.
$ (R(I5) .NE. R(I2)) .AND.
S (AIJ(I2,1I5) .EQ. AIJ(I2,I4))) THEN

PARA =1

WRITE (10, *) "SOLUTION INDETERMINATE DUE TO
$PARAMETER VIOLATION"

WRITE (10,*) "CONDITION AIJ(",I2,",",I5,")

$AIJ(",I2,",",I4,") ;WHEN RIJ(",I2,",",I4,") AND RIJ(",I2,",",I5,")

$ NE O IS VIOLATED"
END IF
END DO
END IF
END DO
END DO
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CONDITION 3&4: AIJ(I2,I4) .NE. LAM(I3) & AIJ(I2,I4) .NE. AIJ(I1,-I2)

DO I1 = 1, N
DO I2 = Il, N
DO I3 =1, Il
DO I4 = I1, N
IF ((I4 .NE. I2) .AND. (R(I4) .NE. R(I2))
$ .AND. (AIJ(I2,I4) .EQ. LAM(I3))) THEN
PARA = 1
WRITE (10, *) "SOLUTION INDETERMINATE DUE TO
$PARAMETER VIOLATION"
WRITE (10,*) "CONDITION AIJ(",I2,",",I4,") =

$LAM(",I3,") ; RIJ(",I4,",",I2,") NE O IS VIOLATED"
ELSE IF ((I4 .NE. I2) .AND. (R(I4) .NE. R(I2))
$ .AND. (AIJ(I2,I4) .EQ. AIJ(I1,-I2))) THEN
PARA =1

WRITE (10, *) "SOLUTION INDETERMINATE DUE TO
$PARAMETER VIOLATION"

WRITE (10, *) "CONDITION AIJ(",I2,",",I4,") =
$aIg(",11,",",-I12,") ; RIJ(",I4,",",I2,") NE O IS VIOLATED"

END IF
END DO
END DO
END DO
END DO

STARTING THE TIME LOOP

IF (PARA .EQ. 0) THEN !CHECKING THE PARAMETER CONDITIONS
TIME = 0.0
DO WHILE (TIME .LT. T)

TIME = TIME + DELT

WRITE (10,*) "TIME = ", TIME

WRITE (10,20) (I, I =1, N)

STARTING THE DISTANCE LOOP
X =0.0

DO WHILE (X .LT. LX)
X = X + DELX

STARTING THE LOOP FOR CALCULATING THE CONCENTRATION OF ALL SPECIES

DO I1 =1, I
TEMP1 = 1.0
DO I2 = I1+1, I
TEMP1 = TEMP1*Y (I2)*KM(I2-1)
END DO !I2 LOOP (1)
TEMP2 = 0.0
11, I

g
o
=
N
Il

EXPONENTIALLY DECAYING INITIAL CONDITION

PARA = 0
IF (CO(I1) .NE. 0.0) THEN
WRITE (*,*) "INITIAL LOOP"
DO I3 = I1, I
IF ((I3 .NE. I2) .AND.
$ (R(I2) .NE. R(I3))) THEN
PARA =1

TEMP3 = 0.0
NEGPARA = 1.0
DO I4 = I1, I
IF ((I4 .NE. I2) .AND.
$ (I4 .NE. I3) .AND.
$ (R(I2) .NE. R(I4))) THEN
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IF ((-KIJ(I2,I4)+RIJ(I2,14)

$ *AIJ(I2,I3)) .LT. 0.0) THEN
NEGPARA = NEGPARA* (-1)
END IF
TEMP3 = TEMP3+LOG (ABS (
$ (-KIJ(I2,I4)+RIJ(I2,I4)*AIJ(I2,13))))
END IF

END DO !I4 LOOP (1)
DO I4 = I1, I
IF ((I4 .NE. I2) .AND.(R(I2) .EQ. R(I4))) THEN
IF (-KIJ(I2,I4) .LT. 0.0) THEN
NEGPARA = NEGPARA* (-1)
END IF
TEMP3 = TEMP3+LOG (ABS (-KIJ(I2,I4)))
END IF
END DO !I4 LOOP (2)
IF (((KIJ(I2,I3)-RIJ(I2,I3)*

$ AIJ(I1,-I2))*R(I2)) .LT. 0.0) THEN
NEGPARA = NEGPARA* (-1)
END IF
TEMP3 = TEMP3+LOG (ABS ((KIJ(I2,I3)
$ -RIJ(I2,I3)*AIJ(I1,-I2))*R(I2)))
CALL CFIJK(FIJK,AIJ,LAM,TIME,X,V,
$ AX,R,KM,N,I2,I1,-I2,BC)
CALL CFIJK(FIJK,AIJ,LAM,TIME,X,V,
$ AX,R,KM,N,I2,I2,1I3,BC)
TEMP4 = DEXP (-MU (I1) *X) * (DEXP (-AIJ(I1,-I2)*TIME) -
$ DEXP (-AIJ(I2,I3)*TIME))

IF (ABS(TEMP4) .GT. 1E+10) TEMP4 = 0.0
CONDITION FOR DIRICHLET BOUNDARY
IF (BC .EQ. 0) THEN
TEMP2 = TEMP2 + R(I1)*CO(I1l)™*

$ (FIJK(I2,I1,-I2)-FIJK(I2,I2,I3)
$ -TEMP4) / (DEXP (TEMP3) *NEGPARA)
CONDITION FOR NEWMAN BOUNDARY
ELSE
TEMP2 = TEMP2 + R(I1)*CO(Il)*

$ ((1.0+MU(I1) *AX) *
$ (FIJK(I2,I1,-I2)-FIJK(I2,I2,I3))
$ -TEMP4) / (DEXP (TEMP3) *NEGPARA)

END IF

END IF

END DO !I3 LOOP

IF (PARA .EQ. 0) THEN
TEMP3 = 0.0
NEGPARA = 1
DO I3 = I1, I

IF ((I3 .NE. I2) .AND. (R(I2) .EQ. R(I3))) THEN
IF ((-KIJ(I12,I3)) .LT. 0.0) THEN
NEGPARA = NEGPARA* (-1)
END IF
TEMP3 = TEMP3+LOG (ABS ( (-KIJ(I2,I3))))
END IF

END DO !I3 LOOP (2)
TEMP3 = TEMP3+LOG (R(I2))
CALL CFIJK(FIJK,AIJ,LAM,TIME,X,V,
$ AX,R,KM,N,I2,I1,-I2,BC)
TEMP4 = DEXP (-MU (I1) *X-AIJ(I1,-I2)*TIME)
IF (ABS(TEMP4) .GT. 1E+10) TEMP4 = 0.0
CONDITION FOR DIRICHLET BOUNDARY
IF (BC .EQ. 0) THEN
TEMP2 = TEMP2+R(I1)*CO(I1l)* (-FIJK(I2,I1,-I2)+

$ TEMP4) / (DEXP (TEMP3) *NEGPARA)
CONDITION FOR NEWMAN BOUNDARY
ELSE
TEMP2 = TEMP2+R(I1l)*CO(I1l)*
$ (-(1.0+MU(I1)*AX)*FIJK(I2,I1,-I2)
$ +TEMP4) / (DEXP (TEMP3) *NEGPARA)
END IF
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END IF
END IF

BOUNDARY CONDITION
DO I3 =1, Il

IF (B(I1,I3) .NE. 0.0) THEN
WRITE (*,*) "BOUNDARY LOOP"

PARA = 0
DO I4 = I1, I
IF ((I4 .NE. I2) .AND. (R(I2) .NE. R(I4))) THEN
PARA =1

TEMP3 = 0.0
NEGPARA = 1
DO I5 = I1, I
IF ((I5 .NE. I2) .AND. (I5 .NE. I4) .AND.
(R(I2) .NE. R(I5)))THEN
IF ((-KIJ(I2,I5)+RIJ(I2,I5)

*AIJ(I2,I4)) .LT.0.0) THEN
NEGPARA = NEGPARA* (-1)
END IF

TEMP3 = TEMP3+LOG (ABS ( (-KIJ(I2,I5)+
RIJ(I2,1I5)*AIJ(I2,1I4))))
END IF
END DO !I5 LOOP (1)
DO I5 = I1, I

IF ((I5 .NE. I2) .AND. (R(I2) .EQ. R(I5))) THEN
IF ((-KIJ(I12,I5)) .LT. 0.0) THEN
NEGPARA = NEGPARA* (-1)
END IF
TEMP3 = TEMP3+LOG (ABS ( (-KIJ(I2,I5))))
END IF
END DO !I5 LOOP (2)
IF ((-KIJ(I2,I4)+RIJ(I2,I4)*LAM(I3)) .LT.0.0)THEN
NEGPARA = NEGPARA* (-1)
END IF

TEMP3 = TEMP3+LOG (ABS ( (-KIJ (I2,I4)
+RIJ(I2,I4)*LAM(I3))))
CALL CKAIIJKL (KAIIJKL,AIJ,LAM, TIME
,X,V,AX,R,KM, TA,N,I2,I3,0,I3,BC)
CALL CKAIIJKL (KAIIJKL,AIJ,LAM, TIME
,X,V,AX,R,KM, TA,N,I2,I2,I4,13,BC)
TEMP2 = TEMP2 + B(I1,I3)* (KAIIJKL(I2,I3,0,I3)-
KAIIJKL(I2,I2,I4,I3))/
(DEXP (TEMP3) *NEGPARA)
END IF
END DO !I4 LOOP (1)
IF (PARA .EQ. 0) THEN
TEMP3 = 0.0
NEGPARA = 1
DO I4 = I1, I

IF ((I4 .NE. I2) .AND. (R(I2) .EQ. R(I4))) THEN
IF ((-KIJ(I12,I4)) .LT.0.0) THEN
NEGPARA = NEGPARA* (-1)
END IF
TEMP3 = TEMP3+LOG (ABS ( (-KIJ(I2,I4))))
END IF

END DO !I4 LOOP (2)
CALL CKAIIJKL (KAIIJKL,AIJ,LAM, TIME
,X,V,AX,R,KM,TA,N,I2,13,0,I3,BC)
TEMP2 = TEMP2 + B(I1,I3)*KAIIJKL(I2,I3,0,I3)/
(DEXP (TEMP3) *NEGPARA)
END IF
END IF
END DO !I3 LOOP
END DO !I2 LOOP (2)
TEMP = TEMP + TEMP1*TEMP2
END DO !I1 LOOP
C(I) = TEMP
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END DO
WRITING THE OUTPUT
WRITE (10,30) X, (C(I), I =1, N)
END OF DISTANCE LOOP
END DO
END OF TIME LOOP

END DO

END IF

FORMAT (A80)

FORMAT (' DISTANCE', <N>(" SPECIES",I3.3))
FORMAT (< (N+1)>E15.5)

CLOSE (10)

END PROGRAM

SUBROUTINE FOR CALCULATING THE KIJ COEFFICIENTS

SUBROUTINE CKIJ(KIJ,KM,N)
IMPLICIT NONE
INTEGER N, I1,I2
DOUBLE PRECISION KIJ(N,N),KM (N)
DO I1 =1, N
DO I2 = 1, N
KIJ(I1,I2) = KM(I1) - KM(I2)
END DO
END DO
RETURN
END

SUBROUTINE FOR CALCULATING THE RIJ COEFFICIENTS

SUBROUTINE CRIJ(RIJ,R,N)
IMPLICIT NONE
INTEGER N, I1,I2
DOUBLE PRECISION RIJ(N,N),R(N)
DO I1 = 1, N
DO I2 = 1, N
RIJ(I1,I2) = R(I1) - R(I2)
END DO
END DO
RETURN
END

SUBROUTINE FOR CALCULATING THE AIJ COEFFICIENTS
SUBROUTINE CAIJ(AIJ,KIJ,RIJ,LAM,R,KM,MU,AX,V,N)

IMPLICIT NONE
INTEGER N, I1,I2

DOUBLE PRECISION AIJ(N,-N:N),KIJ(N,N),RIJ(N,N),LAM(N),R(N),KM(N),

MU (N) ,AX,V
INITIALISING THE VALUE OF AIJ

DO I1 =1, N
DO I2 = 0, N

AIJ(I1,I2) = 0.0
END DO
END DO
DO I1 =1, N
DO I2 = -N, N
IF (I1 .NE. I2) THEN
IF (I2 .LT. 0) THEN
AIJ(I1,I2) = (-MU(I1)**2.0*AX*V-MU(I1)*V+KM(-I2))/R(-I2)

ELSE IF (I2 .EQ. 0) THEN
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AIJ(I1,I2) = LAM(I1)
ELSE IF (R(I1) .NE. R(I2)) THEN
AIJ(I1,I2) = KIJ(I1,I2) / RIJ(I1,I2)
END IF
END IF
END DO
END DO
RETURN
END

SUBROUTINE FOR CALCULATING KAIIJKL COEFFICIENTS

SUBROUTINE CKAIIJKL (KAIIJKL,AIJ,LAM,TIME,X,V,AX,R,KM,TA,N,I1,I2,
13,1I4,BC)
IMPLICIT NONE
INTEGER N, I1,I2,I3,I4,BC
DOUBLE PRECISION KAIIJKL (N,N,0:N,N),AIJ(N,-N:N),LAM(N), TIME,X,V,
AX,R(N),KM(N), TA, FIJK (N, N, -N:N) , TEMP
CALL CFIJK(FIJK,AIJ,LAM,TIME,X,V,AX,R,KM,N,I1,I2,I3,BC)
KAIIJKL(I1,I2,I3,I4) = FIJK(I1,I2,I3)
IF (TIME .GT. TA) THEN
TEMP = TIME-TA
CALL CFIJK(FIJK,AIJ,LAM,TEMP,X,V,AX,R,KM,N,I1,I2,I3,BC)
KAIIJKL(I1,I2,I3,I4) = KAIIJKL(I1,I2,I3,I4) -
DEXP (-LAM (I4) *TA) *FIJK (I1,I2,1I3)
END IF
RETURN
END

SUBROUTINE FOR CALCULATING THE FIJK COEFFICIENTS
SUBROUTINE CFIJK (FIJK,AIJ,LAM,TIME,X,V,2AX,R,KM,N,I1,I2,I3,BC)
IMPLICIT NONE
INTEGER N, I1,I2,I3,BC,PARA
DOUBLE PRECISION FIJK (N,N,-N:N),AIJ(N,-N:N),LAM(N),TIME,X,V,AX
,R(N),KM(N),WIJK,PI,CALEXF, TEMP1, TEMP2,
TEMP3, TEMP4, TEMP5, TEMP6, TEMP7
PI = 22.0/7.0
CALCULATING THE WIJ TERMS
CALL CWIJK (WIJK,V,R,AX,KM,AIJ,N,I1,I2,I3,PARA)
CASE FOR CONCENTRATION BOUNDARY CONDITION
IF (BC .EQ. 0) THEN
CASE FOR NORMAL ERROR FUNCTION
IF (PARA .EQ. 0) THEN
TEMP1 = -AIJ(I2,I3)*TIME + (V-WIJK)*X/(2.0*AX*V)
TEMP2 = (R(I1)*X-WIJK*TIME)/(4.0*R(I1)*AX*V*TIME)**0.5
FIJK(I1,I2,I3) = 0.5*CALEXF (TEMP1, TEMP2)
CASE WHEN X << AX

IF (X .LT. (100.0*AX)) THEN

TEMP3 = -AIJ(I2,I3)*TIME + (V+WIJK)*X/ (2.0*AX*V)

TEMP4 = (R(I1)*X+WIJK*TIME)/(4.0*R(I1)*AX*V*TIME)**0.5

FIJK(I1,I2,I3)=FIJK(I1,I2,1I3)+0.5*CALEXF (TEMP3,TEMP4)
END IF

CASE FOR COMPLEX ERROR FUNCTION

ELSE
TEMP1 = R(I1)*X/(4.0*R(I1)*AX*V*TIME)**0.5
TEMP2 = WIJK*TIME/ (4.0*R(I1)*AX*V*TIME)**0.5
TEMP3 = -AIJ(I2,I3)*TIME+V*X/ (2.0*AX*V)
CALL CEXF (TEMP1l,TEMP2,TEMP3, TEMP4, TEMPS)
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FIJK(I1,I2,I3) = DCOS(WIJK*X/(2.0*V*AX))*TEMP4-

END IF

DSIN (WIJK*X/ (2.0*V*AX) ) *TEMP5

CASE FOR FLUX BOUNDARY CONDITION

ELSE IF (BC .EQ. 1) THEN

CASE FOR (KM (I

1) /R(I1)) .NE. AIJ(I2,I3)

IF ((KM(I1)/R(I1)) .NE. AIJ(I2,I3)) THEN

CASE FOR NORMAL ERROR FUNCTION

IF (PARA
TEMP1 =
TEMP2 =
TEMP3 =
TEMP4 =
TEMPS =
TEMP6 =

FIJK(I1,

.EQ. 0) THEN

-AIJ(I2,I3)*TIME + (V-WIJK)*X/ (2.0*AX*V)
(R(I1)*X-WIJK*TIME)/ (4.0*R(I1)*AX*V*TIME)**0.5
-AIJ(I2,I3)*TIME + (V+WIJK)*X/ (2.0*AX*V)
(R(I1)*X+WIJK*TIME)/ (4.0*R(I1)*AX*V*TIME)**0.5
V*X/ (V¥AX) -KM (I1) *TIME/R(I1)
(R(I1)*X+V*TIME)/ (4.0*R(I1)*V*AX*TIME)**0.5
I2,1I3) = V*(CALEXF (TEMP1, TEMP2) / (V+WIJK)
+CALEXF (TEMP3, TEMP4) / (V-WIJK))
+2.0*V**2.0/ (4.0*R(I1) *V*AX*
(KM(I1)/R(I1)-AIJ(I2,I3)))*
CALEXF (TEMP5, TEMP6)

CASE FOR COMPLEX ERROR FUNCTION

ELSE
TEMP1 =
TEMP2 =
TEMP3 =
TEMP4 =
TEMP5 =

R(I1)*X/ (4.0*AX*V*R(I1)*TIME)**0.5
WIJK*TIME/ (4.0*AX*V*R(I1) *TIME) **0.5
-AIJ(I2,I3)*TIME+V*X/ (2.0*AX*V)

V*X/ (V¥AX) -KM (I1) *TIME/R(I1)
(R(I1)*X+V*TIME)/ (4.0*R(I1)*AX*V*TIME)**0.5

CALL CEXF (TEMP1l,TEMP2,TEMP3, TEMP6, TEMP7)

FIJK (I1,

END IF

I2,I3) = 2.0*V/ (V**2.0+WIJK**2.0) * ((TEMP6*V-TEMP7*
WIJK) *DCOS (X*WIJK/ (2.0*V*AX) ) - (TEMP6*WIJK
+TEMP7*V) *DSIN (X*WIJK/ (2.0*V*AX)))+V**2.0
/(2.0*R(I1)*V*AX* (KM(I1) /R(I1)-AIJ(I2,I3)

) ) *CALEXF (TEMP4, TEMP5S)

CASE FOR KM(I1l) .EQ. AIJ(I2,I3)

ELSE

ORIGINAL FORMULATION

TEMP1 = -KM(I1)*TIME/R(I1)

TEMP2 = (R(I1)*X-V*TIME)/(4.0*R(I1)*V*AX*TIME)**0.5

TEMP3 = -KM(I1)*TIME/R(I1)-(R(I1)*X-V*TIME)**2.0/
(4.0*R(I1)*V*AX*TIME)

TEMP4 = -KM(I1)*TIME/R(I1)+V*X/ (V*AX)
TEMP5 = (R(I1)*X+V*TIME)/(4.0*R(I1)*V*AX*TIME)**0.5
FIJK(I1,I2,I3) = 0.5*CALEXF (TEMP1l, TEMP2)+

(V**2 ,0*TIME/ (PI*R(I1) *AX*V))**0.5*DEXP (TEMP3)
=0.5*% (1.0+X*V/ (AX*V) +V**2  0*TIME/ (R(I1) *AX*V))
*CALEXF (TEMP4, TEMPS)

NEW FORMULATION

REFORMULATING

TO AVOID THE CONDITION WHEN THE ARGUMENT IN THE

SECOND TERM (EXPONENTIAL FUNCTION) BECOMES ZERO AND THE ARGUMENT
IN THE THIRD TERM (ERFC FUNCTION) BECOMES GREATER THAN 25

WRITE (*,*) "EQUAL"

TEMP1 = -KM(I1)*TIME/R(I1)
TEMP2 = (R(I1)*X-V*TIME)/(4.0*R(I1)*V*AX*TIME)**0.5
TEMP3 = - (R(I1)*X-V*TIME)**2.0/(4.0*R(I1)*V*AX*TIME)-X/AX
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TEMP4 = -KM(I1)*TIME/R(I1)+V*X/ (V*AX)

TEMP5 = (R(I1)*X+V*TIME)/(4.0*R(I1)*V*AX*TIME)**0.5

TEMP6 = 0.0

IF (TEMPS5 .LT. 20.0) THEN

FIJK(I1,I2,I3) = 0.5*CALEXF (TEMP1l,TEMP2)+DEXP (TEMP4) * (

(V**2 . 0*TIME/ (PI*R(I1) *AX*V) ) **0.5*DEXP
(TEMP3) =0.5* (1.0+X*V/ (AX*V) +V**2  0*TIME/
(R(I1) *AX*V) ) *CALEXF (TEMP6, TEMP5S) )

ELSE
FIJK(I1,I2,I3) = 0.5*CALEXF (TEMP1, TEMP2)
END IF
END IF
END IF
IF (ABS(FIJK(I1,I2,I3)) .GE. 1E+8) THEN
WRITE (*,*) "FLAG, FIJK"
FIJK(I1,I2,I3) = 0.0
END IF
RETURN

END
SUBROUTINE FOR CALCULATING THE WIJK COEFFICIENTS

SUBROUTINE CWIJK (WIJK,V,R,AX,KM,AIJ,N,I1,I2,I3,PARA)
IMPLICIT NONE
INTEGER N,I1,I2,I3,PARA
DOUBLE PRECISION WIJK,V,R(N),AX,KM(N),AIJ(N,-N:N), TEMP
PARA = 0
TEMP = V**2.,0+4.0%R(I1)*V*AX* (KM(I1)/R(I1)-AIJ(I2,I3))
IF (TEMP .LT. 0.0) THEN
PARA = 1
WRITE (*,*) "NEGATIVE"
END IF
WIJK= (ABS (TEMP)) **0.5
RETURN
END

FUNCTION TO CALCULATE EXP (TEMP1) *ERFC (TEMP2)

FUNCTION CALEXF (TEMP1, TEMP2)
IMPLICIT NONE

NEW ERFC ROUTINE
DOUBLE PRECISION TEMP1, TEMP2, TEMP, CALEXF

CALL CALERF (TEMP2,TEMP, 1)
CALEXF = 0.0

IF ((TEMP .NE. 0.0) .AND. ((TEMP1+LOG(TEMP)) .LT.500.0))THEN
CALEXF = DEXP (TEMP1+LOG (TEMP) )
END IF

VANGENUCHTEN ERFC ROUTINE

DOUBLE PRECISION TEMP1, TEMP2, CALEXF,EXF
IF (TEMP2 .GT. 3.5) THEN
CALEXF = 0.0
ELSE IF (TEMP2 .LT. -3.5) THEN
CALEXF = 2.0*DEXP (TEMP1)
ELSE
CALEXF = EXF (TEMP1l, TEMP2)
END IF

RETURN
END

FUNCTION TO CALCULATE EXP (A) ERFC(B)

FUNCTION EXF (A,B)
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PURPOSE: TO CALCULATE EXP (A) ERFC(B)

IMPLICIT REAL*8 (A-H,0-2%)

EXF=0.0
IF((DABS(A).GT.170.) .AND. (B.LE.O.)) RETURN
IF(B.NE.0.0) GO TO 1

EXF=DEXP (A)

RETURN

C=A-B*B
IF((DABS(C).GT.170.) .AND. (B.GT.0.)) RETURN
IF(C.LT.-170.) GO TO 4

X=DABS (B)

IF(X.GT.3.0) GO TO 2

T=1./(1.+.3275911*X)
Y=T*(.2548296-T*(.2844967-T*(1.421414-T*(1.453152-1.061405*T))))
GO TO 3

Y=.5641896/ (X+.5/ (X+1./(X+1.5/(X+2./(X+2.5/(X+1.))))))
EXF=Y*DEXP (C)

IF(B.LT.0.0) EXF=2.*DEXP (A)-EXF

RETURN

END

SUBROUTINE FOR CALCULATING COMPLEX ERROR FUNCTION
SUBROUTINE CEXF (A,B,Z,U,V)
COMPLEX ERFC-FUNCTION: U+IV=EXP (Z)ERFC (A+IB)

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION W(10),H(10)

DATA W/.4622437,.2866755,.1090172, .02481052, .3243773D-2,
1.2283386D-3, .7802556D-5, .1086069D-6, .4399341D-9, .2229394D-12/,
2H/.2453407,.7374737,1.234076,1.738538,2.254974,
32.788806,3.347855,3.944764,4.603682,5.387481/

IF (DABS (XYZ) .GT.170.) RETURN

COS=DCOS (2. *X*Y)

SIN=DSIN (2.*X*Y)

IF ((X+Y).LT.6.) GO TO 2

T=0.0

DO 1 K=1,10

T=T+W (K) * ((X/ ((Y=-H(K) ) **2+X*X) )+ (X/ ( (Y+H (K) ) **2+X*X) ) )

V=V+W (K) * ((Y=-H (K) ) / ( (Y-H(K) ) **2+X*X) + (Y+H (K) ) / ( (Y+H (K) ) **2+X*X) )
U=.3183099*DEXP (XYZ) * (T*COS-V*SIN)
V=.3183099*DEXP (XYZ) * (-T*SIN-V*COS)
IF(X.LE.O.)U=DEXP (DMIN1 (Z,1.7D2))

GO TO 8

IF(X.GT.2.5) GO TO 3

T=1./(1.+.3275911*X)

U=T* (.2548296-T* (.2844967-T* (1.421414-T*(1.453152-1.061405*T))))
GO TO 4

U=.5641896/ (X+.5/ (X+1./(X+1.5/ (X+2./(X+2.5/ (X+3./(X+1.)))))))
IF(Y.LE.0.) GO TO 7

IF(X.LE.O0.) V=-.3183099*Y

IF(X.LE.0.) GO TO 5

U=U-.1591549* (1.D0-COS) /X

V=V-.1591549*SIN/X

NT=12.+2.*Y

DO 6 I=1,NT

pP=I

ARG=P*Y

F1=X* (DEXP (ARG) +DEXP (-ARG) )
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F2=0.5*P* (DEXP (ARG) -DEXP (-ARG) )
EX=.6366198*DEXP (-0.25*P*P) / (4.*X*X+P*P)
U=U-EX* (2. *X-F1*COS+F2*SIN)

6 V=V-EX* (F1*SIN+F2*COS)
V=V*DEXP (Z-X*X)
7 U=U*DEXP (Z-X*X)
8 IF(B.LT.0.) V=-V
IF(A.LT.0.) U=2.*EXF(Z,E)-U
RETURN
END
C
C SUBROUTINE FOR CALCULATING ERFC
C
SUBROUTINE CALERF (ARG, RESULT, JINT)
C __________________________________________________________________

This packet evaluates erf (x), erfc(x), and exp(x*x)*erfc (x)
for a real argument x. It contains three FUNCTION type
subprograms: ERF, ERFC, and ERFCX (or DERF, DERFC, and DERFCX),
and one SUBROUTINE type subprogram, CALERF. The calling
statements for the primary entries are:

Function Parameters for CALERF
call ARG Result JINT
ERF (ARG) ANY REAL ARGUMENT ERF (ARG) 0
ERFC (ARG) ABS (ARG) .LT. XBIG ERFC (ARG) 1
ERFCX (ARG) XNEG .LT. ARG .LT. XMAX ERFCX (ARG) 2
Author: W. J. Cody

Mathematics and Computer Science Division
Argonne National Laboratory

cNONONOEO NN NN NONONONONO RO NONONONONONONe!

Argonne, IL 60439
Latest modification: March 19, 1990

C __________________________________________________________________

INTEGER I,JINT
CS REAL

DOUBLE PRECISION

1 A,ARG,B,C,D,DEL, FOUR, HALF, P, ONE, Q, RESULT, SIXTEN, SQRPT,

2 TWO, THRESH, X, XBIG, XDEN, XHUGE , XINF, XMAX, XNEG, XNUM, XSMALL,

3 Y, YSQ, ZERO

DIMENSION A (5),B(4),C(9),D(8),P(6),Q(5)
C __________________________________________________________________
C Mathematical constants
C __________________________________________________________________
CS DATA FOUR,ONE, HALF, TWO, ZERO/4.0E0,1.0E0,0.5E0,2.0E0,0.0E0Q/,
Cs 1 SQRPI/5.6418958354775628695E-1/, THRESH/0.46875E0/,
CS 2 SIXTEN/16.0EQ/

DATA FOUR,ONE, HALF, TWO, ZERO/4.0D0,1.0D0,0.5D0,2.0D0,0.0D0/,

1 SQRPI/5.6418958354775628695D-1/, THRESH/0.46875D0/,

2 SIXTEN/16.0D0/
C __________________________________________________________________
C Machine-dependent constants
C __________________________________________________________________
CS DATA XINF,XNEG, XSMALL/3.40E+38,-9.382E0,5.96E-8/,
CS 1 XBIG, XHUGE, XMAX/9.194E0,2.90E3,4.79E37/

DATA XINF,XNEG,XSMALL/1.79D308,-26.628D0,1.11D-16/,

1 XBIG, XHUGE, XMAX/26.543D0,6.71D7,2.53D307/
C __________________________________________________________________
C Coefficients for approximation to erf in first interval
C __________________________________________________________________
CS DATA A/3.16112374387056560E00,1.13864154151050156E02,
Cs 1 3.77485237685302021E02,3.20937758913846947E03,
Cs 2 1.85777706184603153E-1/
Cs DATA B/2.36012909523441209E01,2.44024637934444173E02,
CS 1 1.28261652607737228E03,2.84423683343917062E03/
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DATA A/3.

16112374387056560D00,1.

13864154151050156D02,

1 3.77485237685302021D02,3.20937758913846947D03,
2 1.85777706184603153D-1/
DATA B/2.36012909523441209D01,2.44024637934444173D02,
1 1.28261652607737228D03,2.84423683343917062D03/
C __________________________________________________________________
C Coefficients for approximation to erfc in second interval
C __________________________________________________________________
[oF} DATA C/5.64188496988670089E-1,8.88314979438837594E0,
[oFS} 1 6.61191906371416295E01,2.98635138197400131E02,
Cs 2 8.81952221241769090E02,1.71204761263407058E03,
(o5} 3 2.05107837782607147E03,1.23033935479799725E03,
[oFS} 4 2.15311535474403846E-8/
[oFS} DATA D/1.57449261107098347E01,1.17693950891312499E02,
(o5} 1 5.37181101862009858E02,1.62138957456669019E03,
(o5} 2 3.29079923573345963E03,4.36261909014324716E03,
[oFS} 3 3.43936767414372164E03,1.23033935480374942E03/
DATA C/5.64188496988670089D-1,8.88314979438837594D0,
1 6.61191906371416295D01,2.98635138197400131D02,
2 8.81952221241769090D02,1.71204761263407058D03,
3 2.05107837782607147D03,1.23033935479799725D03,
4 2.15311535474403846D-8/
DATA D/1.57449261107098347D01,1.17693950891312499D02,
1 5.37181101862009858D02,1.62138957456669019D03,
2 3.29079923573345963D03,4.36261909014324716D03,
3 3.43936767414372164D03,1.23033935480374942D03/
C __________________________________________________________________
C Coefficients for approximation to erfc in third interval
C __________________________________________________________________
[oF} DATA P/3.05326634961232344E-1,3.60344899949804439E-1,
Cs 1 1.25781726111229246E-1,1.60837851487422766E-2,
(o5} 2 6.58749161529837803E-4,1.63153871373020978E-2/
Cs DATA Q/2.56852019228982242E00,1.87295284992346047E00,
[oF} 1 5.27905102951428412E-1,6.05183413124413191E-2,
[oF} 2 2.33520497626869185E-3/
DATA P/3.05326634961232344D-1,3.60344899949804439D-1,
1 1.25781726111229246D-1,1.60837851487422766D-2,
2 6.58749161529837803D-4,1.63153871373020978D-2/
DATA Q/2.56852019228982242D00,1.87295284992346047D00,
1 5.27905102951428412D-1,6.05183413124413191D-2,
2 2.33520497626869185D-3/
C __________________________________________________________________
X = ARG
Y = ABS (X)
IF (Y .LE. THRESH) THEN
C __________________________________________________________________
C Evaluate erf for [|X| <= 0.46875
C __________________________________________________________________
YSQ = ZERO
IF (Y .GT. XSMALL) YSQ = Y * Y
XNUM = A(5)*YSQ
XDEN = YSQ
DO 20 I =1, 3
XNUM = (XNUM + A(I)) * YSQ
XDEN = (XDEN + B(I)) * YSQ
20 CONTINUE
RESULT = X * (XNUM + A(4)) / (XDEN + B(4))
IF (JINT .NE. 0) RESULT = ONE - RESULT
IF (JINT .EQ. 2) RESULT = EXP(YSQ) * RESULT
GO TO 800
C __________________________________________________________________
C Evaluate erfc for 0.46875 <= [X]| <= 4.0
C __________________________________________________________________
ELSE IF (Y .LE. FOUR) THEN
XNUM = C(9)*Y
XDEN = Y
DO 120 I =1, 7
XNUM = (XNUM + C(I)) * Y
XDEN = (XDEN + D(I)) * Y
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120 CONTINUE
RESULT = (XNUM + C(8)) / (XDEN + D(8)
IF (JINT .NE. 2) THEN
YSQ = AINT (Y*SIXTEN) /SIXTEN
DEL = (Y-YSQ) * (Y+YSQ)
RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT
END IF

C Evaluate erfc for |X| > 4.0

ELSE
RESULT = ZERO
IF (Y .GE. XBIG) THEN
IF ((JINT .NE. 2) .OR. (Y .GE. XMAX)) GO TO 300
IF (Y .GE. XHUGE) THEN
RESULT = SQRPI / Y
GO TO 300
END IF
END IF
YSQ = ONE / (Y * Y)
XNUM = P (6)*YSQ
XDEN = YSQ
DO 240 I = 1, 4
XNUM = (XNUM + P(I)) * YSQ
XDEN = (XDEN + Q(I)) * YSQ
240 CONTINUE
RESULT = YSQ * (XNUM + P(5)) / (XDEN + Q(5))
RESULT = (SQRPI - RESULT) / Y
IF (JINT .NE. 2) THEN
YSQ = AINT (Y*SIXTEN)/SIXTEN
DEL = (Y-YSQ)* (Y+YSQ)
RESULT = EXP(-YSQ*YSQ) * EXP(-DEL) * RESULT
END IF
END IF

C Fix up for negative argument, erf, etc.

300 IF (JINT .EQ. 0) THEN
RESULT = (HALF - RESULT) + HALF
IF (X .LT. ZERO) RESULT = -RESULT
ELSE IF (JINT .EQ. 1) THEN
IF (X .LT. ZERO) RESULT = TWO - RESULT
ELSE
IF (X .LT. ZERO) THEN
IF (X .LT. XNEG) THEN
RESULT = XINF
ELSE
YSQ = AINT (X*SIXTEN) /SIXTEN
DEL = (X-YSQ)* (X+YSQ)
Y = EXP(YSQ*YSQ) * EXP(DEL)
RESULT = (Y+Y) - RESULT
END IF
END IF
END IF
800 RETURN
C———==————- Last card of CALERF --———----——-—
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Sample INPUT file

3 SPECIES SEQUENTIAL CHO EXAMPLE PROBLEM
3 !INUMBER OF SPECIES

200.0 10.0 1.0 1.0 1.0 1.0 !PROBLEM GEOMETRY, DISTANCE:DISTANCE STEP

(X,Y,2)

1.0 1.0 !'SOURCE GEOMETRY

200.0 200.0 200.0 !SIMULATION TIME, PULSE TIME, TIME STEP

1.0 0.18 0.0 0.0 !VELOCITY, ALPHA (X,Y,Z)

2.0 1.0 1.0 !'RETARDATION FACTORS

0.01 0.1 0.0 !DECAY CONSTANTS

1.0 1.0 !YIELD COEFFICIENTS

0 !BOUNDARY CONDITION TYPE

0.0 0.0 0.0 !SOURCE DECAY LAMDA

1.0 !SPECIElL

0.0 0.0 !SPECIE2

0.0 0.0 0.0 !SPECIE3

0 !SORPTION CONDITION

0.0 0.0 0.0 !INITIAL CONDITION CONCENTRATION

0.0 0.0 0.0 !INITIAL CONDITION EXPONENTIAL DECAY

Sample OUTPUT file

3 SPECIES SEQUENTIAL CHO EXAMPLE PROBLEM

TIME = 200.000000000000

DISTANCE SPECIES001 SPECIES002 SPECIES003

0.10000E+02 0.90500E+00 0.58963E-01 0.36037E-01
0.20000E+02 0.81902E+00 0.75434E-01 0.10554E+00
0.30000E+02 0.74122E+00 0.76529E-01 0.18225E+00
0.40000E+02 0.67080E+00 0.72352E-01 0.25685E+00
0.50000E+02 0.60707E+00 0.66636E-01 0.32629E+00
0.60000E+02 0.54940E+00 0.60739E-01 0.38986E+00
0.70000E+02 0.49721E+00 0.55131E-01 0.44766E+00
0.80000E+02 0.44984E+00 0.49951E-01 0.50007E+00
0.90000E+02 0.39123E+00 0.44654E-01 0.54725E+00
0.10000E+03 0.19746E+00 0.31598E-01 0.58224E+00
0.11000E+03 0.19071E-01 0.10525E-01 0.58123E+00
0.12000E+03 0.17579E-03 0.18928E-02 0.54780E+00
0.13000E+03 0.10664E-06 0.30148E-03 0.50195E+00
0.14000E+03 0.48551E-11 0.47855E-04 0.44975E+00
0.15000E+03 0.14559E-16 0.75816E-05 0.39182E+00
0.16000E+03 0.28198E-23 0.11956E-05 0.32774E+00
0.17000E+03 0.34881E-31 0.18650E-06 0.25691E+00
0.18000E+03 0.27368E-40 0.28315E-07 0.17887E+00
0.19000E+03 0.13558E-50 0.40066E-08 0.97222E-01
0.20000E+03 0.42276E-62 0.46934E-09 0.32185E-01
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APPENDIX J

Evaluation of Integral

The integral in equation(77) can be evaluated as:

Applying Laplace transform to equation(J1) we get:

2 52
| exp{4D r—kr+4D r}
([1]= al exp{ vx} 14 X X

3/2
T

(1)

(J2)

Where, ¢ is the Laplace transform operator and ‘s’ is the Laplace variable.

Equation(J2) can be expressed as:

(J3)

The second term within the Laplace operator can be evaluated by using Selby [40]

(See equation(82), p: 497) as:

198



P {4_;2 } 2,/zD
/ i3 { i Xexp{— al SH (J4)
T X

The entire expression within the Laplace operator can be evaluated by using Selby

[40] (See equation(11), p: 491) and equation(J4) as:

z[l]_fexp{;—a}{exp{— \/%x S+(4‘2x+kJH (J5)

Inverse Laplace transform of the above equation yields[5]:

1/2
4k 1/2 X—Vl(l-i' 4kaxj
I = exp{ilzl—(l+ a”‘j }} erfc v

2a, v 2(ozxvt)l/2
4ka "
Ak 1/2 x+vt| 1+ X
+ expl -2 1+(1+ “xj erfe L J6)
2a, v 2(axvt)

where, o =
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APPENDIX K

Derivation of the three-dimensional solution to zero longitudinal dispersion case

The governing transport equation is:

2 2
% % _p a—f—Dza—fz—kc (K1)
o0 ox oy 0z

The initial and boundary conditions are:
c(x,y,2z,0)=0 V 0<x<w, —0o<y<ow, —0<z<o0

Y
c(0,y,z,t)=c, —§<z<§, —§<y<3, Y t>0

=0 otherwise, ¥ t>0 (K2)
lim 2650220 _
y—to ay
lim 260 0.20 _
z—>Fo0 aZ
Applying Laplace transform to c(x, y, z,¢) in equation(K1) gives:
0 o’ o s+k
a_];_ay alj—ocz 8212) :_( v )p
g (K3)

Z

where ; o, =—= and a,_ =
% v

where; ‘s’ is the Laplace variable and ‘p’ is the concentration in the Laplace

domain. The boundary conditions get modified as:
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c Z Z Y Y
0,y,z)=-"2 <z =, =< y<—
p(0,,2) ; 5 5 5 <V <3
=0 otherwise
K4
y—>to0 ay
z—>F0 82

Equation(K3) can be interpreted as a transient two dimensional diffusive reactive
transport problem. Its boundary conditions given by equation(K4) represent an
instantaneous pulse of a plane source. The solution to this problem without the decay
term can be readily deduced from Hunt [25] by ignoring the advection term and reducing
the problem to two dimensions. Thus the solution to the above problem without the

reaction term is given by:

plny.2) =5 f(xy) f(x2)
s
Y
Y+ y==
where ; f (x,y)=|erf —21/2 —erf 21/2 (K5)
2(e,x) 2(e,x)

VA VA
Z+5 Z_E
and x,z)=|er —er
f.(x,2) f 2(azx)1/2 f 2(0{2)6)1/2 ]

Now we make use of a method similar to the Danckwert’s method described by

Crank [15] to include the reaction term. If p' is the solution for the diffusion problem
without reaction; the solution for the same problem with a first order reaction (with a rate

s+k

constant ( j ) for the same initial and boundary condition is given as:

v
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p:p'exp{_mij} (K6)

This can be easily verified by checking if the solution p satisfies the governing
equation and the initial and boundary conditions. Since p' is the solution to equation

(K3) without the reaction term, it must satisfy:

2 2
T
ox oy 0z

=0 (K7)
Also, differentiating p with respect to x, y and z to the respective orders yields:
dp (s+kj (S—kkj . (S—kkj dp'
—-—=-— exps — Xpp'H+expy—| — |xp—
dx v v v dx
2 2
aljzexp _(S+ij 8]; (K8)
oy v oy
o’ p s+k o’p'
=expq— X
oz’ p{ ( v j } oz’

From equations (K6), (K7) and (K8) we get equation(K3). This proves that

solution p satisfies the governing differential equation. To check for the initial

condition, we substitute x = 0 in equation(K6). When x = 0, the exponential term

becomes unity and hence equation(K6) reduces to p = p'; thus the initial condition is

satisfied. In order to check for the boundary condition in the y direction, we need to take

the derivative of the solution p with respect to y. This is given as:

d—p:exp —(SJrij ' (K9)
dy v dy

In the limiting case, when y approaches + oo, the derivative of p' with respect to

y becomes 0. From equation(K9) we can conclude that the derivative of p with respect
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to y also becomes 0. This proves that the boundary condition in the y direction is
satisfied. On similar lines, we see that the boundary condition is also satisfied in the z
direction. Hence it is proved that equation(K6) is the solution for the system of equations
described by (K3) and (K4).

Equation(K6) can be written as:

St" jx} £.(0y) f.(0.2) (K10)

C
p(xayaz) = _oexp{_(
4s

Inverse Laplace transform of equation(K10) gives the final solution as [40] (See
equation(61), p: 495):
c o
c(x, y,Z,t)=§” £ (0 fi(xp) f(x,2)

where ; f7(x,t)= 2exp(—ﬂju {t —i}
v

v
and u {t —f} is the step function given by; (K11)
v
0 ift<t
X v
u {t ——} =
Y 1 ift>£
v
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